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The liver is one of vital organs of the human body, and it plays an important role in
the metabolism and detoxification. Moreover, fetal liver is one of the hematopoietic
places during ontogeny. Understanding how this complex organ develops during
embryogenesis will yield insights into how functional liver replacement tissue can
be engineered and how liver regeneration can be promoted. Here, we combine the
advantages of single-cell RNA sequencing and Spatial Transcriptomics (ST) technology
for unbiased analysis of fetal livers over developmental time from 8 post-conception
weeks (PCW) and 17 PCW in humans. We systematically identified nine cell types,
and defined the developmental pathways of the major cell types. The results showed
that human fetal livers experienced blood rapid growth and immigration during the
period studied in our experiments, and identified the differentially expressed genes, and
metabolic changes in the developmental process of erythroid cells. In addition, we focus
on the expression of liver disease related genes, and found that 17 genes published
and linked to liver disease mainly expressed in megakaryocyte and endothelial, hardly
expressed in any other cell types. Together, our findings provide a comprehensive and
clear understanding of the differentiation processes of all main cell types in the human
fetal livers, which may provide reference data and information for liver disease treatment
and liver regeneration.

Keywords: spatial transcriptomics, single-cell RNA sequencing, multimodal intersection analysis, fetal liver,
hepatoblast, erythrocyte

INTRODUCTION

The liver consists of greater than 20 cell types, including hepatocytes, liver endothelial cells, biliary
ductal cells (cholangiocytes), mesothelial cells, Kupffer cells, and various circulatory immune cells,
which are all organized to form the foundation for liver functions, including glycolytic and urea
metabolism, immune responses, and drug detoxification (Wang et al., 2020). In the development
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of human fetus, liver is an essential hemopoietic organ.
Hematopoietic stem and progenitor cells (HSPCs) immigrated
into the liver bud at approximately W6 in humans (Ivanovs
et al., 2017; Gao and Liu, 2018). Then, the fetal liver becomes
the major hematopoietic organ and provides a specific niche
for HSPC proliferation and differentiation (Golub and Cumano,
2013). The liver is one of the vital organs of the human body,
which vulnerable to a variety of pathogenic factors inside and
outside the body, causing inflammation and damage. It is perhaps
not surprising that liver diseases are major contributors to
morbidity and mortality (Gordillo et al., 2015). Besides, the liver
has a strong regenerative capacity. After partial hepatectomy,
liver regeneration depends on the regenerative capacity of the
residual liver tissue, which has aroused broad public concern.
Therefore, a comparative study of fetal liver development is
also vital for our understanding of liver development and
regeneration mechanisms.

The rapid advances in massively parallel DNA sequencing
during the past decade have enabled a view into liver
development at unprecedented molecular resolution. Bulk cell
RNA-sequencing (RNA-seq) technology has made it possible
to obtain unbiased high-throughput gene expression data from
bulk tissue and individual cells (Salmen et al., 2018). However,
conventional RNA-seq methods process millions of cells, and
cellular heterogeneity cannot be addressed because signals
of variably expressed genes would be averaged across cells
(Hou et al., 2016). Understanding biological systems require
knowledge of their components. Although single-cell RNA-
sequencing (scRNA-seq) is a powerful tool for addressing
transcriptional heterogeneity (Moncada et al., 2020). The
application of such single-cell analysis has greatly facilitated
experimental studies in stem cell properties (van Wolfswinkel
et al., 2014), cellular immunity (Shalek et al., 2013), cancer
diagnosis (Dalerba et al., 2011), and developmental processes
(Xue et al., 2013). However, tissue dissociation before sequencing
results in the loss of the cells’ positional information, thus limiting
our understanding of cellular organization and interactions
in the fetal liver development (Moncada et al., 2020). To
overcome these deficiencies, Spatial Transcriptomics (ST) allows
for the spatial mapping of RNA-seq transcript data onto
high-resolution tissue images, with the spatial information
maintained by using a unique microarray composed of >1000
spots (100-µm circular areas) with barcoded capture probes
(Wong et al., 2018). However, the lack of cellular resolution
is the main limitation of ST. The 100-µm spatial spots,
with a center-to-center spacing of 200 µm, typically cover
5–100 cells each, depending on region and tissue type.
Therefore, this resolution currently prevents analysis at the
single-cell level (Salmen et al., 2018). To overcome this
limitation, the applications of some new analytical methods
in ST were able to identify cell types more accurately
(Moncada et al., 2020).

In this study, we used an integration of scRNA-seq with
the ST technology to perform unbiased analysis of fetal livers
over developmental time from W8 and W17 in humans.
Multimodal intersection analysis (MIA) was applied to integrate
scRNA-seq and ST datasets (Moncada et al., 2020). We

systematically identified nine cell types, as well as various
specific clusters within each cell types. We also defined cell
lineage differentiation pathways in human fetal livers. Moreover,
we observed significant differences in cell composition, cell
heterogeneity, and gene expression during human fetal liver
development. It is worth noticing that we found that 17
genes published and linked to liver disease mainly expressed
in megakaryocyte and endothelial, hardly expressed in any
other cell types. In summary, we present a spatiotemporal
atlas that comprehensively and systematically describes the
cellular heterogeneity and spatial archetypes of the developing
human liver, facilitating our understanding of disease origins,
and will help de novo generation of liver cell types and
liver structures.

MATERIALS AND METHODS

Biological Materials
Two human developmental liver tissues were used in the
study. Clinical age and post-conceptional were determined using
clinical ultrasound and stage-dependent anatomical landmarks
of the embryos: 8 post-conception weeks (PCW) and 17
PCW. Samples were collected after elective surgical abortions
at Shenzhen People’s Hospital. Written informed consent was
obtained before sample collection. This study was conducted
following the tenets of the Declaration of Helsinki and was
approved by the Ethics Committee of the Shenzhen People’s
Hospital, China (ref. no. LL-KY-2019591). The tissue samples
were snap-frozen in isopentane pre-chilled with liquid nitrogen
and stored at−80◦C until sectioning.

Tissue Staining and Imaging
Liver tissue was gently washed with cold PBS and snap-frozen in
isopentane (2-methyl butane, Sigma) on dry ice. The tissue was
subsequently embedded in Tissue-Tek (OCT) and snap-frozen
using an isopentane/dry ice slurry (Asp et al., 2017). The liver
tissues were cryosectioned at 10 µm thickness and systematically
placed on chilled Visium Tissue Optimization Slides (3000394,
10× Genomics) and Visium Spatial Gene Expression Slides
(2000233, 10× Genomics), and stored at −80◦C until use.
Here’s the information of superfrost microscope glass slides:
Each of the spots printed onto the array was 200 µm from
the center to center, and 100 µm in diameter, covering an
area of 6,200 × 6,600 µm (Moncada et al., 2020). Spots were
printed with approximately 2× 108 oligonucleotides containing a
randomized 7-mer unique molecular identifier (UMI), an 18-mer
spatial barcode, and a poly-20TVN transcript capture region. For
processing, the tissues were first warmed to 37◦C for 1 min and
fixed in 36.5% formaldehyde (#F8775, Sigma-Aldrich) diluted
1:10 in 1 × PBS (#09-9400, Medicago) for 10 min and then
washed in 1 × PBS. Next, the tissues were dehydrated with
isopropanol for 1 min followed by staining with H&E. Slides
were mounted in 80% glycerol, and brightfield images were
taken on a 10× objective (Plan APO) on a Nikon Eclipse Ti2-E
(27755× 50783 pixels for TO, 13332× 13332 pixels for GEX).
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Permeabilization and Reverse
Transcription
After brightfield imaging, exonuclease pre-permeabilization was
performed with 0.2 mg ml-1 BSA and 200 units of collagenase
diluted in HBSS buffer at 37◦C for 20 min and washed with
100 µl of 0.1 × SSC buffer. Tissue was permeabilized with
0.1% pepsin in HCl at 42◦C for 4 min and washed with 100 µl
of 0.1 × SSC buffer. Next, RT Master Mix containing reverse
transcription reagents [1 × First strand buffer (Invitrogen),
0.5 mM of each dNTP, 5 mM dithiothreitol, 0.2 µg µl-1
BSA, 1% dimethylsulfoxide, 50 ng µl-1 Actinomycin D, 2 U
µl-1 RNaseOUT (Invitrogen) and 20 U µl-1 Superscript III
(Invitrogen)] was added to the permeabilized tissue sections,
and incubated at 42◦C overnight (∼17 h). Tissues were then
digested away from the slide by incubating the tissue with
1% 2-mercaptoethanol in RLT buffer (Qiagen) at 56◦C for
1 h with continuous shaking, then incubation in proteinase K
(Qiagen) diluted 1:8 in PKD buffer (Qiagen) for 1 h at 56◦C
with continuous shaking (Asp et al., 2017). After RT and tissue
removal (the cDNA is not cleaved), the slides were imaged
to visualize the incorporated fluorescent nucleotides, together
creating a cDNA footprint. The optimal permeabilization
conditions depended on these images (Berglund et al., 2018).
The assessment was based on how diffused the fluorescent print
and the signal intensity compared with the tissue morphology.
Optimal conditions would produce a strong and morphologically
correct fluorescent print. Here, we selected 6 min as the optimal
time based on tissue optimization time course experiments.

Release of Probes, ST Library
Preparation and Sequencing
To enable sharp, spatially barcoded experiments after RT and
tissue removal, the cDNA was enzymatically cleaved from the
surface and collected in tubes ready for downstream library
generation. The cDNA release step was done at 37◦C for 1 h
and 15 min. Once the surface probes were de-attached, 65 µl
from each well was collected. After probe release, the array was
imaged once more with a hybridized fluorescent probe to create
a spatial spot image, as previously described (Salmen et al.,
2018). The released cDNA was converted into dsDNA, using
the hybridized RNA as the primer. Afterward, the dsDNA was
then purified using beads and underwent in vitro transcription
(IVT) overnight, which mixture contained 1 × T7 Enzyme
Mix (Ambion, AM1334), 1 × T7 Reaction Buffer (Ambion,
AM1334), 7.5 mM of each NTP (Ambion, AM1334), and 1 U/µl
SUPERaseIN (Ambion, AM2694). The remaining purified cDNA
was indexed using the following program: 98◦C for 3 min,
followed by 25 cycles of 98◦C for 20 s, 60◦C for 30 s, and
72◦C for 5 min. The concentrations were measured using a
Qubit dsDNA HS Assay Kit (Invitrogen), purified libraries were
assessed using a 2100 Bioanalyzer (Agilent) according to the
manufacturer’s instructions (Moncada et al., 2020). The finished
libraries were sequenced on the Hiseq3000 System (Illumina),
and the sequencing depth of each sample was approximately 250–
270 M read-pairs. The following read protocol was performed:

read 1, 28 cycles; i7 index read, 10 cycles; i5 index read, 10 cycles;
read 2, 91 cycles.

ST Raw Data Annotation, Filtering, and
Processing
Histology images and raw FASTQ files were processed by sample
with the Space Ranger software (version 1.0.0), which used STAR
v.2.5.1b for genome alignment (Dobin et al., 2013) against hg38
reference genome “refdata-gex-GRCh38-2020-A.” Briefly, read
2 was mapped against the reference GRCh38 human genome,
and read 1 was used for spatial information and UMI filtering.
Data were demultiplexed based on the spatial barcodes, and
duplicate reads (generated through amplification) were removed
by UMI filtering. FASTQ files containing the gene count data
for each spatial barcode were produced. Using Bowtie2 (version
2.3.1) to align the demultiplexed FASTQ files (Langmead and
Salzberg, 2012), and using HTSeq (version 0.9.1) to count UMIs
(Anders et al., 2015). We obtained information about the number
of spots under the tissue, median genes per spot, the sum of
UMIs per spot, etc. Detailed information on sequencing data
processing is available in a recently published study (Stahl et al.,
2016). First, spots with fewer than 200 genes were filtered. UMI
counts in each spot were normalized by the total transcript
count and then scaled by the median number transcript count
across all spots. Besides, log2 transformed gene expression data
was used. Spots were then clustered with hierarchical clustering
based on the top variably expressed genes. The approach was
performed using the Seurat package (version 3.1.5)1 (Satija et al.,
2015). To identify differentially expressed genes (DEGs), pair-
wise comparisons of individual clusters against all other clusters
were implemented using the FindAllMarkers function (settings:
logfc.threshold = 0.1, test.use = “bimod,” min.pct = 0.01) in the
Seurat package. Visualization of ST clusters was carried out using
Uniform Manifold Approximation and Projection (UMAP)
or t-Distributed Stochastic Neighbor Embedding (TSNE) in
the Seurat package.

Cell Identification by ScRNA-seq and
Determination of Cell Type by Multimodal
Intersection Analysis (MIA)
In this study, the following publically available scRNA-seq
datasets used were as follows. KeenEye Technologies-
hosted Platform accession numbers: FCAImmP7277552,
FCAImmP7277553, FCAImmP7352192, FCAImmP7352193,
FCAImmP7352194, and FCAImmP7352195. All raw files are
available at https://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-7407/. The data processing and statistical analysis
were performed as Popescu et al. (2019) described. Briefly,
Cell Ranger Single-Cell Software Suite (version 2.0.2, 10×
Genomics Inc.) was utilized to align and quantify the sequencing
data using the GRCh38 human reference genome (official Cell
Ranger reference, version 1.2.0). htseq-count (version 0.10.0) was
utilized to calculate gene-specific read counts. Cells with fewer
than 200 detected genes and for which the total mitochondrial

1https://satijalab.org/seurat/install.html
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gene expression exceeded 20% were removed. Genes that were
expressed in fewer than three cells were also removed. Cluster
cell identity was assigned by manual annotation using known
marker genes. Subsequently, we integrated our ST data and
these publically available scRNA-seq data by introducing MIA as
previously reported (Moncada et al., 2020). The hypergeometric
cumulative distribution was used to identify the significance of
the overlap between cell type marker genes and ST genes, with all
genes as the background to compute the P value.

Advanced Analysis of Cell State and
Function Based on R Package
ClusterProfiler R package was used for Gene Ontology (GO)
characteristics and KEGG enrichment. Monocle was used
for the developmental trajectory visualization. Weighted
gene co-expression network analysis (WGCNA) algorithm
was used to perform cross-cluster comparison and weighted
correlation network analysis. Briefly, we screened differential
expressed gene sets in the each cell clusters and constructed a
complex gene co-expression network. Subsequently, WGCNA
identified essential modules which were consisted of highly
interconnected genes using unsupervised clustering. Moreover,
cellular communication and signaling transduction regulation
between cell clusters (or cell type) was performed using circlize
package. In addition, we performed the cell cycle analyses with
core gene set as previously reported (Fan et al., 2018), which
including 54 G2/M genes and 43 G1/S. The average expression
of each gene set was calculated as the corresponding score. If
their G2/M score <2 and G1/S score <2, cells were determined
to be quiescent. Otherwise, they were deemed proliferative.
Moreover, if their G1/S score < G2/M score, proliferative cells
were designated G2/M; If their G2/M score < G1/S score, cells
were designated G1/S.

RESULTS

Global Clustering and Identification of
Cell Type
To investigate immune cell and red blood cell development in the
fetal liver, we used ST technology to dissect global spatiotemporal
gene expression dynamics during human liver development. We
collected embryonic livers at two-time points (8 PCW and 17
PCW). After filtering data, we detected 1,267 high-quality spots
in 8 PCW liver, and on average, each spot contained 204,628
clean reads, 1,132 detected genes, and 5,924 UMIs. In the 17
PCW, the livers consisted of a total pool of 3,489 individual
spots with an average of 78,576 reads, 8,829 UMIs, and 2,266
genes per spot after filtering (Supplementary Figure 1). The
percentage of UMIs derived from mitochondrial and ribosomal
genomes in each spots was displayed in Supplementary Figure 2.
Through dimensionality reduction and clustering the spots of
each ST array, we identified 6 and 10 major cell clusters in
the 8 PCW liver (Figure 1A) and 17 PCW liver (Figure 1B)
based on gene expression pattern, respectively. Owing to the lack
of cellular resolution of ST, we used scRNA-seq to explore the

gene expression heterogeneity of the 8 PCW and17 PCW live
tissue. After applying quality control filters and normalization,
the scRNA-seq data consisted of 25,186 cells and 9,153 cells in
the 8 and 17 PCW liver, respectively, with a median of 9,239
and 11,248 unique UMIs and 2,454 and 2,705 uniquely expressed
genes per cell. To explore the cell composition of live organ, we
processed the single-cell data, and identified 31 and 25 cell states
in the 8 and 17 PCW liver, each of which was annotated according
to well-known marker genes from the literature (Figures 1C–
F and Supplementary Figure 3). We designated these clusters
as B cell, dendritic cell (DC), DC1, DC2, early erythroblast,
endothelial, HSC_MPP, fibroblast, hepatocyte, kupffer, ILC, late
erythroblast, MEMP, mast cell, megakaryocyte, mid erythroblast,
monocyte, mono-mac, neutrophil-myeloid, NK, pDC, Pre, Pre-B,
Pro-B, and VCAM1+.

MIA of scRNA-seq and ST Data
To integrate the scRNA-seq and ST datasets, we applied MIA
as previously reported (Moncada et al., 2020). This analysis
proceeds by first delineating sets of tissue region-specific and cell-
type-specific genes and then determining whether their overlap
is lower (depletion) or higher (enrichment) than expected by
chance. In the ST and scRNA-seq data, we identified the gene
sets with significantly higher expression in each spatial region
(or each cell type) relative to the others. With the gene sets
extracted across the ST and scRNA-seq, MIA next computed the
overlap between each pair of region-specific and cell type-specific
gene sets and assessed significant enrichment or depletion via a
hypergeometric test.

We found that the MIA approach was robust at identifying
depletions and enrichments of cell types across spatial regions
(Figures 2A,B). As an example, we found that the high
expression genes of hepatocyte, kupffer cell, endothelial cell,
and megakaryocyte overlapped significantly between the ST and
scRNA-seq data (Figure 2C and Supplementary Figure 4).
The 8 PCW liver was composed of kupffer, mid erythroblast,
hepatocyte, late erythroblast, early erythroblast (Figure 2D). The
17 PCW liver was composed of hepatocyte, neutrophil, early
erythroblast, mid erythroblast, late erythroblast, megakaryocyte,
endothelial, and megakaryocyte (Figure 2E). Based on the
average log fold-change, a heatmap of the top 10 genes unique
to each cluster showed a high degree of heterogeneity between
the clusters (Figures 3A,B). Besides, we choose one of the most
distinct signature genes in each cell type, and presented as a
dot plot to compare the differences (Figure 3C). Monocle was
used to organize cells in a predicted developmental trajectory
(pseudotime) according to transcriptional similarities. It yielded
one tightly connected differentiation trajectory separated into
two main branches corresponding to the different periods 8 and
17 PCW (Figure 3D).

Spatially Resolved Heterogeneity of
Human Fetal Hepatocytes
As shown in Figure 3E, hepatocytes are the main parenchymal
cell in 17 PCW liver. We observed three distinct hepatocyte
clusters (cluster 1, cluster 3, and cluster 4) distributed along
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FIGURE 1 | ST and scRNA-seq identified major cell types in the human fetal livers. (A,B) The t-SNE plot of all spots from ST data of 8 PCW liver (A) and 17 PCW
liver (B). Each point represents a spot, colored by cell types. (C–F) The UMAP plot of all cells from single-cell RNA-seq of 8 PCW liver (C,E) and 17 PCW liver (D,F).
Each point represents a cell, colored by their associated cluster (C,D), and colored by cell types (E,F).

with the spatial depth of 17 PCW liver (Figures 4A,B). We
found that the MEG3, ITIH3, and HMGCS1 showed cluster
1-high expression. The genes FGB, IGFBP1, and A2M were
more highly expressed in cluster 3, indicating that regional
DEGs may be involved in forming region-specific functions of
the corresponding regions. Also, hepatocyte cells in cluster 4
highly expressed several genes, including MT-CO1, MT-CO2,
MT-CO3, which involved in mitochondrial electron transport
and oxidative phosphorylation (Supplementary Figure 5). It was
noteworthy that cluster 1 and cluster 3 mainly gathered together
in the central region of the liver tissue, and cluster 4 mainly
gathered together in the periphery of liver (Figure 4A). Heatmaps
from differential expression analysis showed the gradually down-
regulated or up-regulated genes during hepatocyte differentiation
(Supplementary Figure 6A). GO analysis revealed that gradually
up-regulated genes among Cluster 1-3-4 were mainly associated
with regulation of planar cell polarity pathway, Wnt signaling
pathway, and activation of GTPase activity, while gradually
down-regulated genes were involved in the regulation of necrotic
cell death, glycogen biosynthetic process, and liver regeneration.
In addition, we described the cellular communication between
the Cluster 1-3-4 cells (Figure 4C), providing potential signaling
transduction messages for future investigation. Remarkably,
Cluster 3 had more significant signaling transduction with
Cluster 4 cells than Cluster 1 cells, although Cluster 3 and Cluster
1 were closer together. In addition, we identified some shared and
active ligand-receptor pairs such as DLK1-NOTCH2, EFNA1-
EPHA2, AGT-AGTR1, which was found both in the cellular
communication of Cluster 1 cells to Cluster 4 cells and Cluster
3 cells to Cluster 4 cells.

In the scRNA-seq data of 17 PCW liver, hepatocyte cells
could be further subdivided into three clusters. The DEGs
among the clusters were identified. Heatmap showed the top
ten marker genes for each cluster (Figure 4D). Recently, Prior
et al. (2019) identified LGR5+ stem and progenitor cells from
the hepatoblast pool at the early stage of liver development.
We examined the expression patterns of LGR5 and found a
fraction of LGR5+ hepatoblasts based on our scRNA-seq data
(Figure 4E). At 8 PCW liver, 5.68% of hepatoblasts express
LGR5, but the percentage of LGR5+ cells dropped to 3.80%
at 17 PCW liver. Moreover, the existence of a subgroup of
HNF4A+ID3+ hepatoblasts at 8 and 17 PCW liver (Figure 4F).
We designated these HNF4A+ID3+ cells as ID3+ hepatoblasts.
Our scRNA-seq data revealed that 25.26% (120 cells of 475
cells) of 8 PCW hepatoblasts and 15.76% (29 cells of 184
cells) of 17 PCW hepatoblasts belonged to this small cluster.
In addition, DLK1 was highly expressed in ID3+ hepatoblasts,
however, NCAM1 was not expressed in ID3+ hepatoblasts.
Moreover, we identified two major cell states (cluster 7 and
cluster 10) of megakaryocyte in the 17 PCW fetal liver
(Figure 2E). The results showed that PF4, PPBP, ITGA2B, GP9,
and MYL9 were up-regulated in Cluster 7, JCHAIN, IGLC3,
IGLC2, IGHM, and IGKC were up-regulated in Cluster 10
(Supplementary Figure 6B).

Erythroid Lineage Differentiation and
Maturation Pathway in the Fetal Liver
In 8 PCW liver, small clusters of red blood cells were scattered
throughout the liver (Figure 5A). In 17 PCW liver, the livers were
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FIGURE 2 | Spatially resolved gene expression of embryonic livers. (A,B) The MIA map of all scRNA-seq-identified cell types and ST-defined regions in 8 PCW
(A) and 17 PCW liver (B). The numbers of cell type- and tissue region-specific genes used in the calculation are shown. Red indicates enrichment (significantly high
overlap); blue indicates depletion (significantly low overlap). (C) Venn diagram showing the overlaps of specifically expressed genes of hepatocyte and Endothelial
cells between ST and scRNA-seq data. (D,E) The spots visualized at their original positions in the 8 PCW live tissue (D), and the 17 PCW live tissue (E). The colors
indicate the clusters each spot is assigned to in the t-SNE plot in Figures 1A,B.

filled with red blood cells and were reddened entirely (Figure 5B).
It is noteworthy that early erythroblasts were in the periphery of
the liver tissue, and mid erythroblasts and late erythroblasts were
scattered in the central region of the liver tissue (Figure 5B). This
dramatic morphological change indicated that both human fetal
livers experienced blood rapid growth and immigration during
the period studied in our experiments. There were early, mid,
late erythroblasts both in 8 and 17 PCW liver. To investigate
the developmental process of erythrocyte, we investigated genes
differentially expressed among these three types of red cells.
In the 8 PCW liver, 818 genes were gradually down-regulated,

and 2648 genes were gradually up-regulated during Early-
Mid-Late differentiation. GO characteristics and continued
maturation pathways related to human erythroid development
were identified (Supplementary Figures 7, 8). The gradually up-
regulated genes were enriched for glyoxylate and dicarboxylate
metabolism, pyrimidine metabolism, fructose and mannose
metabolism, pyruvate metabolism, and purine metabolism,
while the gradually down-regulated genes were associated with
butanoate metabolism (Figure 5C). In the 17 PCW liver,
there were 812 genes gradually down-regulated, and 880 genes
gradually up-regulated during Early-Mid-Late differentiation.
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FIGURE 3 | The specificity of marker gene expression. (A,B) Heatmap of standardized expression for the top 10 marker genes identified for each cell type in the 8
PCW (A) and 17 PCW liver (B). Each row represents a signature gene, and each column represents a cell. Yellow indicates high expression of a particular gene, and
purple indicates low expression. (C) The dot plot shows the relative expression of signature genes in each cell type of the 8 PCW (Left) and 17 PCW liver (Right).
Gene-expression frequency (percentage of cells within each cell type expressing the gene) is indicated by spot size, and expression level is indicated by color
intensity. (D) Pseudotime analysis shows the differentiation and relation of all spots in 8 PCW and 17 PCW live tissue. (E) Plot showing the proportional contribution
of cell types identified in panel (E) to the fetal liver tissue over developmental time. PCW, post-conception weeks.

GO classification and enrichment analysis was performed
(Supplementary Figures 9, 10). KEGG enrichment analysis of
the down-regulated genes revealed that the most significant
KEGG terms include fructose and mannose metabolism,
cysteine and methionine metabolism, taurine and hypotaurine
metabolism, histidine and thiamine metabolism-related signaling
pathway. The highly enriched terms for the up-regulated genes
were involved in propanoate metabolism (Figure 5D). We
performed ligand-receptor interaction analysis between Early-
Mid-Late cells, and found that erythropoietin (EPO), Protein
tyrosine phosphatase receptor C (PTPRC), Nectin Cell Adhesion
Molecule 3 (NECTIN3), et, was discovered in the Early-Mid-Late
cells communication (Figure 5E). In addition, the differentiation
trajectory analysis of erythrocyte was performed and yielded
one tightly connected differentiation trajectory that differentiates
into five main branches (Figure 5F). This suggests that the
system is maintained through one continuous rather than several
disconnected lineages. Moreover, we identified 617, 674, and 503
DEGs in early, mid, and late erythroblasts between 8 PCW liver
and 17 PCW liver, respectively. To obtain further insight into the

differences of erythrocyte between 8 PCW liver and 17 PCW liver,
we performed PCA of gene expression patterns between the two
embryonic stages. We sampled 50 spots from each cell type to
generate balanced datasets, and found that all the spots could be
distinguished between 8 PCW and 17 PCW liver based on their
transcriptional similarity (Figures 5G,H).

Expression Patterns of the Liver
Disease-Related Gene Across Fetal Liver
Tissue
According to “the fetal and infant origins of adult disease”
hypothesis (Barker, 1990), the fetal liver is subject to
environmental influences that, through epigenetic mechanisms,
can have sustained effects on function and, by extension,
contribute to the developmental origin of adult metabolic disease
(Gruppuso and Sanders, 2016). To identify genes functionally
associated with the fetal origins of liver disease, we integrated
our fetal liver ST data with a publicly available web resource2

2https://www.disgenet.org/search
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FIGURE 4 | Spatially Resolved Heterogeneity of Human Fetal Hepatocytes. Three main subpopulations of hepatocyte were showed in tissue sections (A) and UMAP
plot (B). Matching plots showing the significant signaling transduction regulation between the Cluster 1-3-4 cells (C). “Green triangle” represents the ligand, and
“Orange irregular shape” represents receptor in the ligand-receptor pairs. Heat map of the top 10 abundant genes in each cluster (D). Plots showing the expression
of LGR5 in the hepatocyte of 8 PCW and 17 PCW liver (E), and Plots showing the expression of HNF4A and ID3 gene in the hepatocyte of 8 PCW and 17 PCW liver
(F), and the gradient of red (purple) reflects expression levels.

(Pinero et al., 2020) to visually explore the cell types and spatial
regions related to liver’s disease. 17 genes published and linked to
liver disease mainly expressed in megakaryocyte and endothelial,
hardly expressed in any other cell types (Figures 6A,B). For
example, SPP1, TGFB1, JAG1, STAT1, and VIM were linked
to congenital biliary atresia, and were confirmed to be strongly
expressed in the endothelial and megakaryocyte. The expression
of TGFB1 and THBS1 (Congenital hepatic fibrosis-related)
were also highly detected in megakaryocyte and endothelial.
In addition, childhood Hepatocellular Carcinoma related genes
SPP1 and TGFB1 were also strongly expressed in the endothelial
and megakaryocyte. It was worth noting that SPP1 and TGFB1
genes are not only associated with congenital (and childhood)
liver disease, but also with adult liver disease. Here, we also
analyzed the specific expression of some genes which related
to adult liver disease. For example, hepatitis B-related genes

(GP1BA, HSPG2, CCL5, and SPP1), fatty liver diseases-related
genes (COL3A1, CCL5, and SPP1), alcoholic liver diseases-
related genes (CAV1, ELANE, CCL5, and SPP1), primary
biliary cirrhosis-related genes (TGFB1, PDE5A, COL1A1, CCL5,
and SPP1), and primary malignant liver neoplasm-related
genes (SELP, PECAM1, HSPG2, and THY1), mainly expressed
in endothelial and megakaryocyte, hardly expressed in any
other cell types.

In order to further reveal this phenomenon, we analyzed the
expression level of these 17 liver diseases-related genes in 17
PCW embryonic kidney3. Except PECAM1, the rest of the genes
expressed in 17 PCW kidney (Supplementary Figure 11). But
the expression pattern was different from that in liver, not mainly
expressed in megakaryocyte and endothelial, which indicated that

3http://humphreyslab.com/SingleCell/
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FIGURE 5 | Spatially resolved erythroid lineage differentiation and maturation pathway. (A,B) Visualization of the distribution of red blood cells across tissue sections
from the 8 PCW (A) and 17 PCW liver (B). (C,D) Heatmap of gradually down-regulated or up-regulated genes during erythrocyte differentiation and their
corresponding enriched KEGG pathway in 8 PCW (C) and 17 PCW liver (D). (E) Cellular communication between Early-Mid-Late erythroblasts in the 17 PCW liver.
(F) Pseudotime analysis shows the differentiation and relation of early, mid, and late erythroblasts. (G,H) PCA plot showing different gene expression patterns
between the two embryonic stages. The PCA plot analyses the 50 spots represented in early red cells and late red cells from 8 and 17 PCW liver. PCW,
post-conception weeks.

these liver disease-related genes have a unique gene expression
patterns in the embryonic liver. Besides, the protein interaction
network analysis of these 17 liver diseases-related genes revealed
a key role for TGFB1, COL1A1, SPP1, PECAM1, and THBS1 in
the expression network, and no interaction of PDE5A with other
genes (Figure 6C).

Weighted Gene Co-expression Network
Analysis (WGCNA) of Embryonic Liver
Development Genes
To better understand liver development relevant changes in
gene regulation and interactions between cell types, we used
the WGCNA algorithm to construct an unbiased co-expression
analysis of our ST data based on genes differentially expressed in
the major cell clusters (Zhang and Horvath, 2005). We identified
five major co-expression modules in 8 PCW liver, and define
two gene expression modules in 17 PCW liver (correlation
index >0.56) (Figure 7A and Supplementary Figure 12A). Each

module showed distinct correlation profiles across cell clusters.
Examining these modules revealed that many of the modules
were comprised of genes preferentially expressed in specific cell
clusters. In addition, high-correlation modules tended to contain
enriched KEGG pathways, GO biological process, and protein–
protein interaction (PPI) network, which further highlighted
the collaborative mode in the functioning of genes (Figure 7B
and Supplementary Figures 12, 13B,C). In the 8 PCW liver,
KEGG analysis shows that module-blue was enriched for several
pathways, including ribosome, DNA replication, and glutathione
metabolism (Supplementary Figure 12A). The co-expression
network of the 23 genes of module-yellow revealed a vital role
for PF4 and PPBP in the expression network (Supplementary
Figure 13D). In addition, cellular communication and signaling
transduction regulation between cell clusters (or cell type) are
the earliest process in fetal liver development. To investigate
cellular communication and spatial cross-talk in the fetal liver,
we performed ligand-receptor interaction analysis, and found
that there were active cellular communications between cell
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FIGURE 6 | Expression patterns of the liver disease-related gene across tissue sections from the 17 PCW liver. (A) The UMAP plots showing the expression level of
liver disease-related genes. The color changed from gray to blue as the gene expression levels increase. (B) Seventeen genes published and linked to liver disease
are shown by a heat map based on their average gene expression level in each cell cluster. (C) Protein–protein interaction networks analysis of the 17 liver
diseases-related genes displayed based on the degree of complexity of the nodes.

clusters (Figures 7C,D and Supplementary Figure 14A,B). The
ligand-receptor pairs such as CD74-MIF, DLK1-NOTCH3, IGF2-
IGF1R, AGT-AGTR1, and CCL2-ACKR1 were more frequently
found in 8 PCW liver, and the ligand-receptor pairs such as
ESAM-ESAM, TIMP1-FGFR2, JAG1-NOTCH3, LTBR-LTB, and
PLXNB2-PTN were more frequently found in 17 PCW liver.
Moreover, there were 129 ligand-receptor pairs shared by 8 PCW
and 17 PCW liver (Supplementary Figure 14C).

Cell Cycling Stage Analysis of the Fetal
Liver Cells
Using the CellCycleScoring algorithm, we identified the cell
cycle phases of fetal liver cells (Figure 8), and found that
the proportion of proliferative hepatocytes (the cells in S and
G2/M phases) increased in 17 PCW liver (∼57.95%) compared
with those in 8 PCW liver (∼21.76%). This phenomenon also
existed in the development of red blood cells. Specifically, these
proliferative cells increased from 8 PCW (Early, ∼59.38%; Mid,
∼57.04%; Late, ∼62.50%) to 17 PCW (Early, ∼70.14%; Mid,
∼73.33%; Late,∼76.94%) in humans fetal liver tissue. Therefore,

the proliferation rate of hepatocytes and erythrocyte increased
throughout development in our ST data.

DISCUSSION

Fetal liver development is a complex process that includes
immigration, differentiation, and interaction of many cell
lineages derived from the mesoderm and endoderm. The
development of the human fetal liver in utero has remained
poorly understood. In this study, we applied a method for
the identification and spatial mapping of distinct cell states,
subpopulations, and cell types within fetal liver tissue. The
method starts with the characterization of clusters and cell
types present in live tissue by scRNA-seq, and, in parallel, the
identification of transcriptomic regions by ST. Through MIA,
we can integrate ST data and scRNA-seq data perfectly, and
analyze the data from regions of interest in an unbiased way.
By applying MIA, we mapped the location of distinct cell types
(kupffer, hepatocyte, early erythroblast, mid erythroblast, late
erythroblast, neutrophil, megakaryocyte, and endothelial) and
subpopulations (2 different clusters of mid red cell in 8 PCW
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FIGURE 7 | Co-expression networks analysis and cellular communication analysis of the cell clusters in embryonic liver. (A) The hierarchical clustering tree shows
each co-expression modules in the 8 PCW liver. (B) The heatmap shows the Spearman correlation of co-expression modules in the 8 PCW liver, (C,D) Cellular
communication analysis of the cell clusters in the 8 PCW liver and 17 PCW liver. PCW, post-conception weeks.

liver, three hepatocyte clusters and 2 Megakaryocyte clusters in 17
PCW liver) in the fetal liver tissue, and the relationships among
cell types (clusters).

We identified three hepatocyte sub-clusters both in ST
and scRNA-seq data, which showed different gene expression
and functional enrichment in each sub-clusters. It suggested
that hepatocytes in different regions may perform different
functions. Several active ligand-receptor pairs, such as DLK1-
NOTCH2, EFNA1-EPHA2, AGT-AGTR1, have been identified
in the cellular communication of these sub-clusters. The liver
is the principal hematopoietic organ in the human fetus from
the 6th week through mid-gestation (Suskind and Muench,
2004). We identified the differentiation and development of
erythrocytes in fetal liver tissue as early as 8 PCW. The results
showed that human fetal livers experienced blood rapid growth
and immigration during the period studied in our experiments.
A large number of genes were gradually up-regulated or down-
regulated during Early-Mid-Late differentiation. KEGG pathways
analysis indicated that metabolic changes are crucial for the
maturation of human erythroblasts. In addition, we conducted
an unbiased co-expression analysis on the liver spatial data,

resulting in five and two expression modules in 8 and 18
PCW liver, respectively. High-correlation modules tended to
contain enriched KEGG pathways, PPIs, and GO biological
processes, which further highlighted the collaborative mode in
the functioning of genes. Moreover, the proliferation rate of
hepatocytes and erythrocyte increased throughout development
in our ST data. However, Wang and co-workers found the
opposite results. They found that, in both humans and mice,
the proliferation rate of hepatoblasts/hepatocytes decreased
throughout development (Wang et al., 2020). These differences
between studies may be related to both the selection of embryonic
stage and the methods.

Since Barker’s publication of “The fetal and infant origins of
adult disease” in Barker (1990), significant emphasis has been
placed on the intrauterine environment and its effect on adult
disease. Environmental changes will cause the body’s response
and adjustment. In the embryonic stage, all tissues and organs
are in the most sensitive stage of genesis, differentiation and
development. If the intrauterine environment is not conducive
to embryo differentiation and development, then the embryo
will make structural and functional changes, including epigenetic
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FIGURE 8 | Cell cycling stage analysis of the fetal liver cells. (A–D) UMAP plots and Cell Cycle Scoring Plot showing the cell cycle phases of in 8 PCW (A,C) and 17
PCW liver cells (B,D). (E,F) Plot showing the proportional contribution of cells in different phases (G1, G2/M, and S) identified in each cell cluster from 8 PCW (E) and
17 PCW liver (F).

mechanisms, this adaptive change of embryo will cause serious
or even irreversible damage to its life (Carpinello et al.,
2018; Simeoni et al., 2018). The specific extent of damage
depends on the type, nature, degree, timing and duration of
intrauterine environmental changes, and is also related to the
genetic susceptibility of the fetus. Relevant to this investigation,
Hochane et al. (2019) analyzed the kidney disease-related genes
in human fetal kidney based on single-cell transcriptomic. In
this study, we focused on the expression of liver disease-
related genes in embryonic liver, and found that 17 genes
published and linked to liver disease mainly expressed in
megakaryocyte and endothelial, hardly expressed in any other
cell types. Transforming growth factor-b1 (TGF-b1) signaling
in hepatic stellate cells (HSCs) plays a crucial role in liver
fibrosis by initiating profibrotic signaling in HSCs and collagen
synthesis (Ghafoory et al., 2018), but the source of TGF-
b1 is unclear. Here we show that megakaryocytes are rich
in TGF-b1. Further studies are required to evaluate whether
liver fibrosis can be prevented by blocking megakaryocyte and
TGF-b1 activation during acute liver injury. In addition, liver
sinusoidal endothelial cells (LSECs) form the wall of the hepatic
sinusoids, which have unique morphology and function (Ni
et al., 2017). These cells contain many fenestrae with uniform

diameters of 100–150 nm. Hepatotropic viruses (hepatitis B
virus and hepatitis C virus, etc.) usually pass through the
protective filter constructed by LSECs to gain access to the
liver parenchyma. LSECs constitutively express large amounts
of anti-inflammatory cytokines (e.g., TGF-β), co-stimulatory
molecules, and major-histocompatibility complex I-restricted
antigens, which shift the hepatic immune balance toward
tolerance (Limmer et al., 2005). Because many patients with
chronic hepatitis often have liver fibrosis (Yamazaki et al., 2017),
it is vital to know the change and function of LSECs during
the development of liver diseases. There are good prospects for
clinical diagnosis and new targeted therapy in the area of LSECs
for liver diseases.

CONCLUSION

In summary, the combination of scRNA-seq data with spatial
information allowed us to identify a comprehensive set of gene
probes that could summarize the spatial and cellular information
and provide a clear and comprehensive understanding of all cell
types’ differentiation processes in the human fetal livers. The
results obtained from this study may facilitate the future study
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of pathogenic mechanisms and the identification of therapeutic
targets in immune and infectious liver diseases.
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