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With the highest case-fatality rate among women, the molecular pathological alterations
of ovarian cancer (OV) are complex, depending on the diversity of genomic alterations.
Increasing evidence supports that immune infiltration in tumors is associated with
prognosis. Therefore, we aim to assess infiltration in OV using multiple methods to
capture genomic signatures regulating immune events to identify reliable predictions
of different outcomes. A dataset of 309 ovarian serous cystadenocarcinoma patients
with overall survival >90 days from The Cancer Genome Atlas (TCGA) was analyzed.
Multiple estimations and clustering methods identified and verified two immune clusters
with component differences. Functional analyses pointed out immune-related alterations
underlying internal genomic variables potentially. After extracting immune genes from a
public database, the LASSO Cox regression model with 10-fold cross-validation was
used for selecting genes associated with overall survival rate significantly, and a risk
score model was then constructed. Kaplan–Meier survival and Cox regression analyses
among cohorts were performed systematically to evaluate prognostic efficiency among
the risk score model and other clinical pathological parameters, establishing a predictive
ability independently. Furthermore, this risk score model was compared among identified
signatures in previous studies and applied to two external cohorts, showing better
prediction performance and generalization ability, and also validated as robust in
association with immune cell infiltration in bulk tissues. Besides, a transcription factor
regulation network suggested upper regulatory mechanisms in OV. Our immune risk
score model may provide gyneco-oncologists with predictive values for the prognosis
and treatment management of patients with OV.

Keywords: ovarian cancer, TCGA, LASSO, prognosis, risk score model, immune genes

INTRODUCTION

Ovarian cancer (OV) is the second leading cause of gynecological cancer and has the highest case-
fatality rate among women, with 21,750 new cases and 13,940 deaths predicted for 2020 in the
United States (Siegel et al., 2020). About 90% of patients suffering from OV have epithelial OV,
which means it is of epithelial origin. High-grade serous ovarian cancer is the most common
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histological and the most aggressive subtype (Gloss and Samimi,
2014), with almost 80% of patients diagnosed as late stage and
an approximately low 5-year survival rate of 30–40% due to
concealing without effective characteristics (Dao et al., 2016;
Torre et al., 2018). Despite the continuous progress in its
diagnosis and treatment, the low sensitivity or specificity of
the common OV biomarkers used for clinical diagnosis and
recurrence surveillance, as well as the standard treatment that
has no advanced improvement beyond cytoreductive surgery
and platinum-based combination chemotherapy in decades, still
makes it a significant threat to women’s lives. Therefore, it is of
importance to understand the mechanisms of OV through its
development and progression.

The development of OV is complex with several
histopathological types and involves multiple alterations of
oncogenes and tumor suppressor genes. Great efforts have
been made to identify potential genomic alterations, either
individually or jointly, many of which have been validated
as major risk indicators for mortality; for instance, ERBB2
had been demonstrated as a poor prognostic predictor with
elevated expression, and the combined expression of MANF
and DOCK11 was identified as a novel risk factor (Qiu et al.,
2014; Luo et al., 2018; Liu et al., 2020a; Tang et al., 2020).
However, the functions of non-cancer cells such as stromal
or immune cells and non-cellular components in a tumor
microenvironment (TME) and their interactions are still poorly
understood even though plenty of studies and clinical trials
have been conducted for the purpose of improved survival rate
and reduced chemotherapy resistance. Moreover, the TME has
increasingly been shown to manipulate aberrant histological
and cellular functions and plays a critical role in the subsequent
evolution of malignancies, more progressive and resistant
to chemotherapy (Mroue and Bissell, 2013). Accumulating
evidence is uncovering the crucial roles of immunity in tumor
immunosurveillance (Dunn et al., 2004; Koebel et al., 2007; Finn,
2008). Other studies of the TME during tumor development
reveal multi-omics prognostic biomarkers that may be used for
imaging or liquid biopsy analysis, both important to select the
most suitable therapies and stratification of patients, including
OV (Abadjian et al., 2017; Wu et al., 2017; Willumsen et al.,
2018; Guo et al., 2019; Jiang et al., 2020). However, because
of heterogeneity and developing drug resistance, consistent
with low mutational burden, patients with OV often show a
lower response to immunotherapy (Zhu et al., 2018). The lack of
successful treatment leads us to measure comprehensive genomic
and epigenomic alterations that affect outcomes and constitute
therapeutic targets, and thus, further research studies are still
needed urgently.

In this study, we employed high-throughput gene expression
profiles with complete clinical pathological information offered
in public databases to identify genes and features involved in
immune-related processes and the prognosis of OV. Multiple
machine-learning-based methods were employed to investigate
and validate relative immune components and their interactions.
An immune gene-based risk score model was constructed
and verified using available clinical data. In summary, our
findings may provide new ideas and targets for the precious
medication of OV.

MATERIALS AND METHODS

Data Collection and Processing
The fragments per kilobase million (FPKM) expression profile
of TCGA RNA-sequencing data (level 3) for OV and the
corresponding clinical pathological parameters were downloaded
from UCSC Xena genome browser1 (Goldman et al., 2020). Also,
annotation information mapping probes to gene symbols was
obtained from the GENCODE database2, using the version for
human release 22 (Frankish et al., 2019). To normalize both gene
size and library size, FPKM values were then transformed to
transcripts per million (TPM) (Wagner et al., 2012). Duplicated
genes with the same stable ensemble ID were merged by
their average values. Clinical data with paired expression data
were then abstracted and summarized by the following criteria:
(i) duplicated samples with both formalin-fixed and paraffin-
embedded and frozen tissues subjected to sequencing analysis
were removed, retaining one; (ii) patients without well-annotated
clinical information were removed; and (iii) patients with overall
survival time <90 days were also removed from the current
research. The whole cohort was then stratified for training and
testing the risk models using the methods below.

Two additional datasets – GSE9891 and GSE14764 –
were downloaded using “GEOquery” package from the
Gene Expression Omnibus (GEO) for external validation3.
Additionally, a comprehensive immune gene dataset was
obtained from the ImmPort database4 to filter genes enrolling in
immune or inflammatory response for a more specific inspection
(Bhattacharya et al., 2018).

Investigation of Tumor Infiltration
Lymphocyte Subpopulations,
Dimensionality Reduction, and Cluster
Analysis
In the current analysis, the single-sample gene set enrichment
analysis (ssGSEA) algorithm was employed to comprehensively
identify immune cell types that are overrepresented in the
TME calculating individual enrichment score (ES) based on
weighted difference of the empirical cumulative distribution
for each pairing of a sample and gene set (Barbie et al.,
2009). Immune marker gene panels were collected from a
literature resource representative of 28 subpopulations of tumor
infiltration lymphocytes (TILs) related to both innate and
adaptive immunity, and these genes are expressed neither in
cancer nor normal tissues (Charoentong et al., 2017). These
TILs were further classified into three categories based on
their functional orientations. The enrichment score was then
normalized by the min–max algorithm:

z =
x−min (x)

max(x)−min(x)

Here, x is the enrichment score calculated by ssGSEA.

1https://xena.ucsc.edu/
2https://www.gencodegenes.org/human/release_22.html
3https://www.ncbi.nlm.nih.gov/geo/
4https://www.immport.org
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Unsupervised hierarchical clustering was then performed
on the basis of the Euclidean distance and complete linkage
provided in “dist” and “hclust” functions, respectively, dividing
OV patients into “Immune High” and “Immune Low” clusters
for exploration of differentially expressed transcription patterns
between these two clusters. t-Distributed stochastic neighbor
embedding (t-SNE) is a popular nonlinear dimensionality
reduction technique achieved via t-SNE modeling the
probabilities as a Gaussian distribution computing low-
dimensional coordinates of high-dimensional data embedding
to a dimensionally reduced space using Cauchy distribution
(Student’s t-distribution with 1 degree of freedom), often called a
map (Belkina et al., 2019). These two clusters further confirmed
the robustness using the “Rtsne” package.

Identification of Immune-Associated
Components and Tumor Purity
We obtained the three scores of Estimation of STromal and
Immune cells in MAlignant Tumor tissues using Expression
data (ESTIMATE) described before to calculate the stromal
and immune scores that represent the infiltration of stroma or
immune cells in tumor tissues, as well as estimate scores, from
which tumor purity can be inferred (Yoshihara et al., 2013). The
algorithm was implemented based on “estimate” R package, and
the Wilcoxon signed-rank test was used for comparisons between
the two clusters.

The cell type identification by estimating relative subsets of
RNA transcripts (CIBERSORT) uses a set of reference gene
expression termed leukocyte gene signature matrix (LM22)
containing 547 genes to normalize gene expression profiles,
and quantifies either relative or absolute cell components
with a support vector machine (Newman et al., 2015).
An inference of 22 types of immune cell matrix following
pairwise Pearson’s correlation coefficients and root mean square
errors (RMSE) and empirical p values were also obtained at
1,000 permutations. These further determined the immune
heterogeneity in different immune clusters and the correlation
between genomic alterations and LM22.

Exploration of Differentially Expressed
Patterns and Functional Enrichment
Analysis
The “limma” package was used to screen out the differentially
expressed genes (DEGs) between clusters. Gene Ontology (GO)
annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were carried out using the
“clusterProfiler” package to obtain classified annotations and
functional enrichment of DEGs (Yu et al., 2012). Additionally,
gene set enrichment analysis for biological pathways was
conducted by GSEA, a Java-based software (Subramanian et al.,
2005). The annotated gene sets were specified by “hallmarker
gene sets” and “c7 immunologic signature gene sets” downloaded
from MSigDB as input files (Liberzon et al., 2015; Godec et al.,
2016). The significance for the corresponding enriched terms was
statistically set as p < 0.05 adjusted by the Benjamini–Hochberg
(BH) method and visualized using the “enrichplot” package.

Least Absolute Shrinkage and Selection
Operator Cox Regression
Based on the intersection of DEGs and genes offered in the
ImmPort database, we explored the potential interactions among
immune genes indicating prognosis. Least absolute shrinkage
and selection operator (LASSO) Cox regression provided in
“glmnet” package was used for a linear combination, performing
continuous shrinkage and also feature selection (Tibshirani,
1997). Currently, LASSO is widely used for the survival analysis
of high-dimensional data (Jiang et al., 2018). Ten-fold cross-
validation was used in this study to derive the best-fit lambda
value while minimizing the mean cross-validated error. A LASSO
Cox model was constructed through the formula:

Risk score =
n∑

i=1

coefi ∗ expi

Here, n represents the number of selected prognostic
genes, and coefi is the coefficient of each non-zero genei,
while expi represents the expression value of each screened
genei contributing to the model. Each sample enrolled in the
study was then calculated using the formula and grouped for
subsequent analyses.

Survival Analysis and Model Judgment
Analyses were performed in each cohort independently. The
patients in the two clusters and the whole TCGA cohort were then
categorized into high group and low group, respectively, after
calculating the optimal cutoff value provided in “surv_cutpoint”
function based on the risk score model. The overall survival
(OS) rates between each of the two subgroups were compared
using Kaplan–Meier survival curves, and statistical significance
was implemented by the log-rank test. Patients with censored
values were marked as “+,” and their survival curves were also
plotted. The univariate and multivariate Cox regression analyses
were also implemented among clinical pathological variables, and
the risk score model was also implemented using “ezcox” package
(Wang et al., 2019). Finally, time-dependent receiver operating
characteristic (ROC) curve analysis was performed to assess OS
prediction of sensitivity and specificity. Additionally, patients’
risk scores and survival status, as well as expressed patterns of
identified prognostic genes, were also explored to illustrate their
distributions with different stratifications of clinical parameters.

Meanwhile, two external cohorts from GEO were employed
to validate our risk score model. Samples only with the
same pathological diagnoses consistent with the TCGA cohort
remained, consisting of 251 and 68 samples, respectively.
Besides, our risk score model was compared among several
prognostic biomarkers identified previously, revealing stability
and reliability in predicting OS.

Statistical Analysis
Statistical analyses were all performed on R software version
3.6.35. Comparisons between two variables were performed by

5https://www.r-project.org/
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the Wilcoxon signed-rank sum test. For comparisons of more
than two variables, the Kruskal–Wallis test was performed.
Hazard ratio (HR) and 95% confidence intervals (CI) for each
variable were also calculated where needed. A two-sided, p
value < 0.05 adjusted by the BH or false discovery rate (FDR)
method and | log2-fold change (FC)| > 1 were regarded as
statistically significant thresholds.

RESULTS

Summary of Expression and Clinical
Pathological Data
After obtaining the expression of all probes as well as clinical
pathological variables from the UCSC Xena database, we set

up the criteria for more rigorous strength, as samples with
OS < 90 days excluded meant more evidence about treatment
and medication. Here, a total of 309 samples expressing 19,711
mRNAs were enrolled. An overview of the patients included in
the whole TCGA cohort and of each cluster is shown in Table 1.

Construction of Immune-Related
Clusters and Exploration Heterogeneity
of Components
Using the ssGSEA method, we estimated 28 subpopulations
of TILs including major types that participated in antitumor
and promoted tumor procession closely linked with adaptive
immunity and innate immunity functions or pathways, some
of which are vital components of the tumor tissue. The whole
TCGA cohort was split into two different clusters based

TABLE 1 | Clinical pathological characteristics of OV patients in TCGA (n = 309).

Characteristics Number of patients p p adjusted

Overall Immune High Immune Low

n = 309 n = 194 n = 115

Age 0.46 0.6975

Mean (SD) 59.28 (11.66) 58.91 (11.60) 59.92 (11.76)

Range 30–87 30–87 34–87

Age group 0.607 0.725625

≤58 (%) 155 (50.2) 100 (51.5) 55 (47.8)

>58 (%) 154 (49.8) 94 (48.5) 60 (52.2)

Stage 0.398 0.6975

II (%) 18 (5.8) 14 (7.2) 4 (3.5)

III (%) 252 (81.6) 156 (80.4) 96 (83.5)

IV (%) 39 (12.6) 24 (12.4) 15 (13.0)

Grade 0.645a 0.725625a

G1 (%) 1 (0.3) 1 (0.5) 0 (0.0)

G2 (%) 36 (11.7) 22 (11.3) 14 (12.2)

G3 (%) 271 (87.7) 171 (88.1) 100 (87.0)

G4 (%) 1 (0.3) 0 (0.0) 1 (0.9)

Lymphatic invasion 0.27 0.6975

No (%) 37 (32.2) 21 (28.0) 16 (40.0)

Yes (%) 78 (67.8) 54 (72.0) 24 (60.0)

Tumor residual disease 0.465 0.6935

No (%) 58 (20.9) 31 (17.9) 27 (25.7)

1–10 mm (%) 142 (51.1) 93 (53.8) 49 (46.7)

11–20 mm (%) 19 (6.8) 12 (6.9) 7 (6.7)

>20 mm (%) 59 (21.2) 37 (21.4) 22 (21.0)

Venous invasion 0.043 0.1935

No (%) 34 (40.5) 17 (31.5) 17 (56.7)

Yes (%) 50 (59.5) 37 (68.5) 13 (43.3)

Survival time (days) 0.891 0.891

Mean (SD) 1,200.22 (956.09) 1,194.45 (947.56) 1,209.97 (974.41)

Range 90–5,481 90–5,481 92–4,624

Survival status 0.026 0.1935

Alive (%) 134 (43.4) 94 (48.5) 40 (34.8)

Dead (%) 175 (56.6) 100 (51.5) 75 (65.2)

ap and adjusted p values were determined using Fisher’s exact test when appropriate.
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on their normalized ES (NES) and unsupervised clustering
analysis: “Immune High” (n = 194, 62.78%) and “Immune Low”
(n = 115, 37.22%) (Figure 1A). Furthermore, we explored the
expression of GZMA and PRF1, whose geometric mean value
represents immune infiltration and immune cytolytic activity
(Rooney et al., 2015). These two genes both showed higher
expression in the “Immune High” cluster (Figures 1B,C).
We also applied another unsupervised dimensionality
reduction algorithm t-SNE confirming that two clusters
possessed robust assignments, in accordance with former results
(Supplementary Figures 1A,B). To further explore tumor purity
and heterogeneity of components between two clusters, three
scores according to the ESTIMATE algorithm were assessed.
We found that immune scores, stromal scores, and estimate
scores in the “Immune High” cluster were all significantly
increased when compared with those in the “Immune Low”
cluster, meaning higher infiltrations of immune and stromal

cells in the “Immune High” cluster (Wilcoxon signed-rank test,
p < 0.0001) (Figures 1D–F). However, tumor purity inferred
from these three scores showed a significantly opposite trend
between two clusters (Wilcoxon signed-rank test, p < 0.0001),
indicating declined components of tumor cells comprised as
integrated TME with non-tumor cells (Figure 1G). These
results suggested the presence of intratumoral heterogeneity
in OV, and stratification was observed even compared with
different methods.

Differentially Expressed Genes and
Potential Mechanisms Underlying
Immune-Related Roles
To identify DEGs between the “Immune High” cluster and
the “Immune Low” cluster, differential expression analysis was
conducted, revealing and identifying a total of 381 DEGs, all

FIGURE 1 | Construction of immune-related clusters and exploration heterogeneity of components. (A) Clusters were constructed in The Cancer Genome Atlas
(TCGA) cohort determined by ssGSEA and unsupervised hierarchical clustering analysis, and heterogeneity was explored by the ESTIMATE algorithm. Violin plots
showed the immune cytolytic activity between the expression of GZMA (B) and PRF1 (C) between two clusters. Distribution of immune score (D), stromal score (E),
ESTIMATE score (F), and tumor purity (G) in the “Immune High” cluster and the “Immune Low” cluster indicated heterogeneity between two clusters. NES,
normalized enrichment score; ****p < 0.0001.
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of which were explored for functional analyses. The top 10
of the enriched GO terms significantly shown in the bar plot
indicated that most of them were associated with immunological
and tumor-associated processes, such as regulation of leukocyte
activation, leukocyte migration, granulocyte activation, T-cell
activation, and neutrophil activation in biological process (BP);

receptor regulator activity, receptor-ligand activity, cytokine
activity, and cytokine receptor binding in molecular function
(MF); and extracellular matrix, plasma membrane protein
complex, cytoplasmic vesicle lumen, and secretory granule
membrane in cellular component (CC) (Figure 2A). The
top 30 KEGG pathways enriched significantly also indicated

FIGURE 2 | Functional analyses based on differentially expressed genes (DEGs). (A) Top 10 results of the GO enrichment analysis in BP, CC, and MF. The bright
yellow-to-salmon pink chromatograms indicate the corresponding p values corrected by the BH method. (B) Top 30 results of the KEGG enrichment analyses. The
bright yellow-to-salmon pink chromatograms indicate the corresponding p values corrected by the BH method. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; BP, biological processes; CC, cell components; MF, molecular functions.
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immune-related terms such as cytokine–cytokine receptor
interaction, phagosome, chemokine signaling pathway,
cell adhesion molecules, NF-kappa B signaling pathway,
Th17 cell differentiation, Th1 and Th2 cell differentiation
and, unexpectedly, coronavirus disease 2019 (COVID-19)
(Figure 2B). Recent studies have indicated that female cancer
patients have an increased infection risk and develop more
severe forms of COVID-19, and overexpression of CTSL
pivotal for COVID-19 infection is a marker of invasion and
metastasis in ovarian cancer (Sui et al., 2016; Liang et al.,
2020; Rugge et al., 2020; Montopoli et al., 2021). These
results may suggest a variety of coping strategies during a
pandemic between inflammation and tumorigenesis. We also
downloaded “hallmarker gene sets” and “c7 immunologic
signature gene sets” as background gene sets for GSEA. These
results indicated that immune signatures, such as “EPITHELIAL
MESENCHYMAL TRANSITION” (p adjusted = 0.0044) and
“INFLAMMATORY RESPONSE” (p adjusted = 0.0044), were
most significantly enriched in patients in the “Immune High”
cluster (Figures 3A,B and Supplementary Figures 2A–F).
Additionally, a significant enrichment in the “Immune
Low” cluster was “WNT_BETA_CATENIN_SIGNALING”
(p adjusted = 0.0167) (Figure 3C). As for immunologic gene
sets, we also found a positive enrichment in the “Immune High”
cluster corresponding to immune cells and other relative terms
(all p adjusted < 0.05) (Figures 3D–F and Supplementary
Tables 1, 2). Importantly, these intimate relationships between
clusters and immune-related gene sets were confirmed without

a doubt. It could be suggested that exploration of pathways and
signatures aforementioned in OV development and revealing
inherent molecular mechanisms involved may be urgent.

Extraction of Differentially Expressed
Immune Genes and Construction of a
Prognostic Model
Focusing on functional analyses, we next intended to
extract immune-related genes from DEGs, including 322
upregulated genes and 59 downregulated genes (Figure 4A and
Supplementary Figure 3A). Based on the ImmPort database, 122
genes were extracted and their expression patterns were explored
as differentially expressed immune genes (DEIGs), consisting
of 117 upregulated and 5 downregulated genes, respectively
(Figures 4B,C). To acquire genes with the greatest potential
prognostic values, we used the “Immune High” cluster as the
training set. LASSO Cox regression analysis was performed
with 10-fold cross-validation to evaluate and eliminate variables
which contributed less to the model. Finally, a total of 11 mRNAs,
namely MSR1, FPR1, RNASE2, GBP2, CXCL9, CXCL11, C5AR1,
CCL13, FGF17, CXCL14, and PI3, related to OS with non-zero
coefficients were selected as candidate predictors contributing
to a linear model, and then they were validated and assessed,
and significant differences in OS were observed (Figures 4D,E;
Supplementary Figure 3B; Supplementary Table 3). The
expression levels and regression coefficients were integrated,
and therefore, a risk score model was developed. For further

FIGURE 3 | Significant enrichment terms for GSEA in “hallmarker gene sets” (A–C) and in “c7 immunologic signature gene sets” (D–F). The significance of NES was
all adjusted on behalf of the false discovery rate. NES, normalized enrichment score; FDR, false discovery rate.
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FIGURE 4 | Screening immune-related genes and construction of a prognostic model. (A) A volcano plot of all DEGs was shown combined with | log2-FC| and
adjusted p value. (B) Extraction of immune-related genes from DEGs. (C) The landscape of expression pattern for all DEIGs between two immune clusters. Ten-fold
cross-validation for tuning parameter selection (D) and coefficients extraction (E) in the LASSO Cox model. DEGs, differentially expressed genes; DEIGs, differentially
expressed immune genes.

survival analyses, a risk score based on the model was calculated
for each sample.

Stratification of Samples and Verification
of Independent Prognostic Model
The whole TCGA cohort and the “Immune Low” cluster were
all enrolled for validation, and these three cohorts were stratified
into high-risk group and low-risk group followed by the cutoff
point. The Kaplan–Meier plot showed significant differences in
terms of patients’ OS between the high- and low-risk groups:
high-risk group (n = 124) versus low-risk group (n = 70) in the
“Immune High” cluster (log-rank test, p < 1.0E-4) (Figure 5A);
high-risk group (n = 21) versus low-risk group (n = 94) in the
“Immune Low” cluster (log-rank test, p < 1.0E-4) (Figure 5B);
and high-risk group (n = 122) versus low-risk group (n = 187) in
the whole TCGA cohort (log-rank test, p < 1.0E-4) (Figure 5C).
Though no significant difference in patients’ OS between two
immune clusters was observed (log-rank test, p = 0.2, Figure 5D),

we could also distinguish the significance stratified by the median
cutoff point of each cluster, meaning that a higher risk score may
more likely belong to the “Immune High” cluster and may predict
a worse prognosis (log-rank test, p = 4.6E-5, Figure 5E).

Univariate Cox regression analysis was performed for these
studies. The risk score model was independently a negative
prognostic factor for the training cohort (HR: 7.02, 95% CI:
4.06–12.12, p < 0.001). These results also showed that age (HR:
1.02, 95% CI: 1.01–1.04, p = 0.010), tumor residual disease
(HR: 1.34, 95% CI: 1.10–1.63, p = 0.004), and stage (HR:
1.61, 95% CI: 1.05–2.46, p = 0.027) served as independent
prognostic risk factors (Table 2A). Multivariate Cox regression
analysis was performed using the significant prognostic factors
identified in the univariate analysis. The risk score model was
further indicated to possess predictive performance ability for
OS, owning the most significant prediction (HR: 5.24, 95% CI:
2.92–9.43, p < 0.001). Similar results were also obtained in the
whole cohort, as the risk score model performed best in both
univariate analysis (HR: 3.90, 95% CI: 2.61–5.81, p < 0.001) and
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FIGURE 5 | Assessment of candidate immune genes and prognostic capacity. A log-rank test was set up for statistics. Kaplan–Meier survival analysis based on the
risk score model in the “Immune High” cluster (A), the “Immune Low” cluster (B), and the whole TCGA cohort (C). Patients grouped by best cutoff values were listed
in the risk score chart below at different time points. (D) Kaplan–Meier survival analysis between two immune clusters. (E) Kaplan–Meier survival analysis based on
the risk score model between two immune clusters. Patients were grouped by median value in each cluster. ROC and the corresponding AUC of the risk score
model and other clinical pathological characteristics for the “Immune High” cluster (F) and the whole TCGA cohort (G). Time–ROC of the risk score model for the
“Immune High” cluster (H) and the whole TCGA cohort (I). The ROC and AUC of the predictions for 1, 3, and 5 years are shown, respectively. (J) Correlation
heatmap of immune genes extracted by LASSO, risk score model, and clinical pathological characteristics. The lower triangular was the correlation coefficients
between two variables and the upper triangular matrix was the significant adjusted p values. RD, tumor residual disease; ROC, receiver operating characteristic;
AUC, area under the curve; *p < 0.05, **p < 0.01, ***p < 0.001.
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TABLE 2 | Univariate (A) and multivariate (B) Cox regression analysis of the risk score model and other clinical variables.

Variables Immune High cluster Whole TCGA cohort

N HR (95% CI) p value N HR (95% CI) p value

A

Age 194 1.02 (1.01–1.04) 0.01 309 1.02 (1.01–1.04) 0.002

Stage 194 1.61 (1.05–2.46) 0.027 309 1.37 (0.98–1.92) 0.062

Grade 194 1.25 (0.67–2.32) 0.491 309 1.30 (0.83–2.02) 0.255

Lymphatic invasion 75 1.96 (0.66–5.85) 0.226 115 1.23 (0.63–2.42) 0.539

Tumor RD 173 1.34 (1.10–1.63) 0.004 278 1.33 (1.14–1.54) <0.001

Venous invasion 54 0.75 (0.24–2.29) 0.611 84 0.69 (0.32–1.47) 0.334

Risk score model 194 7.02 (4.06–12.12) <0.001 309 3.90 (2.61–5.81) <0.001

B

Risk score model 173 5.24 (2.92–9.43) <0.001 278 3.01 (1.98–4.57) <0.001

Age 173 1.02 (1.00–1.04) 0.11 278 1.02 (1.00–1.03) 0.02

Stage 173 1.52 (0.96–2.43) 0.08 278 1.28 (0.89–1.84) 0.18

Tumor RD 173 1.17 (0.94–1.47) 0.15 278 1.18 (1.01–1.39) 0.04

multivariate analysis (HR: 3.01, 95% CI: 1.98–4.57, p < 0.001,
Table 2B). Time–ROC and area under the curve (AUC) of
each factor and all combined were also presented, and our
risk score model showed a high AUC (Figures 5F–I). Pairwise
Pearson’s correlation analysis was employed, and an adjusted
p value was set up for a threshold to derive the regulation of
genes enrolled in the risk score model and clinical pathological
characteristics (Figure 5J). Besides CXCL14 and PI3, the other
nine genes showed significant positive or negative correlations,
indicating co-expression patterns between them. A significant
positive relationship between venous invasion and lymphatic
invasion was also observed, indicating an underlying cooperation
between them in the long-term survival period in patients
suffering from OV.

Two independent cohorts – GSE9891 and GSE14764 – were
then employed as external validations for the model to confirm
prognostic accuracy, and each was grouped into high and low
groups using the same algorithm aforementioned. Kaplan–Meier
curves showed significant differences in GSE9891 (log-rank test,
p = 0.0035) and GSE14764 (log-rank test, p = 0.042), similar
to our previous results, and time–ROC indicated that our
immune risk score model had high sensitivity and specificity to
predict survival probability (Figures 6A–D). Also, we verified
our model to possess stable and reliable ability compared with
several biomarkers identified previously (Figure 6E). Hence,
these results indicated that our model is reliable in making a
precise prediction.

Stratification and Validation Among
Clinical Pathological Factors as a
Predicted Indicator
We explored the distribution of risk scores and survival time
in the whole TCGA cohort, annotated with the distribution
of expression pattern of immune genes between two immune
clusters (Figure 7A). Patients with higher risk scores tended
to have shorter survival time and more likely remained in
the “Immune High” cluster, whereas patients with lower risk

scores tended to have longer survival time and also more
likely remained in the “Immune Low” cluster. Moreover, we
specifically explored the distribution of risk scores and expression
levels of each gene in the whole cohort stratified by different
clinical characteristics. As previously described, risk scores in
the older group (median age > 58 years old) gained higher
levels, accompanied by higher expression levels of CXCL14 and
FGF17 and lower expression levels of GBP2 (Wilcoxon signed-
rank test, p < 0.05, Figure 7B). Patients with increasing tumor
residual disease diameters similarly gained higher values of risk
scores (Kruskal–Wallis test, p < 0.05, Figure 7C). While the
number of patients in the current study with either venous
invasion or lymphatic invasion was comparatively small, we
did observe some notable and significant intergroup differences
among immune genes using the prognostic model, indicating
its potential prognostic role in diverse pathological situations
(Wilcoxon signed-rank test, p < 0.05, Figures 7D,E).

Tumor Immune Landscape and
Upstream Regulatory Mechanisms
Three hundred and nine samples were further quantified for
a view of tumor immune landscape using the CIBERSORT
method, as well as the different identification between the two
clusters, which pointed out proportion changes in the immune
microenvironment (Supplementary Figure 4). We inspected the
association between risk score distribution and each of the 22
leukocyte cells. Pairwise Pearson’s correlation analysis indicated
that the risk score model had an intimate relationship with
immune component changes, suggesting diversities of systematic
antitumor treatment on changes derived from cell-mediated
immune response prospectively. Among neutrophils (R = 0.39),
M2 macrophages (R = 0.31) were positively associated with
risk score (p < 0.05), indicating a worse prognosis, while
M1 macrophages (R =−0.15) and CD8 T cells (R =−0.12)
presented negative associations, hence, a relative better prognosis
(p < 0.05) (Figures 8A–D and Supplementary Figure 5).
Additionally, we examined the upstream regulatory mechanisms
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FIGURE 6 | Assessment of prognostic capacity using the two external cohorts GSE9891 (A,B) and GSE14764 (C,D), respectively. (E) ROC curves show the
sensitivity and specificity of the immune risk model signature and other known biomarkers in predicting the OS of patients. ROC, receiver operating characteristic;
AUC, area under the curve.

of the genes contributing to the prognostic model. Transcription
factor (TF) datasets were downloaded from TRRUST (version
2) (Han et al., 2018) and LncMAP databases (Li et al., 2018).

Combined with the expression of all the TFs and immune-related
genes, Pearson’s correlation analysis was applied and then
a Sankey plot was shown after integrating a significant
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FIGURE 7 | Risk score distribution and clinical stratification for the whole TCGA cohort. (A) The distribution of risk scores, survival status, and expression pattern of
immune genes in the whole TCGA dataset. (B) OV patients were divided into two groups according to median age, and then the relationships among risk score
distribution and expression levels of immune genes between age groups were explored. (C) Relationships among risk score distribution, expression levels of immune
genes, and different status of tumor residual disease. (D) Relationships among risk score distribution, expression levels of immune genes, and different status of
venous invasion. (E) Relationships among risk score distribution, expression levels of immune genes, and different status of lymphatic invasion. ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

pairwise comparison of the TF–immune gene regulatory network
(Figure 8E). A total of 29 TF–gene pairs targeting 6 immune
genes significantly were extracted from 63 pairs (Supplementary
Table 4). While CXCL11 targeted by JUN owned a negative
regulatory mechanism (R = −0.142, adjusted p = 0.0293), all
the other TFs were observed to have positive relationships while
targeting immune genes, respectively.

DISCUSSION

Using TCGA dataset in an unbiased manner, we systematically
evaluated the TME in OV by multiple approaches to investigate
immune activity and proposed prognostic analyses based on bulk
immune genes. A risk score model was then constructed and

further analyzed by machine learning through different immune
clusters and clinical pathological variables. Association with the
model-stratified groups identified a significant correlation with
OS, suggesting that it provided an independent and reliable
measurement for gyneco-oncologists to ensure appropriate pre-
or post-surgery treatment and chemotherapy management which
is, to some extent, crucial and urgent, due to increasing incidence,
lower 5-year survival rate, higher rate of recurrence, and
resistance to chemotherapy in OV (Dao et al., 2016; Torre et al.,
2018; Siegel et al., 2020).

The unsupervised hierarchical clustering analysis based on
ssGSEA identified two clusters that presented obvious differences
of immune activity and TME heterogeneity estimated by the
ESTIMATE algorithm. Inverse correlations with tumor purity
were seen for most expression of immune genes (Li et al., 2016;
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FIGURE 8 | (A–D) Pearson’s correlation analysis of the risk score distribution and immune cell infiltration significantly identified by CIBERSORT in OV patients. All p
values were corrected by the BH method. (E) Upstream regulatory mechanisms revealed the network among TFs and immune genes using the Sankey plot. The
width of each alluvial stripe in the TF column represents -log2 (p values) of pairwise Pearson’s correlation adjusted. TFs, transcription factors.

Rhee et al., 2018), as stromal cells and immune cells are
the main non-tumor components co-existing with malignant
cells in bulk tumor specimen, by which the tumor purity is

deduced. These non-tumor cells dilute the purity of OV cells
in TME. The cytolytic activity defined as the geometric mean
of GZMA and PRF1 confirmed this robust stratification for the
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two clusters, for their ultimate effect mechanisms in the cancer
immunity cycle. However, no significant difference in overall
survival time was observed between these two different clusters,
suggesting that genomic alterations may play dominant roles
in affecting the functionality of immune cells via modification
of TME and, finally, the immunotherapy response (Abdalla
et al., 2014). Genomic expression data were further utilized
for expanding the depth of understanding. We identified
381 DEGs, followed by GO and KEGG analyses, and also
GSEA utilizing two gene sets as genetic backgrounds revealed
that significantly enriched terms were observed in immune
or inflammatory pathways, underlying their associations with
immune activation or inhibition mechanisms in the progression
of OV. For instance, it has been proven that high levels of
IL-6, a major immunoregulatory cytokine, are associated with
TME alterations by binding to its specific receptor IL-6R, whose
increased expression, as well as its soluble spliced variant, is
regulated by tumor-associated inflammation, leading to death
(Rath et al., 2010; Lane et al., 2011). Epithelial–mesenchymal
transition (EMT) is a well-known mechanism involved in the
biological process of tumorigenesis and resistance to adjuvant
therapies, such as paclitaxel-resistant OV cells (Kajiyama et al.,
2007; Savagner, 2010). It shed light on blocking the EMT
pathways for preventing tumor migration and invasion, at the
same time remodeling to chemotherapy and immunity therapy
(Rosano et al., 2011; Du et al., 2013). By activating NF-κB, OV
cells overexpressed Her2/neu to induce the expression of VEGF
which substantially increases vascular permeability, suggesting
its involvement in the formation of malignant ascites (Hsieh
et al., 2004). Previous studies have already approved the immune-
related mechanisms in pan-cancer through TCGA and GEO
databases (Charoentong et al., 2017) and the immunotherapeutic
strategy available for multiple cancer types such as melanoma
(Pandolfi et al., 2008; Achkar and Tarhini, 2017) and non-
small cell lung cancer (Herbst et al., 2018), narrowly but
successfully, except for OV as a result of low mutational burden
or other reasons. In the current study, aiming to genotype and
immunophenotype relations involved in OV, we filtered the
expression of immune genes from the ImmPort database. LASSO
Cox regression analysis identified MSR1, FPR1, RNASE2, GBP2,
CXCL9, CXCL11, C5AR1, CCL13, FGF17, CXCL14, and PI3 as
hub genes. Among these, FPR1 participates in tumorigenicity
of human cervical cancer cells via activation of immune cells
induced by N-formyl peptide (Cao and Zhang, 2018; Minopoli
et al., 2019). CXCL9 and CXCL11 have been associated with
activation of Th1 immunity within TME and a favorable response
to chemotherapy and immunotherapy in melanoma (Harlin
et al., 2009; Hong et al., 2011). CCL13 can be expressed by
M2 macrophages with both anti-inflammatory and tissue repair
functions (Grage-Griebenow et al., 2001; Murray and Wynn,
2011). It could be speculated that these biomarkers might play
vital roles in the carcinogenesis of OV. Here, we chose the
parameter family = “cox” as a response type to filter genes
associated with OS. Moreover, considering smaller variables, we
also applied other methods to narrow target genes based on
AIC or multivariable Cox regression. However, these results
failed to reach higher AUCs, suggesting an optimum balance

employing genes. Then, a risk score model was constructed as
a linear fit form and validated on testing sets as well as on
two GEO datasets. Our results predominantly indicated that
the risk score model could predict prognosis, as a higher score
accompanies a worse prognosis. Besides, focusing on the whole
TCGA cohort, a higher risk score may more likely incline to
the “Immune High” cluster with a truncated survival time. With
more genome-wide annotations’ acquisition, bipartite regulation,
especially TF-regulating networks, is highly specific to different
cell types (Neph et al., 2012). Upstream regulatory mechanisms
were then explored and more molecular interactions were
gained, which means a complex co-regulation network exists
while considering the immune-related events in OV that need
further exploration.

Univariate and multivariate Cox regression analyses were
explored and identified independent clinical predictors
additionally. As a result, the risk score model performed
well entirely, indicating a reverse association with prognosis.
Unexpectedly, age was screened out as an independent predictor
in the whole TCGA cohort. Various changes occur during
aging, while aging stimulates senescence in vivo (Boulestreau
et al., 2020). Accompanying senescence, hematopoietic and
immune health both decline significantly, contributing to an
impaired immune function in the elderly (Beerman et al.,
2010). However, previous studies often prove age as a non-
significant predictor in OV or other cancers (Liu et al.,
2020b). In the current study, we filtered out OS < 90 days
for the purpose of long-term influence on OS and treatment
management. Tumor residual disease (RD), that is, lesion
diameters after cytoreductive surgery, is a consistently important
factor across molecular subtypes and disease patterns (Aletti
et al., 2007; Chi et al., 2009; Wallace et al., 2017; Wang
et al., 2017). Minimizing RD remains an important goal to
improve OS when feasible. A multivariate analysis controlling
for age, preoperative albumin, stage, disease dissemination
pattern, molecular subtypes, and RD posed that RD is the
only variable independently associated with OS (Torres et al.,
2018). Here, we confirmed the above statements. We observed
a significant positive relationship between venous invasion
and lymphatic invasion, suggesting their roles involved in
immune regulation for a long-term survival incidence. Tumoral
lymphovascular space invasion (LVSI), defined as the presence
of tumor cells inside capillary lumens of either a lymphatic
or a microvascular system within OV, has been reported as
a new biomarker of progression (Matsuo et al., 2012, 2014).
Moreover, we have set up and proved an enlightening and
independent method for gyneco-oncologists and pathologists
detecting immune-related genes to stratify prognosis of
patients with OV.

Again, we employed CIBERSORT inferring quantitatively
infiltrating lymphocytes from tumor transcriptomes. These
results not only demonstrated diversity between immune clusters
but also showed significant Pearson’s correlations between the
risk score model and leukocytes. Previous literature shows
that the complexity of the TME determines the functions
of immune cells, especially those, such as neutrophils, with
dual functions (Medina-Echeverz et al., 2014). Polarizing from
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M0 macrophages, the distinct immunoregulatory functions
of activated M1 and M2 macrophages are antitumoral and
protumoral, respectively (Noy and Pollard, 2014). Moreover,
lymphocytes can strengthen cancer immune surveillance to
suppress tumor cell proliferation, invasion, and metastasis (Dunn
et al., 2004). The levels of tumor-infiltrated CD8+ T cells in the
HGSOC tumors reveal a positive correlation with the patients’
survival regardless of the extent of residual disease, therapy, or
BRCA1 mutation (Ovarian Tumor Tissue Analysis Consortium
et al., 2017). Combining all the results mentioned above, we
characterized the immune landscape with a risk score model and
introduced a novel biomarker to predict prognosis which can
further guide treatment decisions in patients with OV.

To conclude, our study has proposed multiple methods
to investigate the TME landscape. Genes and the risk score
model based on immune clusters were analyzed. We found
that the risk score model was significantly associated with
OV prognosis. Further analyses indicated that the risk score
model was independent and more sensitive and specific than
other clinical characteristics. Thus, we strongly believe that the
immune-related model represents an important contribution and
will enhance the identification of complex mechanistic insights of
heterogeneity in OV.
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