
fcell-09-650664 March 10, 2021 Time: 14:7 # 1

REVIEW
published: 16 March 2021

doi: 10.3389/fcell.2021.650664

Edited by:
Joan Oliva,

Emmaus Medical Inc., United States

Reviewed by:
Sina Naserian,

Hôpital Paul Brousse, France
Selim Kuci,

University Hospital Frankfurt,
Germany

*Correspondence:
Agustín G. Zapata

zapata@bio.ucm.es

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Stem Cell Research,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 07 January 2021
Accepted: 26 February 2021

Published: 16 March 2021

Citation:
García-Bernal D, García-Arranz M,

Yáñez RM, Hervás-Salcedo R,
Cortés A, Fernández-García M,

Hernando-Rodríguez M,
Quintana-Bustamante Ó, Bueren JA,

García-Olmo D, Moraleda JM,
Segovia JC and Zapata AG (2021)

The Current Status of Mesenchymal
Stromal Cells: Controversies,
Unresolved Issues and Some

Promising Solutions to Improve Their
Therapeutic Efficacy.

Front. Cell Dev. Biol. 9:650664.
doi: 10.3389/fcell.2021.650664

The Current Status of Mesenchymal
Stromal Cells: Controversies,
Unresolved Issues and Some
Promising Solutions to Improve Their
Therapeutic Efficacy
David García-Bernal1,2†, Mariano García-Arranz2,3†, Rosa M. Yáñez2,4,5†,
Rosario Hervás-Salcedo2,4,5, Alfonso Cortés2,6, María Fernández-García2,4,5,
Miriam Hernando-Rodríguez2,4,5, Óscar Quintana-Bustamante2,4,5, Juan A. Bueren2,4,5,
Damián García-Olmo2,3, Jose M. Moraleda1,2, José C. Segovia2,4,5 and
Agustín G. Zapata2,7*

1 Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria
Virgen de la Arrixaca, University of Murcia, Murcia, Spain, 2 Spanish Network of Cell Therapy (TerCel), Instituto de Salud
Carlos III, Madrid, Spain, 3 Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of
Madrid (UAM)), Madrid, Spain, 4 Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez
Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain, 5 Centre for Cytometry and Fluorescence
Microscopy, Complutense University, Madrid, Spain, 6 Hematopoietic Innovative Therapies Division, Centro
de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red
de Enfermedades Raras, Madrid, Spain, 7 Department of Cell Biology, Complutense University, Madrid, Spain

Mesenchymal stromal cells (MSCs) currently constitute the most frequently used cell
type in advanced therapies with different purposes, most of which are related with
inflammatory processes. Although the therapeutic efficacy of these cells has been
clearly demonstrated in different disease animal models and in numerous human phase
I/II clinical trials, only very few phase III trials using MSCs have demonstrated the
expected potential therapeutic benefit. On the other hand, diverse controversial issues
on the biology and clinical applications of MSCs, including their specific phenotype,
the requirement of an inflammatory environment to induce immunosuppression, the
relevance of the cell dose and their administration schedule, the cell delivery route
(intravascular/systemic vs. local cell delivery), and the selected cell product (i.e., use
of autologous vs. allogeneic MSCs, freshly cultured vs. frozen and thawed MSCs,
MSCs vs. MSC-derived extracellular vesicles, etc.) persist. In the current review article,
we have addressed these issues with special emphasis in the new approaches
to improve the properties and functional capabilities of MSCs after distinct cell
bioengineering strategies.

Keywords: MSC bioengineering, MSC homing, MSC immunomodulation, MSC preconditioning, MSC therapeutic
efficacy
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INTRODUCTION

Mesenchymal Stromal Cells: Lights and
Shadows in the Knowledge of Their
Mechanisms of Action
Numerous questions on the biology of mesenchymal stromal
cells (MSCs), the most promising cell type for cell therapy
strategies, remain unknown (Galipeau and Sensebe, 2018). This
would explain the variability of both, the reported preclinical and
clinical results and the difficulties to establish a general pattern of
functioning for these cells. A current survey on the heterogeneity
of MSCs, their immunogenicity, routes of delivery and migratory
capacity, and principally on the mechanisms governing their
immunomodulatory properties needs a substantial revision in
order to design protocols for improving their therapeutic
capacities, including MSC bioengineering.

MSCs were initially described as colony forming units-
fibroblasts (CFU-Fb) capable of differentiating into distinct
connective tissue lineages (i.e., osteoblasts, chondroblasts and
adipocytes) (Friedenstein et al., 1970; Caplan, 1991; Pittenger
et al., 1999). Multiple parameters can affect the therapeutic
properties of MSCs including tissue origin (Ketterl et al., 2015),
cryopreservation procedure (Oja et al., 2019), culture time and
media supplementation with different growth factors (von Bahr
et al., 2012; Moll et al., 2014b), optimal dosage (Golpanian et al.,
2016) and in vivo cell delivery (Caplan et al., 2019; Moll et al.,
2019) can affect substantially the cellular therapeutic properties
of MSCs. Therefore, a better knowledge of these cell processes
would improve the therapeutic outcomes of MSCs.

Mesenchymal Stromal Cell
Immunophenotype and
Immunomodulatory Properties
There are no specific markers to characterize the
immunophenotype of the MSCs. In humans, MSCs express
CD73, CD90, CD105, CD166, CD29, and CD44 that are
also present in many other cell types (Pittenger et al., 1999).
Negative markers include CD34, CD45, CD14, CD11b, CD79a,
CD10, and HLA-DR, except in the presence of IFNγ (Alfaro
et al., 2020). In addition, they express numerous cytokine and
chemokine receptors as well as distinct Toll-like receptors (TLRs)
that play distinct immunomodulatory functions including the
inhibition of T cell responses, antigen-presenting cell maturation,
cytotoxicity of resting NK cells and differentiation of monocytes
to immature dendritic cells (DCs) (Beyth et al., 2005; Jiang et al.,
2005; Spaggiari et al., 2006; de Castro et al., 2019). Indeed, MSCs
exhibit high plasticity over time and probably related with their
origin in different microenvironments (Wilson et al., 2019). This
MSC heterogeneity is due, at least in part, to the occurrence of
distinct expression profiles (i.e., surface markers, transcriptome
and proteome), and functional properties (Phinney et al., 2006;
James et al., 2015; Mattar and Bieback, 2015). Some authors
have proposed, but not conclusively demonstrated, that induced
pluripotent stem cells (iPSCs)-derived MSCs could constitute a
more homogeneous cell population (Bloor et al., 2020).

Nevertheless, it is important to clarify more conclusively
the relevance of an inflammatory environment for the MSC-
mediated immunomodulation. Two recent publications
by Naserian and colleagues (Beldi et al., 2020a,b) have
provided new and relevant information on the role played
by TNF-α signaling in these processes. TNF-α exerts its
effects through interaction with two receptors, TNFR1 and
TNFR2. Whereas TNFR1 is ubiquitously expressed, TNFR2
expression is restricted to some cell types, including MSCs
(Salomon et al., 2018; Yang et al., 2018). Remarkably, TNFR2
signaling results in pro-angiogenic and survival effects, but
activation of TNFR1 signaling pathway generally induces
apoptosis (Faustman and Davis, 2013). Furthermore, MSCs
isolated from TNFR2 KO mice are less efficient in governing
immunosuppression, including reduced capability to induce T
cell differentiation toward Treg cell lineage (Beldi et al., 2020b).
More recently, extended analysis of these TNFR2 deficient
MSCs demonstrated that impeded TNFR2 signaling courses
with reduced MSC colony-forming units (CFUs), proliferative
rate and expression of diverse MSC cell markers. In addition,
these deficient TNFR2 MSC produce more pro-inflammatory
molecules (i.e., TNF-α, IFNγ, IL-6), less IL-10, TGFβ and nitric
oxide (NO), and show reduced regenerative capabilities for
wound healing, vascular tube formation and neoangiogenesis
(Beldi et al., 2020a).

It has been proposed that the therapeutic properties of MSCs
depend on the crosstalk of these cells with the host tissues
(Ankrum et al., 2014; Galleu et al., 2017; de Witte et al., 2018;
Galipeau and Sensebe, 2018), as suggested by the mechanisms
which control their immunoregulatory properties and the status
of pre-sensitization of host (Avivar-Valderas et al., 2019). During
acute inflammation, MSC activation is critical for the production
of immunoregulatory factors, in contrast with non-activated
MSCs, which do not exhibit a significant production of these
molecules. In acute inflammatory conditions, activated T cells
secrete pro-inflammatory cytokines (i.e., IFNγ, TNF-α, IL-1,
or IL-17), that activate MSCs initiating the modulation of
immune responses by releasing anti-inflammatory molecules,
such as prostaglandin E2 (PGE2), IL-10, HLA-G, indoleamine-
2,3-dioxygenase (IDO), hepatocyte growth factor (HGF), TGFβ,
NO, galectins, semaphorin-3A or heme-oxigenase (HO) as well
as multiple chemokines (i.e., CXCL10, CXCL11, CXCL12, and
CXCL19) (Jimenez-Puerta et al., 2020).

In general terms, activated MSCs in an inflammatory
microenvironment block or largely inhibit activation of the
complement system, neutrophils, T cells, B cells and NK cells.
MSCs stimulate functional maturation of anti-inflammatory
type 2 macrophages, regulatory DCs and B and T regulatory
cells as well (Saparov et al., 2016; Wang et al., 2018, 2019;
Jimenez-Puerta et al., 2020). Therefore, TLRs and numerous
immunomodulatory factors secreted or expressed by MSCs
are orchestrated to function together. Indeed, it has not been
possible to identify one single mechanism responsible for the
immunomodulatory properties of MSCs and distinct factors
seem to act, coordinately and/or sequentially in the blockade
of the immune system (Ferreira et al., 2018). On the other
hand, PGE2 production largely depends on IL-10 signaling

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 March 2021 | Volume 9 | Article 650664

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-650664 March 10, 2021 Time: 14:7 # 3

García-Bernal et al. MSC Therapeutic Efficacy Improvement

and MSCs stimulated by kinurenin through aryl-hydrocarbon
receptors (AhR) show an increased production of iNOS, IDO
and PGE2 (Jiang et al., 2005; Wang et al., 2018; de Castro
et al., 2019). Moreover, low levels of TGFβ correlate with
reduced IDO (Xu et al., 2014), and TNF-stimulated gene 6
(TSG6), that inhibit neutrophilia by blocking CXCL8-mediated
chemotaxis, is regulated by AhR and IDO (Wang et al.,
2018). Moreover, TLR2 activation induces galectin-3 production,
increasing its capacity to suppress T cell activation (Sioud
et al., 2010). However, effects mediated through TLR3 and
TLR4 are controversial, although it is generally assumed that
TLR3 signaling induces an anti-inflammatory MSC profile
(MSC-2), while TLR4 signals promote pro-inflammatory MSCs
(Shammaa et al., 2020). Importantly, and apart from their
immunomodulatory properties, other studies have found that
MSCs also possess robust anti-bacterial properties through
secretion of a variety of anti-microbial peptides and/or proteins
such as lipocalin-2, IL-37, hepcidin, keratinocyte growth factor
and β-defensin-2 which has led to MSCs being considered as a
therapeutic option for sepsis and septic shock (Krasnodembskaya
et al., 2010; Gupta et al., 2012; Alcayaga-Miranda et al., 2015;
Sung et al., 2016).

The key role played by Treg cells for governing MSC-mediated
immunosuppression deserves further, more extensive analysis.
MSCs induce Treg cell differentiation by increasing production
of PGE2, TGFβ and IL-10. In addition, they increase Treg cell
proliferation via TLR2 and TLR3 signaling, thrombospondin, IL-
2 and TNF-α through activation of Stat5 that increases CD39
and CD73 expression, both molecules involved in the adenosine
production necessary for Treg cell function (de Castro et al.,
2019). On the other hand, as previously indicated, a close
relationship has been established between TNFR2 expression
and Treg cell function (Salomon et al., 2018; Yang et al., 2018;
Naserian et al., 2020). Remarkably, Treg lymphocytes express
TNFR2 which is directly related to their immunosuppressive
effects (Leclerc et al., 2016; Naserian et al., 2020).

On the other hand, some reports suggest that systemically
injected MSCs have immunosuppressive properties because
they are entrapped in the lung microvasculature, die by
apoptosis and are engulfed by local macrophages that
become type 2 macrophages which secrete IL-10 and
arginase immunosuppressive factors (Anderson et al.,
2013; Braza et al., 2016). Engulfed MSCs appear mainly
in non-classical Ly6Clow monocytes that polarize toward
CD14+CD16+CD296+ monocytes, an intermediate phenotype
with anti-inflammatory properties that produces IL-10 and
express PDL-1. In addition, these primed monocytes that
engulfed MSCs induce CD4+CD25high Treg cell formation
(Weiss and Dahlke, 2019).

These results indirectly support that apoptotic, metabolically
inert or even fragmented MSCs would have the same
immunomodulatory properties as living MSCs (Chang et al.,
2012; Galleu et al., 2017; Weiss and Dahlke, 2019). Therefore, the
viability of MSCs would not be a pre-requisite for some of their
exerted immunomodulatory effects (Weiss and Dahlke, 2019). In
this respect, Thum and colleagues pointed out that the apoptosis
of MSCs is caused by modulation of both innate and adaptive

immunity (Thum et al., 2005) and further studies support this
idea. Apoptotic MSCs exhibited an immunosuppressive behavior
in a Th2-type inflammatory model, inducing IDO production
in host phagocytic cells (Galleu et al., 2017), and supernatants
of cultured macrophages that engulfed MSCs improved the
survival of hypoxic cardiomyocytes (Lu et al., 2013). Remarkably,
systemic administration of apoptotic adipose tissue-derived
MSCs provide better therapeutic results than the treatment
with living MSCs in a cecum ligation and puncture-induced
sepsis model (Sung et al., 2013). On the other hand, MSCs
heated for 30 min at 50◦C that provokes an irreversible blockade
of cell metabolism but maintains the cell integrity, were able
to reduce the inflammatory response in mice receiving LPS
by a significant reduction of the serum levels of IFNγ and
increased production of IL-10 (Luk et al., 2016). Also, normal
MSCs and metabolically inactive MSCs showed similar effects
on monocyte function with a significant reduction of TNF-α
production in response to LPS (Jiang et al., 2005). By contrast,
the intrapulmonary administration of apoptotic MSCs did not
increased survival or reduced the severity of endotoxin-induced
acute lung injury (Gupta et al., 2007), in contrast with several
studies demonstrating the significant positive effect of living
MSCs in the reduction of sepsis in different experimental models
(Gupta et al., 2007; Johnson et al., 2017).

MESENCHYMAL STROMAL CELL
MANUFACTURING

MSC manufacturing for clinical use has been regulated
worldwide for over a decade in an attempt of protecting
potential users. Production of cell medicaments with protocols
accepted by regulatory agencies under GMP conditions generates
a cellular product with specific properties and a high level of
safety. Autologous MSC manufacture was the first step and
these cells are currently used in the majority of clinical trials
and treatments; however, this procedure has disadvantages such
as the time required to obtain an adequate number of cells
from older or fragile patients, or the difficulty of growing
MSCs in vitro from patients with different pathologies. For
this reason, cryopreservation of cells has been frequently used
to allow delayed treatment or for allogeneic donors; although
cryopreservation is not an innocuous process for cells.

Cryopreservation has interesting benefits in clinical practices
and is mandatory for MSC banking, but its effects on MSC
biology are controversial. While some authors have discussed that
the cryopreservation process reduces MSC potency, other studies
have found no significant influence on their immunomodulatory
properties (Cruz et al., 2015; Luetzkendorf et al., 2015). Two
freezing steps with, at least, one preceding cell culture passage
before freezing do not seem to affect the essential biological
parameters of MSCs (i.e., cell yield, growth kinetics and
population doubling number), but ≥4 freezing steps could
accelerate the senescence of cultured MSCs. In addition, the
immunosuppressive potential of frozen and thawed MSCs,
independently of the number of freezing steps, is reduced by
about 50% as compared to freshly cultured MSCs, but definitively
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do not abolish the process, even after long periods (>10 months)
of cryopreservation (Klinker et al., 2017; Oja et al., 2019; Giri and
Galipeau, 2020). Moreover, a variety of methods for long-term
storage of MSCs using different formulations of cryopreservation
media or different procedures for MSC freezing and thawing
may subsequently greatly affect the MSC potency (Ding et al.,
2010; Liu et al., 2010; Moll et al., 2014a; Miyagi-Shiohira et al.,
2015; Rogulska et al., 2019). Therefore, the improvement of the
cryopreservation conditions to ensure the intrinsic biological
properties of MSCs needs further investigation in order to extend
the utility of MSC banking for subsequent cell therapy uses.

On the other hand, the production of a sufficient number of
MSCs by in vitro expansion for obtaining a clinical dose may
have some impact on the native properties of the MSCs. Although
MSCs can be growth up to 20 passages, these long-term cultured
MSCs have shown senescence genes up-regulation, morphologic
changes, decreased differentiation potential, chemokine receptor
down-regulation, telomere length shortening and decreased
immunosuppressive properties compared to short-term cultured
counterparts (Jiang et al., 2002; Rombouts and Ploemacher,
2003; Honczarenko et al., 2006; Izadpanah et al., 2008; Li
et al., 2012; Lian et al., 2016). Accordingly, the establishment
of universal protocols for maintenance, banking and culture of
MSCs would be welcome.

ALLOGENEIC OR AUTOLOGOUS
MESENCHYMAL STROMAL CELLS FOR
THERAPEUTIC USAGE

A second controversial issue is whether allogeneic better
than autologous MSCs would be used clinically. Indeed, both
preclinical studies and clinical trials show an increasing use of
allogeneic MSCs. Autologous MSC transplantation has some
limitations. Firstly, the high cost of cell preparation just
for a single recipient. Moreover, it is difficult to obtain a
clinical dose of MSCs from some patients. For example, MSCs
isolated from elder donors have decreased proliferation, less
differentiation, and less regenerative potential, subsequently
leading to ineffective treatments (Maredziak et al., 2016). By
contrast, it is evident that the use of allogeneic vs. autologous
MSCs for cell therapy has clear advantages (Hare et al., 2012;
Zhang et al., 2015). Allogeneic MSCs from young healthy donors
are an optimal choice to solve this problem. In addition, the
expansion of autologous MSCs to obtain a clinical dose is time-
dependent, making this therapeutic approach difficult for the
early treatment of diseases in acute phase (e.g., COVID-19,
brain stroke, septic shock or myocardial infarction). However,
allogeneic MSCs, cryopreserved and stored once obtained, can be
readily available, quickly thawed, and immediately administered
to the patient who requires them. For all these reasons,
cryopreserved allogeneic MSCs are a promising therapeutic
alternative to autologous MSCs with multiple advantages in
terms of time, cost of production and quality assurance.
Importantly, allogeneic MSCs from pooled mononuclear cells
of multiple third-party donors have been reported to exhibit
decreased heterogeneity and to exert significantly higher

immunosuppresive potential than those obtained from individual
donors (Kuci et al., 2016).

However, this proposal leads to the unsolved question of the
MSC immunogenicity. It is well known that there is immune
activation of host cytotoxicity mediated by complement, NK cells
and/or cytotoxic T cells (Noone et al., 2013; Ankrum et al.,
2014; Berglund et al., 2017; Kot et al., 2019). In fact, syngeneic
MSCs persist for more than 200 days, whereas allogeneic
cells rapidly disappear (Eliopoulos et al., 2005). Although,
low or null immunogenicity for allogeneic MSCs has been
claimed (Le Blanc et al., 2003; Escacena et al., 2015), recent
in vivo and in vitro evidence suggests that MSCs generate both
innate and adaptive host immune responses (Caplan et al.,
2019). However, anti-MSC responses are lower than those
against other allogeneic cells are (Khan and Newsome, 2019),
perhaps because MSCs do not express MHC class II antigens
or co-stimulatory molecules. Therefore, the balance between
their immunogenicity and the release of immunosuppressive
factors, highly dependent on the local microenvironment,
determines the MSC behavior (Khan and Newsome, 2019).
Even more, this cytotoxic activity is important for MSC-
mediated immunosuppression because it results in phagocytosis
of apoptotic cells and then macrophage polarization (Galleu et al.,
2017; de Witte et al., 2018). Thus, reduction of the activity of
host immune system could diminish the efficiency of MSCs
(Caplan et al., 2019).

Accordingly, the study of HLA matching between donor
MSCs and recipient of these cells is being recently proposed
(Avivar-Valderas et al., 2019). On a phase III clinical trial for
the treatment of complex perianal fistulous pathology in patients
with Crohn’s disease, the authors carried out a study on the
immunological responses and MSC efficacy taking into account
the haplotypes of the donor cells and the recipient concluding
that an HLA-screening to the donor MSCs would be performed
to limit the humoral response between donor and recipient.

DELIVERY OF MESENCHYMAL
STROMAL CELLS

There is no consensus on the best method for MSC delivery
(Caplan et al., 2019). Intramuscular delivery is a safe and simple
method, but its efficiency is frequently low (Jahromi et al., 2019).
In some organs, in situ direct injection is almost mandatory
but may impede interactions between MSCs and host cells,
particularly in lungs and spleen, thus limiting their therapeutic
activity. In addition, delivery of a high number of cells could
induce important cell damage, including high cell mortality by
trauma, hypoxia or NK cell-mediated MSC apoptosis. On the
contrary, systemic infusion of MSCs allows interactions with
host cells and tissues but needs an adequate biodistribution
and homing to affected tissues, which is sometimes limited.
Intra-arteriolar delivery would be the most efficient method
but also can be potentially harmful because MSCs mechanically
entrap in the microvasculature elsewhere (Toma et al., 2009).
The most frequently used method is the systemic delivery by
intravenous injection but, particularly in rodents and in lesser

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 March 2021 | Volume 9 | Article 650664

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-650664 March 10, 2021 Time: 14:7 # 5

García-Bernal et al. MSC Therapeutic Efficacy Improvement

extent in humans, results in a high number of entrapped MSCs
in lung capillaries that limit the number of cells reaching
target organs and increase the risk of thromboembolism (Scarfe
et al., 2018; Coppin et al., 2019). Although there are only a
few clinical trials reporting MSC-associated thrombotic events
(Jung et al., 2013; Wu et al., 2017), MSC delivery triggers the
activation of the complement system and the coagulation cascade
inducing the so called “Instant Blood-Mediated Inflammatory
Reaction” (IBMIR) (Moll et al., 2012, 2019). MSCs express
the pro-coagulant tissue factor (CD142) (Drake et al., 1989),
and MSC systemic injection significantly increases C3a and
sC5b-9 levels and activation of the thrombin-anti-thrombin
complex, inducing a drop in platelet numbers and increased
values of D-dimer (Moll et al., 2015). These results remark the
relevance of monitoring MSC pro-coagulant activity after their
systemic infusion (Caplan et al., 2019). On the other hand,
release of complement activation factors after exposure to MSCs
could modulate their immunomodulatory and chemotactic
activity (Schraufstatter et al., 2009; Moll et al., 2011), and
protocols to avoid or attenuate complement-mediated cell
damage would improve the efficiency of MSC-based therapies
(Moll et al., 2016).

MESENCHYMAL STROMAL CELL
HOMING

Similar to leukocytes and hematopoietic stem cells, MSCs
must undergo a multistep process to extravasate from the
circulating blood and migrate through the vessel walls to the
damaged tissues. This process includes various sequential steps:
(1) an initial decelerative tethering followed by direct rolling
contacts with endothelial cells; (2) activation of integrins (mainly
induced by chemokines); (3) integrin-dependent firm adhesion
to endothelial cells; (4) transendothelial migration; and (5)
interstitial migration toward the injured tissue (Nitzsche et al.,
2017). However, MSC homing to the damaged organs is very
inefficient, and only a small proportion of cells reach target tissues
(Devine et al., 2003). A restricted repertoire of functional homing
and chemokine receptors exhibited by MSCs could be reason for
this inefficiency (Honczarenko et al., 2006; Chamberlain et al.,
2008). Among them, MSCs express neither the sialofucosylated
glycoforms of CD44 nor P-selectin glycoprotein ligand-1 (PSGL-
1). These molecules, called hematopoietic cell E-/L-selectin ligand
(HCELL) and cutaneous lymphocyte antigen (CLA), respectively,
contain the sialyl Lewis X (sLeX) moiety that mediate migration
to E-selectin-bearing endothelial beds in sites of inflammation
(Sackstein et al., 2008; Sackstein, 2009). In addition, the response
of MSCs to CXCL12 gradients is controversial because it has
been reported that they do not express its receptor, CXCR4
(Ullah et al., 2019). By contrast, MSCs extravasation is mediated
by the expression of FGF receptors that interact with bFGF
on endothelial cells mediating galectin-1-dependent adhesion
to P-selectin (Langer et al., 2009). Then, MSCs send out
filopodia and cross the intraluminal space with the concourse
of metalloproteinases and the development of a front cell pole
through their intracellular adaptor FROUNT and the chemokine

receptor CCR2 (Zachar et al., 2016). But this mechanism of
extravasation is less effective.

On the other hand, it has been found that in vitro prolonged
expansion of MSCs in culture produces a down-regulation of
a variety of homing molecules including chemokine receptors,
such as CCR1, CCR7, CCR9, CXCR5, and CXCR6, thus lacking
the chemotactic response to these chemokines (Rombouts and
Ploemacher, 2003; Honczarenko et al., 2006). Accordingly,
attempts for improving MSC homing are complex and require
further optimization. Some of them have focused on introducing
modifications in the expression of different homing molecules
on migrating MSCs through a wide variety of genetic, enzymatic
or ligand conjugation approaches. Enzymatic treatment of MSCs
by α(1,3)-exofucosylation of the CD44 receptor with either
stereospecific fucosyltransferase VI or fucosyltransferase VII in
presence of its substrate GDP-fucose, or by fucosyltransferase
VI gene transfection, has been shown to engender the potent
E-selectin ligand HCELL on the MSC surface. This transient
modification increases efficiently the in vivo tethering and
rolling contacts on E-selectin-expressing endothelial beds in bone
marrow microvasculature and in inflamed tissues (Sackstein
et al., 2008; Abdi et al., 2015; Dykstra et al., 2016; Chou
et al., 2017). Remarkably, recent findings have shown that
exofucosylated MSCs display an altered secretome characterized
by an augmented expression of anti-inflammatory molecules,
leading to higher MSC immunosuppressive properties, as well
as increased migration ability toward some pro-inflammatory
chemokines such as CCL5, CCL20 and CXCL16 (Garcia-Bernal
et al., 2020). Other authors reported that covalent binding of
sLeX to the MSC surface through a biotin-streptavidin bridge,
by conjugation of E-selectin-targeting peptide on the MSC
membrane or by mRNA transfection to overexpress PSGL-1
and sLeX on MSCs resulted in an augmented rolling behavior
on P- and E-selectin-coated surfaces and on inflamed vascular
endothelium in vivo (Sarkar et al., 2008; Cheng et al., 2012; Levy
et al., 2013). Lo et al. fused the first 19 aminoacids of PSGL-
1 to human IgG and, after overexpression of this construct on
HEK293T cells (a cell line with endogenous fucosyltransferase
VII expression), they coupled this fusion protein to the MSC
surface using palmitated protein G (PPG), leading to an increased
rolling on P- and E-selectin-coated surfaces under hydrodynamic
flow (Lo et al., 2013). By contrast, Ko et al. coated MSCs with PPG
and anti-ICAM-1 antibodies, thus improving its ability to adhere
to this endothelial ligand (Ko et al., 2009).

Engineering approaches for improving other MSC functional
capacities, that will be described below, have been used
for increasing MSC homing. Genetic modification by mRNA
transfection is highly efficient and non-toxic to MSC as well
as compatible with ectopic co-expression of multiple mRNAs
at the same time (Kormann et al., 2011; Hamann et al.,
2019). Using these types of strategies, Liao et al. tested the
therapeutic capacity of engineered MSCs expressing PSGL-1,
sLeX, and IL-10 via mRNA transfection in a mouse model
of experimental autoimmune encephalomyelitis observing a
decreased infiltration of immunocompetent cells into the white
matter of the spinal cord (Liao et al., 2016). More recently,
Hervás-Salcedo et al. have shown the improved therapeutic
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efficacy of human AdMSCs transfected with mRNAs encoding
for specific migration and anti-inflammatory molecules. In
particular, these data demonstrated that the transient co-
expression of CXCR4 and IL-10 in human AdMSCs, using a
single bicistronic mRNA, increases the migration of these cells to
inflamed sites and enhances their anti-inflammatory properties in
a local inflammation mouse model (Hervas-Salcedo et al., 2021).

Other experimental approaches were focused on the
overexpression of the chemokine receptor CXCR4 for enhancing
migration and mobilization of MSCs through activation of the
CXCL12/CXCR4 signaling pathway. As above indicated, CXCR4
is usually absent on the surface of culture-expanded MSCs, but
after the in vitro treatment of MSCs with diverse cytokines it is
highly expressed (Rombouts and Ploemacher, 2003; Shi et al.,
2007). Thus, pre-treated MSCs with insulin-like growth factor
1 (IGF-1) for 48 h markedly increased the CXCR4 expression
in vitro, and a greater number of MSCs treated with IGF-1
engrafted and survived in the peri-infarcted area when the cells
were transplanted in a rat model of myocardial infarction (Guo
et al., 2008). IL-3-pre-conditioned human MSCs up-regulated
the CXCR4 expression, enhancing their in vitro migration toward
CXCL12 and their in vivo migration in immunocompromised
mice (Barhanpurkar-Naik et al., 2017).

Another strategy to increase the CXCR4 expression in MSCs
is by genetic modification. Zheng et al. (2019) transduced
mouse bone marrow derived-MSCs with a lentiviral vector
carrying the CXCR4 gene. Then, mice suffering colitis associated
tumorigenesis, injected with MSCs-CXCR4 showed relieved
weight loss, longer colons, lower tumor numbers and
decreased tumor burden compared to mice receiving the
unmodified MSCs. Kim et al. (2017) demonstrated in a mouse
diabetic hindlimb ischemia model that CXCR4-overexpressing
adipose derived-MSCs contributed more efficiently to the early
homing and engraftment into ischemic areas than unmodified
MSCs, also improving the long-term engraftment and muscle
tissue regeneration.

Other strategies aimed to improve the homing capacity to
target tissues include the employment of different scaffolds
(i.e., hydrogels and chitosans) (Schantz et al., 2007; Shen
et al., 2010; Thevenot et al., 2010), magnetic guidance after
MSC labeling with iron oxide magnetic particles (Arbab et al.,
2004; Yanai et al., 2012; Yun et al., 2018), coated MSCs with
biotinylated lipid vesicles, and irradiation or pulsed-focused high
intensity ultrasounds that frequently improve MSC engraftment
by up-regulating CXCL12 release by activation of different
mechanotransduction pathways (Ziadloo et al., 2012; Zang et al.,
2017; Liu et al., 2020). Nevertheless, these are complex methods
that require a rigorous optimization (Ullah et al., 2019).

ENGINEERING MESENCHYMAL
STROMAL CELLS FOR ENHANCING
THEIR THERAPEUTICAL PROPERTIES

The myriad of processes that governs the biology and function
of MSCs makes difficult to manipulate them for improving
their therapeutic possibilities. Different experimental approaches

have engineered MSCs (i.e., MSCs-2.0) aimed to enhance their
therapeutic efficacy compared to native MSCs and have been
tested in several preclinical models of a variety of diseases.
MSCs have been mainly modified to increase their survival,
retention, migration capacities and growth factor production,
principally through genetic modifications, usually achieved by
means of viral vectors but also using non-viral methods.
Standard protocols can reach high levels of transduction without
affecting the lineage differentiation or the intrinsic properties
of MSCs. Constitutive rather transient transformation provides
the best therapeutic effects (Lin et al., 2011). The most
common vectors used to modify MSCs are retrovirus, lentivirus,
adenovirus and adeno-associated virus (AAV) (Sage et al.,
2016). Among the non-viral approaches mRNA lipofectamine-
mediated transfection, PEGylated DNA template nanocomposite
system, biotinylated MSC, spermin pullulan, hyper-branched
polyamidoamine and jetPEI-mediated transfection have been
used (Pawitan et al., 2020).

On the other hand, several studies described that the
incorporation of anti-inflammatory genes such as IL-10, HGF,
IDO and FoxP3 could improve the therapeutic potential
of MSCs. The overexpression of other factors including
VEGF, BMP2, osteogenic molecules (i.e., TGFβ, Cbfa-1,
and Osterix), or molecules involved in homing (CXCR4
and CXCL12), etc. have been shown to enhance the MSC
capacities (Pawitan et al., 2020). Particularly, enhanced IL-10
production has been intensively tested. IL-10 is a strong anti-
inflammatory cytokine produced by monocytes/macrophages,
Th2 lymphocytes and regulatory T cells. IL-10 inhibits the
production of pro-inflammatory cytokines by Th1 lymphocytes
and improves survival, proliferation and antibody production
of B-lymphocytes. Therefore, enhanced IL-10 expression
could represent a promising therapeutic approach for diverse
pathologies in which immunosuppression is needed (Grutz, 2005;
Mosser and Zhang, 2008).

As previously indicated, triple-transfected PSGL-1/sLeX/IL-
10 MSCs injected in an mouse model of local inflammation in
the ear, induced a transient increase in the levels of IL-10 in
the inflamed ear, and mediated a superior anti-inflammatory
effect in vivo compared to wild type MSCs (Levy et al.,
2013). These results are also supported by the cited above
study in which the authors demonstrated the enhanced anti-
inflammatory potential of human AdMSCs transfected with
a single mRNA encoding for the receptor CXCR4 and IL-10
(Hervas-Salcedo et al., 2021).

The administration of IL-10-transduced bone marrow
allogeneic MSCs attenuated the severity of acute graft-vs.-host
disease in a murine model, while unmodified MSCs were
not able to control the disease progression (Min et al., 2007).
Different studies found that serum levels of IL-10 in rheumatoid
arthritis-suffering patients was lower than that found in healthy
people, but some pro-inflammatory factors, such as IL-17, IL-1β

and TNF-α, were higher (Baek et al., 2012; Shoda et al., 2017).
Using an adenovirus system to overexpress IL-10, Tian et al.
analyzed the therapeutic effect of IL-10-overexpressing bone
marrow-derived MSCs (IL10-BMMSCs) in a collagen-induced
rheumatoid arthritis rat model. After 4 and 8 weeks of treatment
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IL-10-BMMSCs receiving rats improved significantly their
clinical condition. The repairing rate of osteoarticular cartilage
and the inhibition of synovial proliferation were higher in the
IL-10-BMMSCs group than in the unmodified counterparts.
Accordingly, serum levels of the pro-inflammatory cytokines
IL-17, IL-1β, and TNF-α were also lower (Tian et al., 2019).
In a model of Escherichia coli pneumosepsis in rats, IL-10
overexpression in umbilical cord derived-MSCs (UC-MSCs)
enhanced the capacity to attenuate lung injury compared
to unmodified UC-MSCs, due to increased macrophage
phagocytosis and killing of E. coli (Jerkic et al., 2019). Recently,
Zhao et al. also found that MSCs transfected with a recombinant
plasmid IL10-PEGFP-C1 were able to suppress the pancreatic
cancer cell proliferation in vitro and to reduce the growth
of tumor xenograft in vivo, prolonging the mouse survival,
inhibiting tumor angiogenesis and reducing blood levels of
TNF-α and IL-6 in mice with tumors (Zhao et al., 2020).

IL-10 has been also claimed to play a neuroprotective
and vasculoprotective role in cerebrovascular disorders by
attenuating pro-inflammatory signals and by upregulating
anti-apoptotic proteins (Zhou et al., 2009). Nakajima et al.
investigated the therapeutic benefit of adeno-associated virus
(AAV)-mediated IL-10 overexpression in MSCs transplanted
during the acute phase of ischemic stroke in Sprague-
Dawley rats. MSC-IL10 grafting significantly inhibited microglial
activation and pro-inflammatory cytokine expression. Moreover,
overexpression of IL-10 suppressed neuronal degeneration and
improved survival of engrafted MSCs in the ischemic hemisphere
(Nakajima et al., 2017).

In a rat model of myocardial infarction, Meng et al.
transduced bone marrow-derived MSCs using an adenoviral
vector to secrete IL-10 (Ad.IL-10−MSCs). These modified
MSCs were transplanted into injured hearts resulting in
reduced myocardial infarcted area, cardiac impairment and cell
apoptosis. Even, genome-editing technology using transcription
activator-like effector nucleases (TALENs) has been used to
generate functionally improved amniotic MSCs (Meng et al.,
2019). The administration of these IL-10 gene-edited amniotic
MSCs in an acute myocardial infarction mouse model showed
higher anti-inflammatory properties and enhanced recovery of
heart function, also providing a favorable environment for
neovascularization.

On the other hand, FoxP3-expressing MSCs prevent rejection
of allogeneic grafted liver, increasing the median survival time
of treated mice by increasing the numbers of Treg cells and
the PD-L1 expression on MSCs (Qi et al., 2015). In other
studies, HGF-expressing MSCs exhibited enhanced regenerative
and anti-apoptotic effects in murine models of radiation-induced
toxicity (Zhang J. et al., 2014; Wang et al., 2015), and induction
of early immunosuppression in mice undergoing rheumatoid
arthritis (Dong et al., 2020). Bcl-2 is also a robust anti-
apoptotic protein, which has been overexpressed in MSCs.
These cells ameliorated myocardial infarction damage in mice
by increasing cell engraftment and VEGF-mediated neovascular
formation (Li et al., 2007). Other factors overproduced by
MSCs (i.e., lipocalin-2) indirectly improved their therapeutic
capacity inducing production of regenerative factors such as

HGF, IGF, FGF, and VEGF (Roudkenar et al., 2018). In fact,
MSCs can secrete both angiogenic and anti-angiogenic factors
in response to signals from microenvironment. For example,
MSCs respond to TGFα/EGF receptor by increasing VEGF
production (De Luca et al., 2011). On the other hand, VEGF
signaling pathway is defective in TNFR2 KO mice (Luo et al.,
2006), and a correlation between TNFR2 expression by MSCs
and NO production, that directly induces VEGF, has been
recently established (Beldi et al., 2020a). Previously, it has been
found that VEGF production by TNF-α-primed human bone
marrow MSCs was TNFR2 dependent (Crisostomo et al., 2008;
Zhang A. et al., 2010).

As above mentioned, CXCL12/CXCR4 signaling pathway
is important for in vivo MSC homing to injured sites
but also increase VEGF expression, thus contributing to
neoangiogenesis. Accordingly, CXCL12-secreting MSCs have
improved wound healing, dermal fibroblast migration and new
blood vessel formation (Nakamura et al., 2013), whereas CXCR4-
overexpressing MSCs improved the outcome of myocardial
infarction by increasing cell engraftment and angiogenesis and
reducing myocardial remodeling (Huang et al., 2010; Zhang D.
et al., 2010). Obviously, effects mediated by VEGF-overexpressing
MSCs are related to the potent pro-angiogenic capacity of this
molecule that improves the blood flow and the heart function in
preclinical assays of critical limb ischemia (Beegle et al., 2016) and
myocardial infarction (Zhu et al., 2012), respectively.

MSC overexpressing genes involved in osteogenesis,
particularly BMP2 have been repeatedly tested in several
types of bone defects, improving the bone healing (Chang et al.,
2003, 2004, 2010; Tsuchida et al., 2003; Jiang et al., 2009; Zhao
et al., 2010). Sometimes, BMP2 and VEGF overexpression have
been combined. In these cases, VEGF promotes blood vessel
neoformation that favors BMP2-mediated osteogenesis (Lin
et al., 2010, 2011, 2012, 2015; Fu et al., 2015).

Engineered MSCs have been also used as anti-
tumor therapeutic agents alone or in conjunction with
chemotherapeutic drugs (Pawitan et al., 2020). Three strategies
have been used: (i) to insert suicide genes that transform
non-toxic pro-drugs into cytotoxic molecules; (ii) to use MSCs
as vehicles to transport cytokines for enhancing in vivo anti-
tumoral immunity or (iii) as agents to kill directly the tumor
cells. Several genes encoding for “suicide proteins” have been
used in anti-tumoral therapies, including cytosine deaminase,
thymidilate kinase from either herpex simple or SV40 viruses,
and cytochrome P450 reductase. In general, MSCs are resistant
to these agents, particularly to alkylating agents, although
evidence on the effects mediated by nucleoside analogs is
scarce. IL-12 (Gao et al., 2010), IFNγ (Seo et al., 2011), and
TNF-α (Tyciakova et al., 2015) have been overexpressed in
engineered MSCs to enhance anti-tumoral immune responses.
Another tested strategy is based on the use of MSCs to deliver
pro-apoptotic agents to tumor cells. The most frequently used
is the overexpression of TNF-related apoptosis inducing ligand
(TRAIL), a transmembrane protein that binds to death domain-
containing receptors that selectively trigger apoptotic of cancer
cells (Luetzkendorf et al., 2010). Other approaches include
engineered MSCs to release different anti-angiogenic factors
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(Zheng et al., 2012) or oncolytic viruses (Yong et al., 2009). In
general, most studies using these strategies work quite well in
preclinical models but their efficiency in human patients has
been very limited.

Modifications of the culture protocols also change the MSC
functionality and would be considered in this section. MSCs
in three-dimensional culture conditions (3D) have shown an
upregulated expression of TSG6, SCT1, LIF, IL24, TRAIL, and
CXCR4 (Potapova et al., 2008). MSC spheroids generate reduced
levels of some pro-inflammatory molecules such as TNF-α, IL-1β,
CXCL12, MIP-2, and PGE2, and stimulate their pro-angiogenic
activity, increasing their anti-fibrotic properties (Xu et al., 2016).
It is important to remark that 3D spheroid cultures create a
microenvironment where inner cell layers are exposed to lower
levels of oxygen and nutrients generating a hypoxic environment
(Cesarz and Tamama, 2016) that importantly affects the MSC
biology (see below).

Furthermore, the nanoparticle use is being analyzed to
enhance cell therapeutic efficacy. Engineering strategies
that associate nanoparticles with MSC membranes have
improved their homing ability, tumor tropism and attraction
to inflammatory tissues (Wang et al., 2020). MSC-derived
cell membrane coated nanoparticles have proven to be a
useful biomimetic strategy to design therapeutic devices that
have shown great potential in diagnostic and therapeutic
applications. Among them, we can highlight the administration
of drugs, immune modulation, vaccination and detoxification
(Narain et al., 2017).

Hypoxia controls the MSC biology as well and it has been
a target for improving their capabilities. In general, MSCs are
cultured in normoxia, around 21% oxygen, but the optimal
oxygen concentration can vary among tissues in vivo. The MSC
niche is hypoxic, around 5% oxygen, compared to highly perfused
organs. A low level of oxygen during the in vitro culture would
make available a positive environment for MSCs to simulate
their physiologic conditions. Thus, hypoxia could contribute to
maintain the stemness and the proliferative capacities of MSCs
during the in vitro culture. Choi J. R. et al. (2014) reported
that adipose tissue-derived MSCs cultured in 2% oxygen tension
maintained their stemness capacity, increased proliferation rate
and enhanced their chondrogenic differentiation compared
to MSCs cultured in normoxia with 21% oxygen. Indeed,
numerous studies confirm hypoxia as a preconditioning factor
of MSCs that induces increased production of pro-angiogenic
factor (Liu et al., 2015), as well as anti-oxidative and
anti-apoptotic effects in healthy and pathological conditions
(Zhang W. et al., 2014).

These results were related with an increase in the expression
of hypoxia-induced factor-1α (HIF-1α) under hypoxia (Choi J. R.
et al., 2014). HIF-1α activation in MSCs cultured in hypoxia
conditions induces increased expression of neovascularization
promoters such as VEGF and angiotensin (Imtiyaz and Simon,
2010; Ahluwalia and Tarnawski, 2012). Roemeling-van Rhijn
et al. showed that immunosuppressive properties of adipose
tissue derived-MSCs were maintained under hypoxic conditions.
The oxygen level had no effect on the proliferation of adipose
tissue derived-MSCs and colony forming unit efficiency was

similar under 1 and 20% oxygen. Also, they did not observe
cell toxicity neither changes in the immunophenotype, except
a downregulation in the expression of CD105 (Roemeling-
van Rhijn et al., 2013). Martinez et al. transduced human
dental pulp MSCs with a lentiviral vector codifying for HIF-
1α. Compared to unmodified MSCs, HIF-1α-MSCs showed the
same capacity to inhibit T cell activation, but HIF-1α-MSCs
were able to impair DC differentiation more efficiently. As
well, HIF-1α-MSCs induced higher attraction of monocytes,
exhibited greater resistance to NK cell-mediated lysis and also
exhibited a pro-angiogenic profile due to an increased expression
of the chemokines CXCL12 and CCL5 and a complete loss
of CXCL10 transcription (Martinez et al., 2017). Schive et al.
investigated the in vivo therapeutic potential of hypoxic-cultured
MSCs in a mouse model of streptozotocin-induced insulitis
and hyperglycemia compared to MSCs cultured in normoxic
conditions. Either hypoxic-cultured or normoxic-cultured MSCs
were injected into this mouse model. Both groups of animals
had higher pancreas insulin content compared to untreated
control group, but the hypoxic-cultured MSC group had lower
fasting blood glucose and improved oral glucose tolerance
compared to untreated mice. The authors concluded that hypoxic
preconditioning potentiates MSCs ability to protect against
hyperglycemia in vivo (Schive et al., 2017).

Alternatively, 3D MSC cultures based on the different
conditions of cultures vs. those of two-dimensional (2D)
cultures constitute another way for improving the biological
and therapeutic properties of MSCs. In fact, 3D MSC cultures
reflect better the natural physiological environment than the
2D cultures. Thus, the use of 3D MSC cultures could mimic
better the physiologic state of MSCs in their specific resident
tissues and influence their paracrine mechanisms. The 3D
MSC cultures are based on MSC spheroids encapsulated
with various types of scaffolds such as hydrogels, polymers,
hydrophilic glass fibers and electrospun silk fibroin meshes.
Other approaches that are not based on the use of scaffolds
include magnetic levitation, hanging drop microplates or
ultralow attachment spheroid microplates (Langhans, 2018;
Millan-Rivero et al., 2019; Sankar et al., 2019). The spheroid
3D cultures create a microenvironment in which inner layers
are exposed to lower levels of oxygen and nutrients, resembling
to a hypoxic environment that affects notably the MSC
behavior. Compared to 2D cultures, 3D MSC cultures have
shown an augmented secretion of molecules with paracrine
function (i.e., cytokines, chemokines, and growth factors),
better anti-oxidative and anti-apoptotic functions and higher
production of extracellular matrix components (Cushing and
Anseth, 2007; Sun et al., 2018; Mukherjee et al., 2020), as
well as improved therapeutic effects in some preclinical models
such as corneal or skin wound healing (Carter et al., 2019;
Millan-Rivero et al., 2019).

This accumulating preclinical evidence on the promising
potential of MSC-based cell therapy in the treatment of multiple
diseases has allowed its translation to the clinical practice, having
been launched to date more than 1,000 clinical trials. However,
clinical trials based on the use of engineered MSCs are still very
scarce, and only a few studies, mainly phase I and phase I/II, have
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TABLE 1 | Clinical trials involving engineered MSCs in Clinicaltrials.gov website.

Study title MSC source Modification Pathology Phase Identifier

MV-NIS infected MSCs for treating
patients with recurrent ovarian, primary
peritoneal or fallopian tube cancer

Adipose tissue MSCs transduced with
Edmonston’s strain
measles virus (MV)
genetically engineered to
produce sodium iodine
symporter (NIS)

Recurrent ovarian, primary
peritoneal or fallopian tube
carcinoma or
adenocarcinoma

Phase I/II NCT02068794

Genetically Modified MSC Therapy
Against Head and Neck Cancer
(Gx-051)

N/A (Gx-051) MSCs expressing modified
interleukin-12
(MSCs/IL-12M)

Head and neck neoplasm Phase I NCT02079324

Osteogenic effects in human MSCs
enhanced by Wnt signaling

Bone marrow Viral administration of
Wnt3a-transduced MSCs
with hydroxyapatite
nanoparticles

Osteoarthritis Observational NCT01323894

Efficacy and safety of allogeneic MSCs
of bone marrow, cultured under hypoxia
in the treatment of patients with severe
pulmonary emphysema

Bone marrow MSCs cultured under
hypoxic conditions

Severe pulmonary
emphysema

Phase I/II NCT01849159

A single dose of BRTX-100 for patients
with chronic lumbar disc disease

Bone marrow
(BRTX-100)

Hypoxic-cultured bone
marrow mononuclear cells
highly enriched in MSCs
from autologous bone
marrow with autologous
platelet lysate

Chronic lumbar disc
disease

Phase II NCT04042844

Intravenous infusion of fucosylated
bone marrow MSCs in patients with
osteoporosis

Bone marrow Enzymatic exofucosylation
by fucosyltransferase VIII
and GDP-fucose treatment

Osteoporosis with low
impact bone fractures

Phase I NCT02566655

N/A, data not available. Fast track designation of commercial cell therapy products is also indicated.

been implemented to evaluate “MSCs-2.0” safety and efficacy in a
variety of pathologic conditions summarized in Table 1, and their
results are eagerly awaited.

On the other hand, in the last years, several studies have
emphasized the presumptive relevance of the MSC secretome as
a better way of treatment than the own cells for their clinical
application (Poltavtseva et al., 2019), although reported results
are frequently contradictory and the clinical assays using total
secretome or extracellular vesicles (EVs) are limited. On the other
hand, despite the difficulties for a conclusive definition of their
phenotype, content and physiological function, EVs present some
benefits, such as low immunogenicity, stability during extended
storage and protection of their content (Kusuma et al., 2017).
The term “secretome” includes diverse soluble molecules, such
as growth factors, cytokines, immunomodulatory molecules and
the named EVs (Kusuma et al., 2017). EVs are a heterogeneous
population of lipid-bilayer vesicles that contain biologically active
biomolecules such as lipids, proteins, single-stranded DNA and
different types of RNAs (Bister et al., 2020; Watanabe et al.,
2021). They include small exosomes (40–120 nm) originated
from multivesicular bodies of the endosomal compartment
that are secreted by exocytosis, and larger microvesicles (200–
1,000 nm) that bud directly from the plasma membrane
(Kusuma et al., 2017).

Moreover, MSCs derived from different sources produce
some specific factors: adipose tissue-derived MSCs secrete more
IGF-1, VEGF, and IL-8 than those from the bone marrow,
whereas MSCs from the umbilical cord Wharton’s jelly secrete

the highest amounts of immunomodulatory molecules such
as IL-6, IL-7, IL-10, PDGF-A, and TGFβ2. On the contrary,
adipose tissue-derived MSCs produce more extracellular matrix
components such as collagen-1 and -2, and metalloproteinases
(Amable et al., 2014), and a common group of secreted
molecules including chemokines (CCL2 and CCL5), growth
factors (bFGF and IGF-1), cytokines (IL-6 and TGFβ) and
others (TNFR-I) (Wang et al., 2019). However, not only soluble
factors can be secreted by MSCs. Remarkably, mitochondria
can be transferred between cells via tunneling nanotubes, cell
fusion or contained into secreted EVs (Torralba et al., 2016;
Morrison et al., 2017). Therefore, the secretome recapitulates
many of the properties described for MSC themselves (Ferreira
et al., 2018), including immunomodulation (Teng et al., 2015),
inhibition of both apoptosis and fibrosis (Li et al., 2013; Teixeira
et al., 2015), induction of vascularization (Teng et al., 2015)
and promotion of tissue remodeling and cell recruitment
(Chen et al., 2014). Furthermore, EVs derived from MSCs
activated or not with IFNγ exhibit distinct capacities. Both
EVs reduce the frequency of CD14+CD16+ inflammatory
monocytes, but those derived from IFNγ-treated MSCs also
promote anti-inflammatory PD-L1 expressing monocytes
(Goncalves et al., 2017).

Although the number of clinical trials using MSC-derived EVs
for the treatment of different pathologies is still very limited
(see Table 2) and their conclusions unpublished, numerous
preclinical studies support their functional capabilities. Different
lung injuries improve after treatment with MSC-derived EVs.
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TABLE 2 | Clinical trials involving MSC-derived EVs in Clinicaltrials.gov website.

Study title MSC-ECVs
source

Pathology Phase Identifier

Exosomes of MSCs for multiple organ dysfunction syndrome after
surgical repair of acute type A aortic dissection

N/A Surgical repair of acute
type A aortic dissection

Not applicable NCT04356300

MSC-exos promote healing of macular holes Umbilical cord Large and refractory
macular holes

Phase I NCT03437759

Effect of UMSCs derived exosomes on dry eye in patients with cGvHD Umbilical cord Dry eye symptoms in
chronic GvHD

Phase I/II NCT04213248

Safety and efficacy evaluation of allogeneic adipose MSC-exos in
patients with Alzheimer’s disease

Adipose tissue Mild/moderate dementia
associated to Alzheimer’s
disease

Phase I/II NCT04388982

Effect of microvesicles and exosomes therapy on B-cell mass in type I
diabetes mellitus

Umbilical cord
blood

Type 1 diabetes mellitus Phase II/III NCT02138331

MSC-EVs in dystrophic epidermolysis bullosa Bone marrow
(AGLE-102)

Dystrophic epidermolysis
bullosa

Phase I/II NCT04173650

Expanded access protocol on bone marrow MSCs derived extracellular
vesicle infusion treatment for patients with COVID-19 associated ARDS

Bone marrow
(ExoFlo1”]

COVID-19 associated
acute respiratory distress
syndrome

Phase II NCT04657458
NCT04493242

Clinical study of mesenchymal stem cell exosomes nebulizer for the
treatment of ARDS

N/A COVID-19 associated
acute respiratory distress
syndrome

Phase I/II NCT04602104

Pilot clinical study on inhalation of MSC exosomes treating severe novel
coronavirus pneumonia

Adipose tissue COVID-19 pneumonia Phase I NCT04276987

Effects of ASC secretome on human osteochondral explants Adipose tissue Osteoarthritis and/or
articular regeneration

Observational NCT04223622

iExosomes in treating participants with metastatic pancreas cancer with
KrasG12D mutation

N/A Metastatic pancreatic
ductal adenocarcinoma

Phase I NCT03608631

Allogeneic MSC derived exosome in patients with acute ischemic stroke N/A Acute ischemic stroke Phase I/II NCT03384433

N/A, data not available. Fast track designation of commercial cell therapy products is also indicated.

FIGURE 1 | Next steps to improve the immunomodulatory properties of
MSCs to treat patients efficiently.

In acute respiratory distress syndrome (ARDS) models, the
administration of MSC-derived CD44+ EVs reduced the lung
injury (Morrison et al., 2017). Remarkably, EV-mediated
mitochondrial transfer induces a highly phagocytic and an anti-
inflammatory macrophage phenotype (Morrison et al., 2017).
In addition, MSC-derived exosomes remodel vascular network
and diminish the hypoxia pulmonary hypertension in rodent
models (Weiss et al., 2019). Systemically injected EVs have been
shown to reduce both the collagen deposits and the inflammatory
infiltrates in a murine model of silica-induced lung fibrosis
(Choi M. et al., 2014).

The effects of MSC-derived EVs have been tested in other
models of tissue fibrosis: treatment with EVs enriched in
miRNA-let7c, a model of renal fibrosis, induced a downregulated
expression of collagen IV, metalloproteinase-9, TGFβ1 and its
receptor (Wang et al., 2016). Also, ECV enriched in miRNA-125b,
that target Shh signaling activated in liver fibrosis, rescues liver
progenitor cell expansion and stellate cell activation (Hyun et al.,
2015). MSC-EVs containing miRNA22 improve cardiomyocyte
survival in a murine model of myocardial ischemia-reperfusion
(Arslan et al., 2013; Feng et al., 2014).

Interestingly, CD69−/− mice, which produce less exosomes,
have shown significant reduced bone junctions. This problem
can be recovered after injection of EVs isolated from MSC
conditioned media, a process presumably mediated by RNAs
(Furuta et al., 2016). EVs from embryonic MSCs promote
cartilage regeneration in a rat osteochondral defect model by
increasing both neoformation of tissue and extracellular matrix
components (Zhang et al., 2016), whereas exposure of MSC-
derived EVs increases stem cell engraftment in irradiated bone
marrow (Wen et al., 2016). Effects of MSC-derived EVs on
the immune system reflect their origins and tend to show
immunosuppressive properties. MSC-derived EVs containing
miRNA inhibit macrophage activation by controlling NF-κB
activation and induce changes in the profile of expression of
several immune molecules, including IL-1β, COX-2, IL-10, TNF-
α, MyD88, TLR-1, -4, -5, -7-9, IRAK1, and TRAF6 (Phinney et al.,
2015). On the other hand, EVs from MSCs obtained from bone
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marrow increase the IL-10 production and the proliferation of
Treg cells in PBMNC cultures stimulated through CD3/CD28
(Del Fattore et al., 2015; Dal Collo et al., 2020).

COMMENTS AND CONCLUSION

We have reviewed the current state of the art of the biology
of MSCs with special emphasis to the advances that might
improve their therapeutic efficiency. A summary of the topics
discussed is shown in Figure 1. Firstly, we reported data
on the phenotypical and functional characteristics of MSCs
highlighting the difficulties to get specific markers that would
allow to isolate enriched, homogeneous MSC subpopulations
and to identify one or a few molecules masters for governing
their properties.

MSC were used for the first time as cellular pharmaceutical
agents in humans in 1995 (Lazarus et al., 1995). After
several years utilizing MSCs as therapeutical agents, numerous
questions on their behavior remain unsolved, including the
heterogeneity of the MSC populations in the final product, the
adequate conditions to activate in vivo their immunomodulatory
capabilities, the consequences of the banking procedures, the best
route for their delivery, the use of allogeneic vs. autologous cells,
the problems to reach the target host tissues, their response to
stressful conditions, specially hypoxia, or the real therapeutic
relevance of products secreted by MSCs, such as the soluble
fraction of their secretome or EVs.

Accordingly, we have summarized recent published results
on these issues in an attempt to provide new approaches
for a better clinical application of the named “MSCs-2.0.”
On the other hand, it is urgent a universal standardization
of the protocols for manufacturing MSCs such as MSC
culture and banking conditions, and also the route of cell
delivery, the optimal dosage and the best way to use
allogeneic vs. autologous MSCs. The available results on the
effects of cryopreservation on MSC biology are contradictory
and, although the use of allogeneic MSCs exhibit evident
advantages in cell therapy, it is important to recognize their
unquestionable immunogenicity, although immune responses
elicited by allogeneic MSCs appear to be lower or less aggressive
than autologous ones, presumably because a balance between
immunogenicity and release of immunosuppressive factors is
established in these circumstances.

Differences between MSC homing in preclinical models
and humans must be conclusively clarified as well as the
mechanisms governing the MSC homing into the target
tissues by their relevance for a definitive establishment of
the best route for MSC delivery, according to the disease
to be treated. On the other hand, because MSC-mediated
thromboembolism limits the MSC migration to the target
tissues, this physiological condition, would be carefully evaluated
before the systemic infusion of MSCs. Some simple, although
transient, chemical manipulations of MSCs for improving
their homing are highly promising but require technical
optimization and a better knowledge on their consequences

for the MSC biology. Also, usage of MSCs on scaffolds
of diverse origin is complex and needs further research
and improvement.

As indicated, to manipulate the whole factors known to
affect MSC behavior is highly improbable since the therapeutic
application of MSCs in a concrete disease requires the
strengthening of the action of one or few discrete molecules. As
summarized herein, genetic procedures have been attempted in
the last years. However, this approach has the same problems
than those reported in gene therapies applying other cell types.
On the other hand, it is obvious that MSC engineering is a robust
technology extensively tested in numerous experimental models
but the translation of these results to the clinical practice need
more time and research to be successful.

Apart from gene overexpression procedures, MSCs can be
engineered changing the culture conditions by using 3D cultures
or hypoxic conditions, or adhering distinct types of nanoparticles
to the MSC membrane. Hypoxia has been frequently used
as a preconditioning factor that favors MSC stemness and
proliferation, and exhibit pro-angiogenic, anti-oxidant and anti-
apoptotic effects.

EVs obtained from MSC secretome have provided in the last
years numerous although frequently contradictory results but
few effective clinical trials. Unfortunately, their heterogeneous
condition, the lack of specific markers for establishing their
true nature and, in general, the absence of information on
the mechanisms controlling their effects, make difficult their
therapeutic use, although increased numbers of clinical trials are
being currently reported. It is therefore important to establish
conclusively their real clinical value.

In summary, many of these research fields that try to improve
MSC efficiency are ongoing with promising preclinical results,
although the translation of their findings to the clinical practice
seems to be yet remote.
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