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INTRODUCTION—PHENOMENOLOGY

Autophagy or auto-phagocytosis is self-phagocytosis of tissues and cellular materials i.e., “self-
maintenance.” While phagocytosis normally refers to the innate immune process of white blood
cells engulfing foreign bodies such as infectious materials, autophagy is a regulatory phenomenon
of dysfunctional cellular components being removed (Kobayashi, 2015). Autophagy is inseparable
from inflammation and oxidative stress phenomena (Turkmen, 2017); which are intricately
involved in pathophysiology of diabetes mellitus (DM) (Muriach et al., 2014). The relationships
between phenomena is shown in Figure 1.

Autophagy in association with oxidative stress is involved in pathophysiology. For instance,
in the non-modifiable aging process, autophagy is involved in the associated oxidative stress
and this can be assessed by glycation end-products as well as indices of lipid oxidation such as
malondialdehyde (Moldogazieva et al., 2019). What is yet to be articulated for clinical translation
in terms of laboratory assessment of autophagy is the concept of oxidative stress screening. A recent
review highlights cell culture and electron microscopy methods (Yoshii and Mizushima, 2017)
but not blood tests for oxidative stress indices. Thus, the gap between knowledge and practice
are the apparent lack of acknowledgment of oxidative damage interplay between autophagy and
metabolic diseases.

The objective of this paper is to bring to the fore the way in which clinical laboratory tests
for oxidative stress panel can be used to assess autophagy in metabolic syndrome, especially the
relevance of tests from different thematic sub-panels to establish cellular damage in metabolic
syndrome. In this objective, cognizance is taken that metabolic syndrome is a constellation
of diabetes and its cardiovascular complications including dyslipidaemia factor. For instance,
abnormal cholesterol can exacerbate oxidative stress to increase autophagy in diabetes.

This opinion paper is organized in four sections. First three sections cover “causes,
consequences, and therapeutic challenges” in terms of oxidative stress, effects on vascular
physiology, and implications for management by laboratory methods, respectively. A brief fourth
section is on availability of clinical laboratory tests for oxidative stress panel and how to interpret
the results in terms of autophagy-inflammation interplay.
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CAUSES OF AUTOPHAGY IN
DIABETES—ERYTHROCYTE OXIDATIVE
STRESS (EOS) PERSPECTIVE

Cellular oxidative stress can induce mitochondrial damage,
which then requires autophagy to maintain homeostasis (Lee
et al., 2012). Oxidative stress is a disturbance of the physiological
control of oxidant/antioxidant (redox) balance, in which oxidants
become dominant. It is a state in which a cell experiences
alteration of cellular components, due to exposure to free
radicals and other reactive oxygen species (ROS) beyond its
antioxidant capacity (Sies, 1991). Redox reactions are essential
for cellular functions such as the utilization of chemical energy
from nutrients for the production of adenosine triphosphate.
However, excessive oxidants expose cells including erythrocytes
to oxidative stress (Kuhn et al., 2017).

EOS is a type of cellular oxidative stress, which arises
from over-exposure of the cellular components of red blood
cells to various ROS (Richards et al., 1998). It is a situation
whereby the erythrocyte’s functional mechanisms are impaired
or overwhelmed by alteration in the normal metabolic and/or
physiological activities that generate ROS (Taniyama and
Griendling, 2003). Although the red cell has an efficient
antioxidant system for the normal levels of oxidants generated
in its membranes, the oxidant challenge can exceed the capacity
of the antioxidant system (Fung and Zhang, 1990).

There is a tendency for imperfect reduction of oxygen in
the mitochondrial electron transport systems e.g., the leak
of superoxide radicals (Maxwell and Lip, 1997). The cascade
reaction induced by the superoxide radicals involves antioxidant
function of “reduced” glutathione (GSH) that leads to reduction
in concentration and exacerbates EOS (McMullin, 1999; Boada
et al., 2000; Ulusu et al., 2003). Thus, there are three
possible sources of ROS that predispose the erythrocytes to
oxidative stress:

• There exist special channels on the membrane by which
superoxide radicals permeate the erythrocyte from the
mitochondria of other cells (Richards et al., 1998). This is more
so during hyperglycaemia or dyslipidaemia (Taniyama and
Griendling, 2003). A discussed how EOS is strongly implicated
in diabetes and its cardiovascular complications (Nwose et al.,
2007a). Laboratory-based investigations have also reported on
erythrocyte morphology or oxidative stress being associated
with oxidative stress (Parthiban et al., 1995; Nwose et al., 2009;
Gyawali et al., 2015). What is being advanced here is the EOS
interplay with autophagy in metabolic syndrome (Figure 1).

• Secondly, the erythrocyte can paradoxically become
oxidatively stressed from normal physiological processes
(Kuhn et al., 2017). Due to the role of erythrocytes in oxygen
transport and the presence of redox-active hemoglobin
molecules, they generate pro-oxidant radicals by the
Fenton reaction.

Abbreviations: DM, diabetes mellitus; EOS, erythrocyte oxidative stress; GSH,

reduced glutathione; MDA, Malondialdehyde; ROS, reactive oxygen species.

• Thirdly, there is hyperglycaemia-induced oxidative stress.
Besides glycolysis being associated with oxidative stress in
diabetic cardiovascular physiology (Zinman, 2003; Brownlee,
2005), there are points of pro-oxidant production when the
erythrocyte is utilizing glucose to generate energy in the
pentose phosphate pathway (Nwose et al., 2007a).

• Cellular oxidative stress can induce mitochondrial damage,
which then requires autophagy to maintain homeostasis.

Therefore, point of emphasize is that fragments of damaged
red blood cell materials are removed from the system by the
phagocytosis function of the spleen—the basic cleaning function
of the blood by spleen. In the context of splenectomy, red blood
cells tend to acquire autophagic vacuoles (Holroyde andGardner,
1970). Current research is yet to translate the basic science that
EOS is followed by splenic autophagy of the damaged red blood
cells. Therefore, what is being brought to the fore is a measurable
perspective of autophagy in terms of EOS that is integral to
diabetes and associated metabolic syndrome indices.

CONSEQUENCES—POTENTIAL
IMPLICATIONS OF AUTOPHAGY-EOS
INTERPLAY IN DIABETES

There can be autophagy of pancreatic beta-cells (Marasco and
Linnemann, 2018), and this has implications, but is not the focus
of this discussion. Mitochondrial oxidative stress and autophagy
are implicated in diabetes (Muriach et al., 2014); and although
red blood cells lack mitochondria, there are potential effects on
glucose metabolic pathways. Whether in glycolysis or pentose
phosphate pathway, the physiology to meet the cellular need of
energy in the erythrocyte is associated with the propensity to
deplete GSH content, which in turn leads to EOS. The aberrant
state of EOS is of clinical importance in diabetes (Nwose et al.,
2007a), especially because hyperglycaemia exacerbates oxidative
stress (Yano et al., 2004).

In the diabetes pathophysiology, GSH level is depleted as
it is converted to oxidized glutathione. This leads to reduced
erythrocyte antioxidant capacity including impaired vitamin E
regeneration system (Nwose et al., 2008a), which feedforward
to constitutes a possible cause of EOS (Nwose et al., 2007a).
Methaemoglobin reductase activity is the other pathway, which
impairs GSH functions and potentially complicates the entire
vitamin E recycling system (Nwose et al., 2008a).

Thus, diabetes is associated with a decrease of erythrocyte
GSH level, which translates to antioxidant imbalance of the
cell. Prolonged impairment of the vitamin E recycling in the
red blood cell membrane amounts to EOS that damages the
cell (Nwose et al., 2008a). What is being brought to the fore
is that hyperglycaemia-induced EOS can cause autophagy and
may complicate a cause-and-effect phenomenon in diabetes
(Figure 1). Therefore, the laboratory perspective is to view
autophagy and associated challenges as follows:

• Causes—oxidative stress
• Consequences—effects on cardiovascular physiology
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FIGURE 1 | Illustration* of relationship between autophagy and oxidative stress in diabetes mellitus. *This figure illustrates how autophagy is inseparable from

inflammation and oxidative stress phenomena. Figure shows that autophagy is caused by (downward arrows), but it also exacerbates (backward arrows),

inflammation, and oxidative stress in diabetes.

• Therapeutic challenges—implications for management by
oxidative stress panel screening.

THERAPEUTIC CHALLENGES

Implications for Management by
Laboratory Methods
For over two decades, research has demonstrated that changes
in erythrocyte antioxidant and haem components in DM lead
to complications such as cardiovascular diseases (Dominguez
et al., 1998; Dumaswala et al., 2001; Memisogullari et al., 2003),
but the question is how EOS is involved in macrovascular
complications of DM. As illustrated (Nwose et al., 2007a),
EOS may effect macrovascular events including increased blood
viscosity, hypercoagulation, and endothelial dysfunction. It is
noteworthy that these vascular events constitute Virchow’s triad,
which has been a subject of research (Makin et al., 2002; Lowe,

2003; Nwose et al., 2014); and shrouded in discussion (Bagot and
Arya, 2008; Dickson, 2009; Malone and Agutter, 2009). There is
also the effect of tissue hypoxia as discussed that can lead to high
blood pressure hence exacerbate metabolic syndrome.

Endothelial Dysfunction Exacerbated by Metabolic

Syndrome
There is knowledge of hyperglycaemia-induced endothelial
dysfunction (De Vriese et al., 2000; Zinman, 2003); and that
diabetic dyslipidaemia (component of metabolic syndrome)
initiates a chronic inflammatory reaction that results in
endothelial damage, which culminates in endothelial dysfunction
such as atherosclerosis and coronary artery disease (Gonzalez
and Selwyn, 2003). It is established that oxidative stress results in
endothelial dysfunction, which has plasma homocysteine levels
as clinical index (Dumaswala et al., 2001; Nwose et al., 2007a).
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Blood Viscosity
This is an intrinsic resistance of blood flow in the vascular
system (Lowe et al., 1997). Normally, erythrocyte membrane
deformability is a physical property that enables cells to change
shape and flow with little or no aggregation/friction. When
EOS occurs through lipid peroxidation within the membrane,
the cell membrane becomes more rigid and less adaptable
(Suda et al., 1980). This makes the blood more viscous, which
leads to the development of vascular abnormalities including
atherothrombosis and endothelial dysfunction that are associated
with coronary artery disease (Solans et al., 2000), as well as tissue
hypoxia (El-Sayed et al., 2005). The implication in diabetes and
dyslipidaemia has been highlighted (Nwose, 2010, 2013; Richards
and Nwose, 2010; Nwose et al., 2014). The point advanced here
is the potential, as part of oxidative damage indices for screening
splenic autophagy of red blood cellular materials after EOS.

Imbalance of Coagulation and Fibrinolysis
There are several theories surrounding hypercoagulation in DM.
For instance, hypo-fibrinolysis occurring as thrombomodulin-
thrombin complex—which is formed on intact vascular
endothelium—may activate thrombin-activatable fibrinolysis
inhibitor (Yano, 2003). This suggestion is supported by the
observation that hyperglycaemia and insulin enhance the
synthesis and secretion of plasminogen activator inhibitor type 1
(Kohler and Grant, 2000). These findings imply that fibrinolysis
and therefore the generation of D-dimer are reduced in DM. A
seemingly opposing theory is that EOS leads to enhancement
of events such as increased production of procoagulant tissue
factors at the gene level (Brownlee, 2005), which imply that
D-dimer changes in diabetes have not been adequately explained.

It has been reported that some coagulation markers such as
D-dimer and fibrinogen are elevated in DM (Sommeijer et al.,
2004). Preliminary reports have also shown increased D-dimer
levels in DM (Nwose et al., 2007b). Therefore, it is advanced
that D-dimer constitutes a potential option for oxidative damage
screening (Table 1).

EOS-Induced Haemolytic Anemia Exacerbating High

Blood Pressure
There is a likelihood that hyperglycaemia-depleted GSH occurs
via either reduced regeneration due to deficient pentose
phosphate pathway (McMullin, 1999), or enhanced hexosamine
pathway flux (Brownlee, 2005). The effect is EOS, which leads to a
sequence of membrane rigidity and lysis (Fung and Zhang, 1990).
The impacts are both hyperviscosity and anemia, respectively.
That is, disruption of the normal rheological properties (El-
Sayed et al., 2005), which leads to a sequence of anemia, reduced
blood/O2 supply, ischaemia and subsequently angina, chronic
ischaemic heart disease, myocardial infarction or sudden death
(McCance et al., 2002). It is noteworthy that the homeostatic
response to reduced blood/O2 supply involves increase in
cardiac output, which may lead to high blood pressure. Hence,
evaluation of fluctuations in blood pressure can support oxidative
stress panel.

Indeed, anemia is associated with an increased risk of
diabetic macrovascular disease or metabolic syndrome per

se (Thomas et al., 2006). Autophagy is implicated in anemia
(Grosso et al., 2017), but what has not been given adequate
attention is that:

• EOS compromises the free radical basis of anemia (Dumaswala
et al., 2001)

• Anemia is an effect of autophagy-related EOS
• To date, there are no defined signs and symptoms of autophagy

for clinical decision making.

Oxidative Stress Panel Indices for
Autophagy—Screening Suggestion
There are limited laboratory methods for autophagy evaluation
(Klionsky et al., 2016), especially in diabetes research and
practice. Thus, the justification of this paper is to advance
the role of oxidative stress panel indices for the screening of
autophagy in people living with diabetes. For instance, this could
be used to monitor therapeutic management of cardiovascular
complications of diabetes.

Diagnostic laboratory markers include the traditional risk
evaluation markers such as cholesterol and glucose profiles.
Emerging biomarkers include C-reactive protein, D-dimer, and
homocysteine (Tracy, 2003; Ridker et al., 2004), as well as
oxidative stress indices that include GSH and MDA (Tsimikas,
2006; Gyawali et al., 2015; Nwose et al., 2018; Lubrano et al.,
2019). Uric acid and albumin levels have been considered (Bwititi
et al., 2012). Pending clear definition of the signs and symptoms
of autophagy, it is recommendable that the common laboratory
principle applies whereby more than three positive results from
this suite of biomarkers may indicate high levels of autophagy,
be adopted.

It is becoming more clear that pharmacological agents to
promote autophagy work by mediating oxidative stress (Wu
et al., 2020). This implies that autophagy status is associated with
degree of oxidative stress. The contribution being made in this
paper is that methods for clinical evaluation of oxidative stress
used in research can be integrated into clinical practice.

Further, it has been established that oxidative damage must
involve reduction in antioxidant status, increase in oxidant levels
and evidence of cardiovascular effects such as hypercoagulation,
endothelial dysfunction, and blood viscosity that could easily lead
to diseases (Nwose et al., 2008b). Thus, laboratory screening of
oxidative damage includes indices of oxidative stress indices and
their effects (Table 1). Oxidative stress markers listed here are
just examples of what is readily available. There are a whole lot
of others (Keaney et al., 2003; Frijhoff et al., 2015).

Perhaps, it is pertinent to emphasize that although assessment
of EOS and its role in autophagy would be a potential therapeutic
screening method, what needs to be addressed is “if it will
be an effective indicator of overall metabolic dysregulation.”
For this reason, it is pertinent to point out the concept of
high cholesterol (indicated by lipid profile) being a factor
that can exacerbate lipid peroxidation (i.e., oxidative stress) to
increase autophagy in diabetes. Also, oxidative damage panel
screening will show cardiovascular effect such as increased
blood viscosity (Nwose, 2013). Thus, beyond e.g., blood glucose
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TABLE 1 | Oxidative damage panel useable in the laboratory as oxidative stress screening.

Theme Biomarker Expectation in oxidative

stress

Sample typea

Oxidative stress Glutathione (GSH) Reduced antioxidant level Heparin, citrate, EDTA

blood (RBCs or plasma,

serum)

Malondialdehyde (MDA)b Increased oxidant level EDTA plasma, serum,

saliva, urine, cell culture

extracts, tissue extracts

Isoprostane Increased levels Citrated or heparin

plasma, urine

Methaemoglobin (metHB) Increased oxidant level Citrate or heparin plasma,

RBC hemolysate

Oxidative stress

“cardiovascular” effect

Blood pressure Increased Auscultatory, oscillometry,

ultrasound

D-dimer Increased

hypercoagulability

Heparin, citrate plasma,

whole blood

Homocysteine Increased endothelial

dysfunction

Citrate, EDTA plasma,

serum, urine

Whole blood viscosity Hyperviscosity/slowed

blood flow

EDTA whole blood

a It is expected that lab protocol will establish separate reference range for every sample type used.
bParticularly to assess lipid peroxidation that is exacerbated in dyslipidaemia.

and cholesterol dysregulation, there are effects or subclinical
pathophysiological indices.

This perspective recommendation advances the knowledge
that oxidative stress induces autophagy (Hariharan et al., 2011;
Turkmen, 2017; Gao, 2019; Moldogazieva et al., 2019). This
therefore justifies carrying out laboratory tests for oxidative
stress. The theme of this special issue, therapeutic challenges in
the management of autophagy implies the need for monitoring
of treatment using tests that assess therapeutic efficacy. It has
recently been highlighted that targeting autophagy is a means
to counteract oxidative stress in obesity (Pietrocola and Bravo-
San Pedro, 2021). Another advantage is therefore identification
of need for change in treatment regimen. For instance, there
is indication of possible simultaneous induction of oxidative
stress and autophagy in diabetes as well as obese patients
(Klionsky et al., 2016). What this opinion paper contributes is
the need to look at a panel of tests and the availability of the
test methods.

CONCLUSION

Current considerations of autophagy acknowledge oxidative
stress in the cause-and-effect physiology as well as therapeutic

modes of action. However, monitoring by laboratory methods
is yet to integrate the available and validated oxidative stress
parameters. What this opinion paper brings to fore is that tests
for oxidative stress panel can be used to assess autophagy in
metabolic syndrome, including diabetes and its cardiovascular
complications, at no major cost.
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