
fcell-09-653308 April 5, 2021 Time: 10:27 # 1

ORIGINAL RESEARCH
published: 12 April 2021

doi: 10.3389/fcell.2021.653308

Edited by:
Yan Xu,

Third Affiliated Hospital of Sun Yat-sen
University, China

Reviewed by:
Bin-Zhi Qian,

The University of Edinburgh,
United Kingdom

Chunliang Xu,
Albert Einstein College of Medicine,

United States

*Correspondence:
Meng Zhao

zhaom38@mail.sysu.edu.cn
Dongjun Lin

lindj@mail.sysu.edu.cn
Lisha Mou

lishamou@gmail.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Stem Cell Research,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 14 January 2021
Accepted: 09 March 2021

Published: 12 April 2021

Citation:
Xie J, Lou Q, Zeng Y, Liang Y,

Xie S, Xu Q, Yuan L, Wang J, Jiang L,
Mou L, Lin D and Zhao M (2021)

Single-Cell Atlas Reveals Fatty Acid
Metabolites Regulate the Functional

Heterogeneity of Mesenchymal Stem
Cells. Front. Cell Dev. Biol. 9:653308.

doi: 10.3389/fcell.2021.653308

Single-Cell Atlas Reveals Fatty Acid
Metabolites Regulate the Functional
Heterogeneity of Mesenchymal Stem
Cells
Jiayi Xie1†, Qi Lou2,3†, Yunxin Zeng1†, Yingying Liang2,3, Siyu Xie4, Quanhui Xu5,
Lisha Yuan5, Jin Wang5, Linjia Jiang4, Lisha Mou2* , Dongjun Lin1* and Meng Zhao1,2,5*

1 Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China, 2 Shenzhen Lansi
Institute of Artificial Intelligence in Medicine, Shenzhen, China, 3 The First Affiliated Hospital of Shenzhen University, Health
Science Center, Shenzhen Second People’s Hospital, Shenzhen, China, 4 RNA Biomedical Institute, Sun Yat-sen Memorial
Hospital, Sun Yat-sen University, Guangzhou, China, 5 Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan
School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, China

Bone marrow mesenchymal stem cells (MSCs) are widely used clinically due to their
versatile roles in multipotency, immunomodulation, and hematopoietic stem cell (HSC)
niche function. However, cellular heterogeneity limits MSCs in the consistency and
efficacy of their clinical applications. Metabolism regulates stem cell function and fate
decision; however, how metabolites regulate the functional heterogeneity of MSCs
remains elusive. Here, using single-cell RNA sequencing, we discovered that fatty
acid pathways are involved in the regulation of lineage commitment and functional
heterogeneity of MSCs. Functional assays showed that a fatty acid metabolite, butyrate,
suppressed the self-renewal, adipogenesis, and osteogenesis differentiation potential
of MSCs with increased apoptosis. Conversely, butyrate supplement significantly
promoted HSC niche factor expression in MSCs, which suggests that butyrate
supplement may provide a therapeutic approach to enhance their HSC niche function.
Overall, our work demonstrates that metabolites are essential to regulate the functional
heterogeneity of MSCs.

Keywords: single-cell RNA-seq, butyrate, cell heterogeneity, HSC niche, mesenchymal stem cells

INTRODUCTION

Mesenchymal stem cells (MSCs) are multipotent fibroblast colony-forming cells, which can
differentiate into adipocytes, chondrocytes, and osteocytes (Friedenstein et al., 1974; Horwitz et al.,
2005; Uccelli et al., 2008; Bianco et al., 2013; Zhou et al., 2014). Bone marrow MSCs generate
osteoblasts and provide the major source of bone formation during development and regeneration
after bone damage (Kassem et al., 2008; Ye et al., 2012; Valenti et al., 2016; Pajarinen et al., 2019).
Furthermore, bone marrow MSCs secrete multiple growth factors to support hematopoietic stem
cells (HSCs) for their maintenance and regeneration (Mendez-Ferrer et al., 2010; Zhou et al.,
2017). Recent works show that bone marrow MSCs also contribute to immunomodulation against
infection and autoimmune diseases as well as tissue repair, such as skin and blood vessels (Sun et al.,
2009; Zhang et al., 2015; Shook et al., 2020).

The versatile functions of MSCs enable increasing clinical applications of MSCs to treat
diseases such as graft versus host disease (GvHD), Crohn’s disease, heart failure, bone marrow
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failure syndrome, and osteogenesis imperfecta and bone fractures
(Galipeau and Sensebe, 2018; Andrzejewska et al., 2019; Martin
et al., 2019; Yin et al., 2019). MSC infusion is also applied
for facilitating implantation after HSC transplantation (Mendez-
Ferrer et al., 2010; Zhou et al., 2017). However, the diverse
therapeutic targets challenge the clinical trials of MSCs in
which the cell functional heterogenicity, culture methods, and
expansion levels could potentially influence the therapeutic
consistency and limit clinic efficacy of MSCs (Pattappa et al.,
2013; Moll et al., 2014; Yuan et al., 2019).

The cellular metabolism profile controls stem cell fates in self-
renewal, lineage commitment, and terminal differentiation (Ryall
et al., 2015a; Teslaa and Teitell, 2015; Garcia-Prat et al., 2017).
Metabolites, such as acetyl-coenzyme A (Wang et al., 2009),
α-ketoglutarate (Hwang et al., 2016), S-adenosylmethionine,
and S-adenosylhomocysteine (Shyh-Chang et al., 2013), regulate
the proliferation and differentiation of embryonic stem cells
(ESCs). The successful reprogramming of induced pluripotent
stem cells (iPSCs) requires a metabolic shift from oxidative
phosphorylation to anaerobic glycolysis (Yoshida et al., 2009;
Folmes et al., 2011). Muscle stem cells reside in an aerobic
niche near capillaries (Christov et al., 2007), and transition
into committed progenitors is accompanied by a switch from
fatty acid (FA) oxidation to glycolysis (Ryall et al., 2015b).
Furthermore, metabolic status regulates MSCs in cell fate
determination and multifunction maintenance. Bone marrow
MSCs reside in a hypoxic niche and rely on anaerobic glycolysis
to maintain their self-renewal and multipotency and evade
senescence (Ito and Suda, 2014). Glutaminase, the key enzyme in
glutamine metabolism, and 5-methoxytryptophan, a tryptophan
metabolite, promote osteogenic and suppress adipogenic MSC
differentiation (Chang et al., 2017; Yu et al., 2019). On
the contrary, arachidonic FA induces MSC adipogenesis but
inhibits osteogenesis in human MSC cultures (Casado-Diaz
et al., 2013). Unsaturated FAs, such as linoleic and oleic
acids, inhibit MSC proliferation and induce the expression of
angiogenesis mediators, such as IL-6, IL-8, VEGF, and nitric oxide
(Smith et al., 2012).

Recent works show that butyrate, a natural short-chain fatty
acid (SCFA) produced by mammalian intestinal microbiota,
can inhibit histone deacetylase (HDAC) activity and impairs
intestinal epithelial stem/progenitors in wound repair in vivo
(Kaiko et al., 2016) but promotes iPSC reprogramming efficiency
(Liang et al., 2010). However, the role of butyrate in regulating
MSCs remains elusive. Here, using single-cell RNA sequencing
(scRNA-seq), we identified FA pathways that are involved in
lineage commitment of MSCs, and further functional assays
prove that metabolite butyrate alters MSC cell fate in self-renewal,
apoptosis, and HSC niche factor expression.

MATERIALS AND METHODS

Mice
C57BL/6 mice were obtained from the Jackson Laboratory
and were maintained in the C57BL/6 background. All animal

experiments were performed according to protocols approved by
the institutional animal care and use committee.

Bone Marrow Digestion
Bone marrow digestion was performed as described with small
changes (Zhou et al., 2014). In brief, intact bone marrow
from mice at the age of 6–8 weeks were flushed from mouse
femora and tibiae and subjected to two rounds of enzymatic
digestion at 37◦C for 20 min each. The digestion buffer contained
0.2 mg/ml liberase (Roche) and 200 µg/ml DNAse I (Roche) in
1 × HBSS with calcium and magnesium. The digested marrow
cells then underwent red blood cell lysis using 0.16 M ammonium
chloride solution.

Flow Cytometry and Cell Sorting
For cell sorting and analysis, monoclonal antibodies to CD45
(30-F11, Biolegend), Ter-119 (TER-119, eBioscience), PDGFRα

(APA5, eBioscience), CD31 (MEC13.3, Biolegend), CD51 (RMV-
7, Biolegend), and 7AAD (Biolegend) were used where indicated.
Cell sorting was performed using a cell sorter (MoFlo Astrios).
Cell analysis was performed on a flow cytometer (Attune
NxT, Thermo Fisher).

scRNA-seq
Sorted CD45−Ter-119−CD31−PDGFα+CD51+ single cells were
processed through the Chromium Single Cell Platform using
the Chromium Single Cell 3′ Library and Gel Bead Kit v3 (10X
Genomics, PN-1000075) and the Chromium Single Cell B Chip
Kit (10X Genomics, PN-1000074) as the manufacturer’s protocol.
In brief, 15,000 cells were loaded onto the chromium instrument
to generate single-cell barcoded droplets. Cells were lysed and
barcoded reverse transcription of RNA was occurred. Libraries
were prepared by following the amplification, fragmentation,
adaptor, and index attachment and then sequenced on an
Illumina NovaSeq platform. The scRNA-seq data generated in
this study are deposited in GEO (GSE1670351).

scRNA-seq Data Processing
The scRNA-seq reads were aligned to the mm10 reference
genomes, and unique molecular identifier (UMI) counts were
obtained by CellRanger 3.0.2. Normalization, dimensionality
reduction, and clustering were performed with the Seurat
3.0 R package (Butler et al., 2018) on RStudio, and 3005
of 11,888 cells with Ptprc (CD45) expression were excluded
to remove potential contamination. Cells were filtered to
have > 200 and < 7000 detected genes and less than 5%
of total UMIs mapping to the mitochondrial genome. Data
set normalization was performed by dividing the UMI counts
per gene by the total UMI counts in the corresponding
cell and log-transforming, followed by the results scaling
and centering. Cells underwent dimensionality reduction with
the t-stochastic neighboring embedding (tSNE) method and
partition-based graph abstraction (PAGA) using scanpy (Wolf
et al., 2018). Integration of published MSC and immune cell
scRNA-seq with our data was performed by Seurat with the

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE167035
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function SCTransform() and Harmony algorithm. Signature
genes of each cluster were obtained using the Seurat function
FindMarkers with the Wilcox test. All correlations were
calculated based on values with the function cor() and the
parameter “method = ‘spearman’.” The pseudotime trajectory
was analyzed by monocle2 based on the Seurat clustering (Qiu
et al., 2017). A signature gene heat map was generated by
pheatmap R packages. GOChord plots and GOClust plots were
generated by GOplot R packages. Gene set enrichment analysis
(GSEA) was performed using the gsea R package (Subramanian
et al., 2005). Gene lists were preranked by the fold change
values of the differential expression analysis using Seurat. GSEA
plots were generated by enrichplot R packages. Gene sets
were obtained from the gene ontology database as indicated.
Signature genes feature plots and violin plots were generated with
Seurat R packages.

CFU-F Assay and MSC in vitro
Differentiation Assay
For the CFU-F assay, freshly isolated marrow cells were
plated at a density of 5 × 105 cells/well in six-well plates
with DMEM (Corning) plus 20% fetal bovine serum (Gibco),
10 µM ROCK inhibitor (Selleck), and 1% penicillin/streptomycin
(Hyclone). Cell cultures were maintained at 37◦C, 5% O2,
and 5% CO2 chambers. CFU-F colonies were counted after
7 days of culture by staining with crystal violet (Sangon). For
the in vitro differentiation assay, we enzyme-digested CFU-
Fs and subcloned them into six-well plates at a density of
1 × 105 cells/well. Cells then underwent adipogenic (7 days) or
osteogenic (14 days) differentiation with StemPro Differentiation
Kits (Gibco). Adipogenic differentiation was quantified by Oil
Red O staining (Sigma). Osteogenic differentiation was quantified
by Alizarin Red S (Sigma). In indicated groups, butyrate
(500 nM, 5 µM, and 500 µM as indicated), SAHA (Vorinostat,
1 µM), Z-VAD-FMK (30 µM), or Necrostatin-1 (45 µM) were
supplemented into the culture medium.

qPCR
For qPCR, CFU cells were dissociated in Trizol (Magen), and
RNA was extracted following the manufacture’s instruction. RNA
was reverse transcribed into cDNA using the TransScript All-in-
One First-Strand cDNA Synthesis kit (Transgene). Quantitative
PCR was performed using a Bio-Rad CFX 96 touch. The
primers for Runx2 were 5′ GACTGTGGTTACCGTCATGGC
3′ (forward) and 5′ ACTTGGTTTTTCATAACAGCGGA 3′
(reverse). The primers forOcnwere 5′ CAGACACCATGAGGAC
CATC 3′ (forward) and 5′ GGACTGAGGCTCTGTGAGT 3′
(reverse). The primers for Col1a1 were 5′ GCTCCTCTTAGGG
GCCACT 3′ (forward) and 5′ ATTGGGGACCCTTAGGCCAT
3′ (reverse). The primers for Fabp4 were 5′ AAGGTGAAGA
GCATCATAACCCT 3′ (forward) and 5′ TCACGCCTTTC
ATAACACATTCC 3′ (reverse). The primers for Adiponectin
were 5′ TGTTCCTCTTAATCCTGCCCA 3′ (forward) and 5′
CCAACCTGCACAAGTTCCCTT 3′ (reverse). The primers
for Cebpa were 5′ GCGGGAACGCAACAACATC 3′ (forward)
and 5′ GTCACTGGTCAACTCCAGCAC 3′ (reverse). The

primers for Cmyc were 5′ ATGCCCCTCAACGTGAACTTC
3′ (forward) and 5′ GTCGCAGATGAAATAGGGCTG 3′
(reverse). The primers for Ccnb1 were 5′ AAGGTGCCTGT
GTGTGAACC 3′ (forward) and 5′ GTCAGCCCCATCATCT
GCG 3′ (reverse). The primers for Ccnd1 were 5′ GCGTACC
CTGACACCAATCTC 3′ (forward) and 5′ CTCCTCTTCGCAC
TTCTGCTC 3′ (reverse). The primers for Bcl2 were 5′ GTCG
CTACCGTCGTGACTTC 3′ (forward) and 5′ CAGACATGCA
CCTACCCAGC 3′ (reverse). The primers for Bax were 5′ TG
AAGACAGGGGCCTTTTTG 3′ (forward) and AATTCGCCG
GAGACAC TCG 3′ (reverse). The primers for Bak1 were 5′
CAACCCCGAGATGGACAACTT 3′ (forward) and 5′ CGTAG
CGCCGGTTAATATCAT 3′ (reverse). The primers for Bid
were 5′ GCCGAGCACATCACAGACC 3′ (forward) and 5′
TGGCAATGTTGTGGATGATTTCT 3′ (reverse). The primers
for Kitl were 5′ AGGAACGGAACAGAAAGG 3′ (forward)
and 5′ GTCGGATAGACTTCACTTGG 3′ (reverse). The
primers for Angpt1 were 5′ CACATAGGGTGCAGCAACCA 3′
(forward) and 5′ CGTCGTGTTCTGAAGAATGA 3′ (reverse).
The primers for Cxcl12 were 5′ AGGTTCTTATTTCACGG
CTTGT 3′ (forward) and 5′ TGGGTGCTGAGACCTTTGAT 3′
(reverse). The primers for Jag2 were 5′ CAATGACACCACTC
CAGATGAG 3′ (forward) and 5′ GGCCAAAGAAGTCGT
TGCG 3′ (reverse).

Cell Counting Kit-8 (CCK-8) and Lactate
Dehydrogenase (LDH) Activity Assay
Freshly isolated marrow cells were plated at a density of 2 × 104

cells/well in a 96-well plate and cultured with or without butyrate,
ZVAD, or Nec-1 as indicated for 24 h in 37◦C, 5% O2, and
5% CO2 chambers. For the CCK-8 assay, 10 µl CCK-8 reagent
(Solarbio) was added in wells and continued incubated for 4 h in
chambers. The optical density was measured at 450 nm using a
microplate reader. LDH activities were performed following the
manufacturer’s instructions (Njjcbio). Cell death frequency was
calculated as LDH release into cell culture medium dividing LDH
in the total cell lysate.

Statistical Analyses
Data are presented as mean ± s.e.m. For multiple comparisons
analysis, data were analyzed by repeated-measures one-way
ANOVA followed by Dunnett’s test. The difference was
considered statistically significant if p < 0.05, and P < 0.05,
P < 0.01, P < 0.001. For other experiments, except for scRNA-

seq analysis, data were analyzed by two-tailed Student’s t test. The
difference was considered statistically significant if p < 0.05, and
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

RESULTS

Single-Cell Atlas Identifies the
Heterogeneity of MSCs
To explore the heterogeneity of bone marrow MSCs, we applied
droplet-based scRNA-seq with non-hematopoietic (CD45−Ter-
119−), non-endothelial (CD31−) bone marrow cells that
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express MSC markers (PDGFα+CD51+) (Morikawa et al.,
2009; Yue et al., 2016; Boulais et al., 2018; Lee et al., 2018)
(Figures 1A,B). We successfully detected a total of 8883 cells
with an average of ∼2000 genes per cell in bone marrow MSCs
(Supplementary Figure 1A). We then employed t-SNE and
identified 11 clusters in MSCs (Figure 1C). Results of PAGA
(Figure 1D) and enriched gene ontology (GO) (Figure 1E)
annotated the 11 clusters into six populations, including pre-
MSCs, adipogenic MSCs, chondrogenic MSCs, osteogenic cells,
angiogenic MSCs, and immunomodulating MSCs (Figure 1F).
Pre-MSCs, constituted of clusters 6 and 8, enriched pathways in
protein transport, nuclear transport, and ribosome biogenesis,
which are critical for MSC lineage commitment (Herencia
et al., 2012; Chen et al., 2015). Adipogenic MSCs, chondrogenic
MSCs, and osteogenic cells, constituted of clusters 1 and
5, cluster 3, and clusters 4 and 9, enriched pathways in
fat cell differentiation, chondrocyte development, and bone
development, respectively. Angiogenic MSCs were constituted
of cluster 2, enriching pathways in endothelial and epithelial
cell migration. Immunomodulating MSCs were constituted by
clusters 7, 10, and 11, which enriched pathways associated
with leukocyte proliferation and myeloid cell homeostasis
(Figure 1E). Furthermore, these immunomodulating MSCs
overlapped with other MSC subpopulations and published
bone marrow MSCs (Baryawno et al., 2019; Leimkuhler
et al., 2020) but not with immune cells (Choi et al., 2019)
(Figure 1G). In line with this, immunomodulating MSCs did
not express any immune cell markers, such as T cells, B
cells, NK cells, and macrophages (Supplementary Figure 1B).
This ruled out the potential contamination of immune cells
in this immunomodulating MSC population. Furthermore,
adipogenic MSCs, chondrogenic MSCs, and osteogenic cells
were referred to as lineage-committed MSCs. Consistently, our
unsupervised trajectory analysis by Monocle 2 showed that the
pre-MSCs clustered in the root of the trajectory, and adipogenic,
chondrogenic, osteogenic, and angiogenic MSCs clustered in
different branches (Figure 1H).

Overall, using scRNA-seq, we identified pre-MSCs and
lineage-committed MSC clusters and revealed their potential
regulatory mechanisms in MSC lineage commitment.

Single-Cell Atlas Identifies Pre-MSCs
and Lineage-Committed MSCs
Our scRNA-seq data shows that pre-MSCs significantly enriched
stemness genes (such as Hp1bp3 and Baz1b) and FA metabolic
genes (such as Eci2 and Pam) (Satani et al., 2003; Dutta et al.,
2014; van Weeghel et al., 2014; Zanella et al., 2019). Conversely,
lineage-committed MSCs dominantly enriched differentiation
genes (such as Col27a1 and Jund) and proliferation genes (such as
Fgfr1 and Mafb) (Naito et al., 2005; Naba et al., 2017; Ardizzone
et al., 2020; Guo et al., 2020) (Figure 2A). This is consistent
with previous reports that multipotent MSCs are quiescent
(Mendez-Ferrer et al., 2010; Zhou et al., 2014). We further
found that pre-MSCs highly enriched ribosome biogenesis and
cellular respiration-associated genes, such as Rps24, Rpl35a, and
Ndufb3 (Choesmel et al., 2008; Narla et al., 2011; Alston et al.,

2016) (Figures 2B,C). These indicate that energy metabolism and
protein synthesis control are essential for stem cell maintenance
(Teslaa and Teitell, 2015; Wanet et al., 2015; Blanco et al., 2016;
Sanchez et al., 2016). However, lineage-committed MSCs highly
enriched proliferation, lineage commitment, and apoptosis genes,
such as Kmt2e, Sox9, and Acvr1 (Chakkalakal et al., 2012; Zhang
et al., 2017; Liu C.F. et al., 2018) (Figures 2D,E).

Overall, these findings indicate the distinguished
regulation mechanisms for multipotent pre-MSCs and
lineage-committed MSCs.

The FA Metabolic Process Regulates
MSC Lineage Commitment
To explore the underlying mechanism in regulating different
MSC clusters, we performed GSEA on our scRNA-seq data
between pre-MSCs and lineage-committed MSCs using gene
sets in the GO database (Ashburner et al., 2000; The Gene
Ontology Consortium, 2019). As expected, pre-MSCs had
much less osteoblast cell differentiation (GO: 0001649) and
fat cell differentiation (GO: 0045444) genes compared with
lineage-committed MSCs (NES = –1.60 and –1.56, respectively,
Figures 3A,B). Furthermore, we discovered that pre-MSCs
are relatively quiescent as they had much less activated cell
cycle (GO: 0045787) genes (NES = –1.45, Figure 3C). We
next investigated how metabolites regulate pre-MSCs and
lineage-committed MSCs in their stem cell fate decision. The
GSEAs showed that pre-MSCs had less activated genes under
the carbohydrate metabolic process (GO: 0005975) compared
with lineage-committed MSCs (NES = –1.28) but were not
significantly different under glycogen (GO: 0005977) or amino
acid metabolic process (GO: 0006520) (Figures 3D,E). However,
pre-MSCs significantly enriched genes under the FA metabolic
process (GO: 0006631) (NES = 1.61, Figure 3F). We also
confirmed that FA metabolic genes are much enriched in pre-
MSCs compared with lineage-committed MSCs, such as Pam,
Cyp1b1, and Lpl (Satani et al., 2003; Rozovski et al., 2015;
Bushkofsky et al., 2016) (Figure 3G). These indicate that the
FA metabolic process might contribute to the regulation of pre-
MSCs and lineage-committed MSCs through their distinguished
metabolic profile.

Overall, our scRNA-seq data indicate a novel potential role
of MSCs responding to FA treatment, which could be applied to
in vitro culture.

Supplement of Butyrate Suppresses
Self-Renewal and Differentiation
Potential of Bone Marrow MSCs
To investigate whether supplement butyrate influences the
maintenance of MSCs during in vitro culture, we performed a
bone marrow MSC CFU-F assay and found that supplement of
butyrate at biological serum concentration (500 nM) (Tyagi et al.,
2018) or higher concentration (5 µM and 500 µM) effectively
reduced the CFU-F clone numbers compared with vehicle control
(33.5%, 31.7%, and 60.8% decreased, respectively; Figures 4A,B).
These show that butyrate suppressed MSC proliferation and
self-renewal potential.
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FIGURE 1 | Single-cell atlas identifies heterogeneous MSC populations. (A) Flow cytometry gating for isolating bone marrow MSCs. (B) Schematic depicting the
strategy of cell isolation, MSC sorting, single-cell RNA sequencing, and data analysis. (C) Clustering 8883 cells from MSCs by tSNE. (D) Results of PAGA. Each
node represents a cluster, and edges show the connectivity between clusters. The size of nodes indicates the number of cells in each cluster, and the thickness of
the edges denotes the connectivity from low (thin) to high (thick). (E) Eleven clusters annotating by gene sets of GO terms based on their signatures and dividing into
pre-, adipogenic, chondrogenic, osteogenic, angiogenic, and immunomodulating MSCs. (F) Clustering 8883 cells from bone marrow MSCs annotating six
populations inferred from PAGA results and enriched pathways of marker genes. (G) Radar chart showing the spearman rho between the MSC scRNA-seq result in
this study compared with the published MSC and immune cell scRNA-seq results. Each ring represents one population in (F). (H) Developmental pseudotime of
MSCs. The inset depicts the schema of pseudotime of MSCs.
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FIGURE 2 | Single-cell atlas identifies pre-MSCs and lineage-committed MSCs. (A) Heat map of signature genes in pre- or lineage-committed MSCs; exemplar
genes are listed on right. Columns denote cells; rows denote genes. (B) GOChord plot showing the association between statistically significant genes in pre-MSCs
and their associated GO terms; the genes are associated via ribbons to their assigned terms. White-to-red coding next to the selected genes indicates the gene
expression fold change. The outer ring shows the assigned functional terms. (C) GOCluster plot showing the clustering of the pre-MSC signature gene expression
profiles. The inner ring shows the color-coded expression fold changes, and the outer ring shows the assigned functional terms as indicated in (B). (D) GOChord
plot showing the association between statistically significant genes in lineage-committed MSCs and their associated GO terms; the genes are associated via ribbons
to their assigned terms. White-to-blue coding next to the selected genes indicates the gene expression fold change. The outer ring shows the assigned functional
terms. (E) GOCluster plot showing the clustering of the lineage-committed MSC signature gene expression profiles. The inner ring shows the color-coded expression
fold changes, and the outer ring shows the assigned functional terms as indicated in (D).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 April 2021 | Volume 9 | Article 653308

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-653308 April 5, 2021 Time: 10:27 # 7

Xie et al. Metabolites Regulate MSC Heterogeneity

FIGURE 3 | The FA metabolic process regulates MSC lineage commitment. (A,B) GSEA evaluating enrichment of osteoblast (A) or fat cell differentiation genes (B) in
pre- and lineage-committed MSCs. Normalized enrichment score and adjusted p-value were calculated by permutation tests. (C) GSEA evaluating enrichment of cell
cycle genes in pre- and lineage-committed MSCs. Normalized enrichment score and adjusted p-value were calculated by permutation tests. (D,E) GSEA evaluating
enrichment of carbohydrate (D), glycogen, and amino acid metabolic process genes (E) in pre- and lineage-committed MSCs. Normalized enrichment score and
adjusted p value were calculated by permutation tests. (F) GSEA evaluating enrichment of FA metabolic process genes in pre- and lineage-committed MSCs.
Normalized enrichment score and adjusted p-value were calculated by permutation tests. (G) Feature plots and violin plots showing the selected fatty acid metabolic
process genes expression in 8883 cells.

We next asked whether butyrate impairs the self-renewal
potential of MSCs due to enhanced differentiation. To this
aim, we performed an ex vivo differentiation assay to
examine the osteogenesis and adipogenesis capacities of
MSCs. Interestingly, butyrate-treated MSCs have reduced
osteogenic and adipogenic differentiation ability (Figures 4C,D).
Consistently, the block of osteogenic differentiation ability was
confirmed by multiple osteogenic-specific marker genes, such
as Runx2, Ocn, and Col1a1, which were markedly increased
after osteogenic differentiation (7.75-fold, 83.7-fold, and 3.19-
fold increased, respectively, compared with undifferentiated
MSCs) in control MSCs but were inhibited in butyrate-treated
MSCs (76.1%, 96.2%, and 92.3% decreased, respectively,
compared with differentiated control MSCs, Figures 4C,E).
Furthermore, the adipogenic-specific marker genes, such as
Fabp4, Adiponectin, and Cebpa, were increased in control MSCs

(219-fold, 2071-fold, and 27.9-fold increased, respectively,
compared with undifferentiated MSCs) but were dramatically
compromised in butyrate-treated MSCs (70.3%, 77.2%, and
64.0% decreased, respectively, compared with differentiated
control MSCs; Figures 4D,F).

Overall, our data show that supplement of butyrate during
in vitro culture impaired MSCs in their self-renewal potential and
differentiation abilities.

Supplement of Butyrate Triggers
Apoptosis but Promotes HSC Niche
Factor Expression in Bone Marrow MSCs
To investigate the potential mechanisms of butyrate treatment
on MSCs, we performed 7AAD cell death staining to examine
whether butyrate treatment influences their survival. We
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FIGURE 4 | Supplement of butyrate suppresses self-renewal and differentiation potential of MSCs. (A) Representative wells of CFU-F colonies stained with crystal
violet (5 × 105 bone marrow cells were initially plated). (B) CFU-F colony numbers after butyrate treatment as indicated doses or with vehicle control treatment as
indicated (5 × 105 bone marrow cells were initially plated). (C) Osteogenic differentiation of MSCs with or without butyrate treatment. Alizarin red S staining of MSCs
cultured in osteogenic differentiation medium at day 14. (D) Adipogenic differentiation of MSCs with or without butyrate treatment. Oil Red O staining of MSCs
cultured in adipogenic differentiation medium at day 7. (E) Quantitative RT-PCR of transcript levels of osteogenic genes (normalized to day 0 control group).
(F) Quantitative RT-PCR of transcript levels of adipogenic genes (normalized to day 0 control group). Repeated-measures one-way ANOVA followed by Dunnett’s
test for multiple comparisons in (B). p < 0.01, p < 0.001. Two-tailed Student’s t tests were used to assess statistical significance in (E,F). *p < 0.05, **p < 0.01,
***p < 0.001.

found that butyrate induced cell death in MSCs at a high
concentration (500 µM, 2.67-fold increased) but not at low
concentration (5 µM) or biological serum concentration
(500 nM) (Figures 5A,B). We next asked whether butyrate
induced MSC death through apoptosis or necroptosis and
found that apoptosis inhibitor Z-VAD-FMK (ZVAD) but not
necroptosis inhibitor Necrostatin-1 (Nec-1) completely blocked

butyrate-induced cell death in MSCs (87.4%) (Figures 5A,B).
Furthermore, we found that butyrate-induced cell growth
inhibition (38.5% decreased) was also markedly rescued by ZVAD
(53.6%) (Figure 5C). The consistent results were also observed
in an LDH assay in which butyrate treatment increased the
LDH activity (1.79-fold increased) and could be rescued by
ZVAD (75.3%) (Figure 5D). These demonstrate that butyrate
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FIGURE 5 | Supplement of butyrate triggers apoptosis but promotes HSC niche factor expression in MSCs. (A) Representative flow cytometry plots of 7AAD
staining of MSCs under different treatments as indicated. The numbers in the plots denote the percentage of gated cells. (B) Percentage of 7AAD+ MSCs under
different treatments as indicated. (C) CCK-8 assay showing MSC viability under different treatments as indicated. (D) LDH activity showing MSC death frequency
under different treatments as indicated. (E) GSEA evaluating enrichment of genes associated with HDAC activity in pre- and lineage-committed MSCs. Normalized
enrichment score and adjusted p value were calculated by permutation tests. (F) Quantitative RT-PCR of transcript levels of proliferation gene in MSCs with indicated
treatments (normalized to control group). (G) Quantitative RT-PCR of transcript levels of apoptosis genes in MSCs with indicated treatments (normalized to control
group). (H) Quantitative RT-PCR of transcript levels of HSC niche factor genes in MSCs with indicated treatments (normalized to control group). Repeated-measures
one-way ANOVA followed by Dunnett’s test for multiple comparisons in (B–D,F–H). ns, non-significant; p < 0.05, p < 0.01, p < 0.001.
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supplement attenuates the survival pathway and further triggers
apoptosis in MSCs.

Butyrate is shown to regulate gene expression in blood cells
through inhibition of HDAC (Song et al., 2011; Akimova et al.,
2012; Arpaia et al., 2013). Interestingly, our scRNA-seq data
revealed that lineage-committed MSCs had enriched HDAC
activity (GO:0000118, GO:0004407, GO:0042826) compared to
premature MSCs (NES = –1.43; Figure 5E). This indicates
that butyrate might regulate MSC lineage commitment through
influencing their gene expression network. Indeed, we found that
butyrate treatment reduced Ccnb1 expression in MSCs (48.1%
decreased; Figure 5F), which might explain the butyrate-induced
growth inhibition (Pines and Hunter, 1989). Butyrate treatment
also induced upregulation of multiple apoptotic genes, including
Bax, Bak1, and Bid (Youle and Strasser, 2008) (1.91-fold, 2.43-
fold, and 2.83-fold increased, respectively; Figure 5G), which
is consistent with increased apoptosis in butyrate-treated MSCs
(Figures 5A,B). Furthermore, the downregulation of apoptosis
genes upon butyrate treatment was in line with another HDAC
inhibitor, suberoylanilide hydroxamic acid (SAHA) (Butler et al.,
2002; Yin et al., 2018) (1.74-fold, 2.43-fold, and 1.83-fold
increased, respectively; Figure 5G), suggesting that butyrate-
induced MSC self-renewal potentially through HDAC inhibition.

As bone marrow MSCs play a pivotal role in maintaining
HSCs through producing multiple growth factors (Crane et al.,
2017; Pinho and Frenette, 2019), we next investigated how
butyrate treatment influences MSCs in their HSC niche function.
We found that butyrate significantly increased HSC niche
factor expression, including Kitl and Angpt1 at biological serum
concentration (500 nM) (1.90-fold and 1.90-fold, respectively)
and Cxcl12, Jag2 at a higher concentration (500 µM) (1.75-fold
and 3.17-fold, respectively; Figure 5H) (Greenbaum et al., 2013;
Guo et al., 2017; Aprile et al., 2020). Interestingly, the HSC
niche-inducing effect of butyrate was more robust compared to
SAHA (Kitl 1.35-fold, Angpt1 1.40-fold, Cxcl12 1.07-fold, and
Jag2 2.43-fold increased, respectively; Figure 5H). This indicates
that metabolite butyrate is a robust HSC niche factor expression
booster for MSCs during in vitro culture.

Overall, our data show that butyrate supplement
dichotomously regulates MSCs in their self-renewal and
HSC niche function potentially through altering the MSC
metabolic status and inhibiting HDAC activity.

DISCUSSION

MSCs are present in all organs and tissues, and MSCs are a highly
heterogenous subset (Uccelli et al., 2008). The heterogeneity
of MSCs is closely related to their clinical utilities and also
determines the barriers in transferring MSC capacities into
the clinic (Costa et al., 2020). The functional heterogeneity of
MSCs has been indicated in previous studies. For example, IL-
17+ MSCs have enhanced antibacterial effects but with reduced
immunosuppressive function compared with bulk MSCs due
to altered NFκB-TGF-β signaling (Yang et al., 2013). Studies
using RNA fluorescence in situ hybridization (FISH) (Cote et al.,
2016) and fluorescent probes (Li et al., 2016) indicate that

canonical markers are tenuously linked to the differentiated
phenotypes, and it is difficult to use single markers to predict
functional potential. Recent advanced single-cell studies have
further explored the heterogeneity of bone marrow MSCs
with distinct differentiation potential (Baryawno et al., 2019;
Leimkuhler et al., 2020). Furthermore, researchers also identified
an IL-10 regulated metabolically active mature adipocyte subtype
from subcutaneous adipose tissue (Rajbhandari et al., 2019) and
Runx2+/Gli1+ cells in the adult mouse incisor, which maintains
Gli1+ MSCs (Chen et al., 2020).

In our work, we performed 10x scRNA-seq on bone marrow
non-hematopoietic (CD45−, Ter-119−), non-endothelial
(CD31−), and PDGFRα+ CD51+ MSCs. In line with previous
studies (Pacini and Petrini, 2014; Baccin et al., 2020; Leimkuhler
et al., 2020), we identified lineage-committed MSCs, including
adipogenic, osteogenic, chondrogenic, angiogenic, and
immunomodulating MSCs. Furthermore, we identified a
pre-MSC population, which enriched prelineage commitment
genes involved in protein transport, nuclear transport, and
ribosome biogenesis pathways, such as Rps24, Rpl35a, and
Ndufb3 (Choesmel et al., 2008; Narla et al., 2011; Alston
et al., 2016) and clustering at the root of the unsupervised
pseudotime trajectory.

The metabolic profile determines the functional heterogeneity
of MSCs (Costa et al., 2020). Genetic inhibition of mitochondrial
complex III in human MSCs and murine adipocyte precursor
cells impacts adipocyte differentiation (Tormos et al., 2011; Joffin
et al., 2021). Glutamine metabolism regulates proliferation and
osteoblast–adipocyte lineage determination (Yu et al., 2019).
Among the diverse tissues from which MSCs could be isolated,
the most common source tissue is the bone marrow (Yin et al.,
2019). To meet the clinical requirement for MSCs in cell therapy,
MSCs have to undergo a rapid cultural expansion and long-
term cryopreservation, which are largely different compared
with their biological microenvironment (Yuan et al., 2019). The
metabolic profile determines MSC cell fate and heterogeneity
(Pattappa et al., 2013; Moll et al., 2014; Costa et al., 2020).
Interestingly, we discovered that pre-MSCs, despite the reduced
expression of proliferation and differentiation genes, enriched
genes in FA metabolic process compared with lineage-committed
MSCs. This finding indicates that supplement of metabolites,
such as FA in MSC during in vitro culture, may impact MSC
functional heterogeneity.

Recent studies indicated that butyrate, one of the metabolites
produced in the healthy intestinal lumen (Jacobi and Odle,
2012), enhances the effect of parathyroid hormone (PTH)
to support bone formation (Fan et al., 2017; Li et al.,
2020; Pacifici, 2020). Furthermore, butyrate promotes Treg
cell regeneration and differentiation, which stimulates bone
formation by activating Wnt signaling in osteoblasts (Arpaia
et al., 2013; Furusawa et al., 2013; Tyagi et al., 2018). In our study,
we discovered that supplement of butyrate suppressed the self-
renewal capacity and differentiation potential toward osteoblasts
and adipocytes in MSCs.

HDACs, a series of critical transcriptional cofactors
modulating gene expression by deacetylating histones and
transcription factors, participate in stemness maintenance,
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lineage commitment determination, cell differentiation, and
proliferation as well as other activities in normal hematopoiesis
(Akimova et al., 2012; Cortiguera et al., 2019). Homozygous
deletion of HDAC3 in Prrx1-expressing cells reduced
chondrocyte and osteoblast differentiation in vitro (Feigenson
et al., 2017). HDAC inhibitors exhibit antitumor activity for
multiple myeloma (Song et al., 2011; Santo et al., 2012) and
B cell lymphoma (Cortiguera et al., 2019) by suppressing cells
survival and differentiation and inducing apoptosis. Butyrate is
one of the extensively studied HDAC inhibitors (Steliou et al.,
2012). Butyrate blocks the activity of class I and II HDACs
and increases histone acetylation globally in multiple types of
cells, including CD8+ T cells, B cells, hepatocytes, and some
tumor cell lines, such as MCF-7 (human breast cancer cells) and
HCT116 (human colon carcinoma cells) (Candido et al., 1978;
Davie, 2003; Fellows et al., 2018; Luu et al., 2018; Ji et al., 2019;
Sanchez et al., 2020). In our work, we discovered that butyrate
supplement reduced MSC proliferation and differentiation
abilities at biological serum butyrate concentration without cell
death. Butyrate treatment reduced the expression of proliferation
gene Ccnb1 but upregulated apoptotic genes, including Bax,
Bak1, and Bid, which might explain the butyrate-induced growth
inhibition. Furthermore, we found that lineage-committed
MSCs enriched more genes associated with HDAC activity
than pre-MSCs did. HDACs support cell growth for multiple
tumor cells, including diffuse large B cell lymphoma, lung
adenocarcinoma, and breast cancer (Gupta et al., 2012; Lapierre
et al., 2016; Wang et al., 2016); therefore, HDAC inhibitors are
clinically used for cancer treatment (Khan and La Thangue,
2012; Li and Seto, 2016). Our findings show that, unlike
quiescent pre-MSCs, lineage-committed MSCs are more
sensitive to HDAC inhibition, potentially due to their high
proliferation potential.

Our data show that a high dose (500 µM) of butyrate
treatment increased apoptosis in MSCs and also increased their
HSC niche function. MSCs engulfed apoptotic bodies to enhance
their differentiation ability and ameliorate the ovariectomy-
induced osteopenia through activation of the Wnt/β-catenin
pathway (Liu D. et al., 2018). Moreover, MSC apoptosis is
related to enhanced osteoblast differentiation (Schaub et al.,
2019), and apoptotic MSCs have enhanced immunosuppression
activity when infused in patients with GvHD (Galleu et al.,
2017; Burnham et al., 2020). These findings inspired us that
the apoptosis of MSC might benefit their tissue regeneration
or immunomodulation functions, which is consistent with
our observation that a high dose of butyrate supplement
increased apoptosis and enhanced their HSC niche function.
Inhibition of HDAC2 and 3 promotes the proliferation of
hematopoietic stem and progenitor cells (HSPCs) (Dhoke et al.,
2016; Wang et al., 2020), but whether HDAC inhibition
alters the HSC niche remains unclear. In our work, we
demonstrate that in vitro supplement of butyrate-promotes
HSC niche factor expression in MSCs, including Kitl, Angpt1,
Cxcl12, and Jag2. As bone marrow MSCs produce SCF (Kitl),
CXCL12 (Cxcl12) or Angiopoietin-1 (Angpt1) and endothelial
cells secrete Jagged-2 (Jag2), which are critical for HSC
maintenance (Greenbaum et al., 2013; Zhou et al., 2015;

Guo et al., 2017; Comazzetto et al., 2019), our observation
indicates that butyrate supplement may enhance HSC niche
function potentially through inhibiting HDAC in MSCs. Overall,
our findings indicate the possibility that the application
of butyrate in MSC culture can amplify their HSC niche
function and shed light on MSC treatments for patients with
ineffective hematopoiesis and patients who underwent HSC
transplantation.
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