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INTRODUCTION

Tissue regenerative potential varies significantly across species, tissues, and ages (Yun, 2015; Iismaa
et al., 2018). For example, planarian can reconstruct its whole body from small fragments of the
original organism (Pellettieri et al., 2010; Zeng et al., 2018); in contrast, many vertebrate organs,
such as the heart, can only regenerate primarily through preexisting proliferating cardiomyocytes,
like in adult zebrafish and neonatal mice (Vivien et al., 2016). Since Spallanzani first reported
the salamander regeneration in 1760s, scientists have been devoted to decipher the codes of such
powerful regenerative capability (Dinsmore, 1991). Using different methods to analyze the cellular
and molecular phenomena during salamander limb or tail regeneration, researchers revealed
complex processes including clotting, immune activation, apoptosis, and reprogramming (Tanaka,
2016). Within such process, a mass of cells called blastema proliferates from the wounded site and
fully regenerates the lost body part (McCusker et al., 2015; Haas and Whited, 2017).

Axolotl (Ambystoma mexicanum) is a species of salamander, which has been used as the model
animal to investigate key biological processes such as embryo development, limb regeneration,
and central nervous system regeneration for nearly 150 years (Pietsch, 1961; Schreckenberg and
Jacobson, 1975; Seyedhassantehrani et al., 2017). Although several studies have focused on bulk
transcriptome studies (Monaghan et al., 2009; Campbell et al., 2011; Knapp et al., 2013; Stewart
et al., 2013; Wu et al., 2013; Bryant et al., 2017), the axolotl genome was not assembled until
2018 with features of large sizes (32 Gb) and abundant repetitive sequences (Nowoshilow et al.,
2018). Interestingly, in axolotl, intron size expands 13- to 25-fold in non–developmentally related
orthologous genes and 6- to 11-fold in developmentally related orthologous genes as compared
to human, mouse, and frog, thus indicating that a more complex regulatory network in non-
coding regions may play an important role in both development and regeneration (Nowoshilow
et al., 2018). Since the first axolotl genome assembly, multiple studies have been carried out
to investigate the transcriptomic patterns of axolotl limb regeneration at single-cell resolution
(Gerber et al., 2018; Leigh et al., 2018; Qin et al., 2020). These studies used single-cell gene
expression variations to reflect dynamic cell population changes and cell fate transitions, as well
as unique immune responses during regeneration (Tsai et al., 2019; Li et al., 2020; Rodgers
et al., 2020). Standing on the shoulder of these studies and looking forward, analysis of the
epigenetic regulations, which are responsible for the dynamic gene expression changes, will
help scientists to better understand the underlying mechanisms of the regenerative process.
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To identify crucial regulatory elements and transcription
factors (TFs) that drive or support the regenerative response,
the assay for transposase-accessible chromatin using sequencing
(ATAC-seq) has been used to profile the chromatin accessibility
dynamics in multiple species (Buenrostro et al., 2015). For
instance, a genome-wide scan for TF bindingmotifs in thousands
of chromatin regions revealed by ATAC-seq highlighted the
role of EGR (early growth response) as a pioneer factor
to directly activate regeneration-related genes in Hofstenia
(Gehrke et al., 2019). In addition to TFs, enhancers also
have great significance in regeneration. The conserved teleost
regeneration response enhancers in zebrafish and African
killifish (Nothobranchius furzeri) were uncovered by histone
H3K27ac chromatin immunoprecipitation sequencing (ChIP-
seq, a marker for active enhancers), bulk RNA sequencing
(RNA-seq), and single-cell RNA sequencing (scRNA-seq) (Wang
et al., 2020). These studies suggested that epigenetic regulatory
elements play fundamental roles in regeneration. However, how
the non-coding axolotl genome responds to wounding to regulate
gene expression and consequently drive the process of limb
regeneration remains to be elucidated.

Here, we present a comprehensive dataset of chromatin
accessibility for eight stages of the axolotl limb regeneration
process, including homeostatic [uninjured control, 0 h after
amputation (0 hpa)], trauma (3 hpa), wounding healing (1
day after amputation, 1 dpa), early-bud blastema (3 dpa),
midbud blastema (7 dpa), late-bud blastema (14 dpa), palette
stage (22 dpa), and redifferentiated stages (33 dpa) (Figure 1A).
These time points represent the main events during axolotl
limb regeneration, making this dataset a valuable platform to
understand the complex regulatory network from an overall
perspective. We generated 24 samples from the eight stages of
limb tissues (three biological replicates per group). Systematic
analysis of our dataset identified a total of 342,341 peaks, of
which 33,604 showed transient dynamic patterns. We further
investigated the occupancy of TFs in clusters with different peaks,
which may help to explain the activation and manipulation
of these regulatory elements during injury response and
regeneration process (Figure 1B).

MATERIALS AND METHODS

Sample Collection
The institutional review board approved all experiments in
this study on the ethics committee of BGI (permit BGI-
IRB 19059). Axolotl breeding, housing, and tissue isolation
were performed as previously described (Li et al., 2020).
Briefly, we anesthetized the axolotls with 0.2% Tricaine (ethyl
3-aminobenzoate methane sulfonate) before the amputation
surgery. The lower forearm tissues were isolated at eight time
points including the homeostatic stage (uninjured control,
0 hpa), trauma (3 hpa), wound healing stage (1 dpa), early-bud
blastema (3 dpa), midbud blastema (7 dpa), late-bud blastema
(14 dpa), palette (22 dpa), and redifferentiation stage (33 dpa),
with three replicates for each stage. These eight time points
represent themain phases of axolotl limb regeneration. All tissues
were washed with amphibian phosphate-buffered saline for

three times before further operation. Tissues were enzymatically
digested to cell suspension using 0.2% collagenase type I (BBI,
cat. #A004194-0001) and 0.2% collagenase type II (BBI, cat.
#A004174-0001) at room temperature for 1 h.

ATAC-seq Library Preparation and
Sequencing
Tissues were transferred to the bottom of the Dounce
Homogenizer and dounced within 1mL 1× Homogenization
Buffer Stable Master Mix until resistance goes away (∼30
strokes). The cells were then passed through a 100-µm strainer
into a clean Dounce Homogenizer and dounced again for 20
strokes. Nuclei were collected through a 40-µm strainer and
counted. Around 50,000 nuclei were transferred into a tube
containing 1mL wash buffer (ATAC-RSB+0.1% Tween-20), and
then the samples were centrifuged at 500 rcf at 4◦C for 5min.
Transposition reaction was performed as the Omni-ATAC-seq
method (Corces et al., 2017). Nuclei were then transferred into 50
µL transposition reaction mixture containing 10 µL of 5× TAG
buffer (BGI, cat. #BGE005B01), 2.5 µL of transposase (100 nM
final, BGI, cat. #BGE005), 31.5µL of PBS, 0.5µL of 1% digitonin,
0.5 µL of 10% Tween-20, and 5 µL of H2O for 30min at 37◦C in
a thermomixer by 1,000 rpm.

The transposed DNA was purified with a DNA MinElute kit
(Qiagen, Germany) and eluted with 20 µL nuclease-free H2O.
The purified DNA was amplified for eight cycles using a reaction
mixture containing 2.5 µL of Tn5 Ad153 N5 primer (20µM),
2.5 µL of Tn5 Ad153 N7 primer (20µM), 25 µL of NEB Next
High-Fidelity 2× polymerase chain reaction (PCR) Master Mix,
with a PCR protocol of 72◦C for 5min, 98◦C for 30 s, and then
eight cycles of 98◦C for 10 s, 63◦C for 30 s,72◦C for 1min, finally
by 72◦C for 10min and hold at 4◦C. The 300- to 500-bp size
PCR product was selected using AMPure XP beads (Agencourt,
cat. #A63882) according to the manual. All libraries were further
prepared based on BGISEQ-500 sequencing platform with pair-
end 50-bp read length (Huang et al., 2017).

Preprocessing of the ATAC-seq Datasets
The data of ATAC-seq were trimmed with SOAPnuke (Chen
et al., 2018), and reads were aligned to axolotl genome
(Nowoshilow et al., 2018) (https://www.axolotl-omics.org/
assemblies) by using Sentieon bwa mem (parameter: -K
100,000,000 -M -t 40) (Li, 2013). Subsequently, we filtered
out reads with mapping quality of <30. PCR duplicate reads
were discarded by applying Picard’s MarkDuplicates (http://
broadinstitute.github.io/picard/) (Picard Toolkit, 2019). We
next performed model-based analysis of ChIP-seq (MACS2) to
identify the peak regions with options -B, -q 0.01 –nomodel,
-f BAM (Zhang et al., 2008). The irreproducible discovery rate
(IDR) method was employed to identify reproducible high-
quality peaks between each two biological replicates (Li et al.,
2011). Peak signal can be visualized in IGV by the Broad Institute
(http://software.broadinstitute.org/software/igv/). A standard
peak list was established by merging reproducible peaks of each
two replicates for each time point. The standard peak count
matrix was calculated using the intersect function of BedTools
(Quinlan and Hall, 2010).
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FIGURE 1 | Overview of the experimental, data analysis workflow, and ATAC-seq data quality metrics. (A) Three biological replicates (n > 3) from eight stages of the

axolotl limb regeneration process were collected for ATAC-seq profiling. (B) The analysis workflow for ATAC-seq profiles. (C) The ATAC-seq signal enrichment around

the transcription start sites (TSSs) for eight representative samples. (D) Scatter plots showing the Pearson correlations between biological replicates.
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Identification of Dynamic Chromatin
Accessible Regions
Reads per million mapped reads (RPM) algorithm was used
to normalize the raw count matrix (Wei, 2020). Pearson
correlations based on the Log10 RPM matrix were used to
calculate the coefficients between different biological replicates
across every stage. The RPM matrix for biological replicates
was aggregated, and peaks with an average of RPM <1
at all time points were removed. Peaks across time with
<50 coefficient of variation were filtered out to form a
pseudocluster prior to clustering, which reflects the regions with
stable accessibility throughout the regeneration. The remaining
peaks were then transformed into normalized data using Z
score method, followed by performing time course c-means
fuzzy clustering with a cluster membership cutoff of 0.8
(Kumar and Futschik, 2007).

Relative genomic region was determined by overlapping each
peak with features defined in the custom’s annotated genes.
The distance to transcription start sites (TSSs) was calculated
according to the distance between the peak center and the nearest
TSSs using the distanceToNearest function in GenomicRanges
packages (Lawrence et al., 2013).

Functional enrichment of peaks in each cluster with distance
to TSSs <10,000 bp was performed by using the clusterProfiler
R package (Yu et al., 2012), with a q-value threshold of 0.1 for
statistical significance.

The findMotifsGenome.pl script of the HOMER software
was employed to perform transcript factor enrichment
analysis in regeneration dynamic peaks with default
settings (Heinz et al., 2010).

Pseudobulk RNA-seq Analysis
To investigate the correlation between chromatin dynamics
and gene expression changes, we took advantage of single-
cell RNA-seq data of these eight stages we published
previously and calculated the average expression of each
gene to construct a pseudobulk gene expression matrix (Li
et al., 2020). Correlation analysis was done between the
chromatin accessibility of promoters (TSS ± 2 kb) and closest
genes’ expression.

RESULTS

ATAC-seq Quality Control and
Reproducibility of Biological Samples
We inspected our ATAC-seq dataset by regularly used statistics,
such as the number of total reads, number of mapped reads,
percentage of mapped reads, the number of usable reads, the
percentage of final usable reads, and the number of peaks
(Supplementary Table 1).We generatedmore than 1,000million
ATAC-seq reads for each replicate on average. Among these
reads, we detected strong enrichment around TSSs (Wei,
2020) (Figure 1C). Moreover, size periodicity of the chromatin
accessibility fragments corresponding to integer multiples of
nucleosomes (Wei, 2020) demonstrated the reliability of our
dataset, this being consistent with previously published ATAC-
seq profiles (Buenrostro et al., 2013) (Supplementary Figure 1).

To assess the reproducibility of chromatin accessibility regions
between biological replicates, we used the IDR method to filter
peaks that overlapped between replicates in each regeneration
stage. Pearson correlations based on the Log10 RPM matrix were
used to calculate the coefficients, showing that a correlation
coefficient is higher than 0.9 between each two replicates in each
stage, with the exception of replicate 1 from 3 hpa, which was
removed for downstream analysis (Figure 1D).

Temporal Dynamics of Chromatin
Accessibility During Regeneration
To explore the chromatin accessibility with temporal dynamic
features during regeneration, we used normalized ATAC-seq
read counts in peaks to perform time-course fuzzy clustering.
This approach yielded six separated clusters, which indicate six
distinct categories defined by regions: (1) those that become
accessible transiently at 22- and 33-dpa stages, cluster 1 (C1, n
= 5,930); (2) regions that are close in the intermediate period
of regeneration but accessible after 14 dpa, cluster 2 (C2, n =

3,838); (3) regions in which accessibility is established only at
22-dpa stage, cluster 3 (C3, n = 6,797); (4) regions accessible
in the control but that exhibit loss of accessibility shortly at
3 hpa and later stages, cluster 4 (C4, n = 2,454); (5) regions
that are accessible in specifically at 3 hpa and 14 dpa, cluster
5 (C5, n = 7,727); (6) regions that are stably accessible at the
intermediate stages of regeneration, cluster 6 (C6, n = 6,858).
This clustering highlighted several characteristics of chromatin
reconfiguration during regeneration (Figure 2A). These data
collectively demonstrated that the chromatin state is remodeling
rapidly in the first few hours following amputation, to prepare for
the subsequent regeneration process. The dynamics of chromatin
accessibility provides a new perspective to understand the cell fate
decision in axolotl limb regeneration process.

Peaks in C1 are highly enriched in Gene Ontology (GO) terms
related to axonogenesis. Examples of C1 include a promoter in
the Ndnf locus, which is a novel neurotrophic factor derived
from neurons that may be useful in the treatment of neuronal
degeneration diseases and nerve injuries (Kuang et al., 2010). C2
consists of elements that are highly accessible in the extracellular
matrix organization and connective tissue development. For
example, Col11a2, a fibril-forming collagen found mainly in
the cartilage extracellular matrix, is important for the integrity
and development of the skeleton (Lui et al., 1996). We also
found some genes associated to limb morphogenesis in C3 such
as the Hoxbox gene, Evx2, and Hoxd10 (Herault et al., 1996;
Tarchini and Duboule, 2006). GO terms enriched in C4 were
related to muscle cell development, whereas those in C5 were
related to epidermis development. Interestingly, we observed
some immune response–related GO terms in C6, such as T-cell
activation and myeloid cell differentiation (Figures 2B,C), which
is consistent with the inflammatory process following injury
(Supplementary Figure 2).

TF Enrichment of Dynamic cis-Regulatory
Elements
Our analysis also indicated that the binding site for TF that
bound to C1 is enriched for NeuroG2 (Figure 2D). NeuroG2 is
a TF that can specify a neuronal fate and expressed in neural
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FIGURE 2 | The landscape of chromatin accessibility dynamic changes in axolotl limb regeneration and potential function of dynamic elements identification. (A)

Fuzzy cluster analysis of ATAC-seq signal. Line plots show standardized ATAC-seq signal, with individual blue lines representing individual loci and the orange line

representing the cluster center’s values. (B) Genome browser views of ATAC-seq signal for the dynamic peaks. (C) Enrichment of GO terms in ATAC-seq clusters.

Where a point is present, a significant enrichment for the go term of biological process (x axis) was found in the ATAC-seq clusters (y axis). Point size represents the

gene ratio in the go term, and color represents the adjusted P-value. (D) Enrichment of the indicated TF motifs in each ATAC-seq cluster. The size and color of each

point represent the motif enrichment P-value (–log10 P-value).
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progenitor cells within the developing central and peripheral
nervous systems (Dennis et al., 2019). Notably, we also observed
major binding events for the pioneer factor PU.1 in C6, this being
a master transcriptional regulator in activating many target genes
during both myeloid and B-lymphoid development (Turkistany
and DeKoter, 2011). In addition, transcript factors from the
MyoG, MyoD, and Mef families, which are essential for the
development of functional skeletal muscle, were found in C4
(Al-Khalili et al., 2004; Ganassi et al., 2020). Taken together,
we provide a high-quality comprehensive dataset to study the
regenerative epigenomic dynamics of axolotl limb regeneration.

CONCLUSIONS

To summarize, by applying the state-of-the-art technique ATAC-
seq, we provide the first chromatin accessibility landscape in
axolotl regenerative limb tissues from the immediate response
stage to the complete recovery stage. These data will be of great
importance to the studies of various scientific disciplines such as
development, cell reprogramming, and mechanisms underlying
regeneration. Further analysis of these datasets by focusing on the
differentially regulated regions may help deduce key regulatory
elements that are critical for regeneration initiation in the axolotl
limb in the future.
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