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Cardiac diseases are the leading cause of deaths worldwide; however, to date, there has
been limited progress in the development of therapeutic options for these conditions.
Animal models have been the most extensively studied methods to recapitulate a
wide variety of cardiac diseases, but these models exhibit species-specific differences
in physiology, metabolism and genetics, which lead to inaccurate and unpredictable
drug safety and efficacy results, resulting in drug attrition. The development of human
pluripotent stem cell (hPSC) technology in theory guarantees an unlimited source of
human cardiac cells. These hPSC-derived cells are not only well suited for traditional
two-dimensional (2-D) monoculture, but also applicable to more complex systems, such
as three-dimensional (3-D) organoids, tissue engineering and heart on-a-chip. In this
review, we discuss the application of hPSCs in heart disease modeling, cell therapy,
and next-generation drug discovery. While the hPSC-related technologies still require
optimization, their advances hold promise for revolutionizing cell-based therapies and
drug discovery.
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INTRODUCTION

Although cardiac diseases, such as myocardial infarction and heart failure, have been the leading
cause of deaths worldwide, few drugs are being approved yearly compared with many other disease
area, resulting in a huge gap between clinical need and drug development (Fordyce et al., 2015).
The regenerative capacity of the heart is quickly lost during mammalian postnatal development.
Pathological insults, such as ischemia, almost invariably lead to irreversible cardiac cell loss, which
poses the greatest challenge to the treatment of cardiac diseases. In the past decades, rapid progress
in human pluripotent stem cell (hPSC) technology enabled the generation of major cardiac cell
types, thus unlocking new possibilities to treat patients with the most debilitating forms of heart
disease using cell-based therapies (Mummery et al., 2012; Protze et al., 2019; Williams and Wu,
2019). To date, several studies have shown that transplantation of hPSC-derived cardiomyocytes
holds great promise for attenuating cardiac dysfunction and reducing consequent fibrotic scarring
(Gao et al., 2018; Liu et al., 2018).
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Animal models are arguably the most widely used method
to model disease onset and progression, providing valuable
mechanistic insights in an in vivo setting. However, the
extrapolation of translatable data from animals data to guide
the treatment of human heart disease has been difficult due
to considerable species differences (Matsa et al., 2014). hPSCs
can potentially bridge this transitional gap by providing an
unlimited source of human cardiac cells for biomedical research
and drug discovery (Matsa et al., 2014). Protocols that enable the
generation of cardiomyocyte subtypes such as ventricular, atrial,
and sinoatrial pacemaker cells, as well as non-myocyte cell types
including endothelial cells and fibroblasts have been developed
(Mummery et al., 2012; Weng et al., 2014; Lee et al., 2017; Protze
et al., 2017; Williams and Wu, 2019; Zhang et al., 2019). These
highly enriched populations of specific cardiomyocyte subtypes
facilitate disease modeling and drug testing by recognizing
cellular, molecular and functional heterogeneity within the
heart. Further, considering the spatial complexity of the heart,
hPSC-based 3-D multicellular systems, including human heart
organoids (Mills et al., 2017; Giacomelli et al., 2020), engineered
heart tissues (EHTs) (Mannhardt et al., 2016), and heart-on-
chip models (Zhang et al., 2016) have been shown to more
accurately predict human cardiac biology and pathophysiology
(Sharma et al., 2020). Incorporation of electrophysiology,
epigenomics, transcriptomics, proteomics, metabolomics and
imaging techniques will equip these hPSC-based platforms with
additional tools to accomplish patient-specific disease modeling
and personalized drug response screening.

In this review, we summarize the current progress of the
application of hPSCs in cardiac disease and cell therapies
(Figure 1). We also highlight the application of available hPSC
platforms for the pharmacologic evaluation and cardiac safety
assessment of drugs (Figure 1).

CARDIAC DISEASE MODELING USING
hPSCs

Modeling heart disease is central to the understanding of the
pathological processes. Conventional models of cardiovascular
disease rely mostly on animals. However, the inherent differences
between species render elucidation of human heart pathology
unexpectedly difficult (Savoji et al., 2019). Therapeutics
with promising results in animals often failed to show any
improvement in clinical trials. Therefore, human-derived disease
models bear the unique advantage to more faithfully represent
human disease, thus potentially providing a more refined
comprehension of disease mechanisms, paving the way to new
therapeutic options (Zhao et al., 2020).

One of the major causes of cardiac disorders is genetic
mutations (Dell’Era et al., 2015). The advent of iPSC technology
provides a powerful means to model genetic cardiac diseases by
using somatic cells directly from patients. In the past decade,
various genetic cardiac disorders have been successfully modeled
using iPSCs. For example, Timothy syndrome is caused by a
missense mutation in L-type calcium channel Cav1.2 that leads
to excess Ca2+ influx, prolonged action potential and irregular

contraction. Yazawa et al. (2011) reported the generation of
iPSC-CMs derived from patients with Timothy syndrome, and
these cells demonstrated irregular electrical activity and abnormal
Ca2+ signaling similar to the cardiac phenotype found in
the patients. iPSCs have also been used to model LEOPARD
syndromes with PTPN11 gene mutation (Carvajal-Vergara et al.,
2010), long QT syndromes with a mutation inKCNQ1 (Friedrichs
et al., 2013), arrhythmogenic right ventricular dysplasia with
PKP2 mutations (Kim et al., 2013), and dilated cardiomyopathy
with TTN mutations (Hinson et al., 2015).

One potential drawback of such application is that differences
in the genetic background among cell lines may conceal the
true phenotype induced by a single mutation. To address this
challenge, the introduction of genome-editing techniques, such
as clustered regularly interspaced short palindromic repeats-
(CRISPR-) associated protein 9 (Cas9) system, help to generate
isogenic iPSC lines, and allows researchers to study the precise
effect of a mutation on the onset or progression of cardiac
diseases while avoiding confounding genetic factors (Seeger
et al., 2017; Lam and Wu, 2018). By correcting mutations or
insertions, CRISPR/Cas9 further facilitates the elucidation of
the causal role of the mutation. For example, CRISPR/Cas9
was successfully used to identify SCN5A as a causative
mutation of arrhythmogenic right ventricular cardiomyopathy
(ARVC), and corrected cells showed normal channel activity
(Te Riele et al., 2017).

The heart is composed of multiple cell types, including
cardiomyocytes and non-cardiomyocytes, and the intricate
crosstalk and multifaceted regulation among cells are central to
heart homeostasis and disease. In this perspective, co-culture
of hiPSC-derivatives, 3-D organoids, EHTs and microfluidic
organ-chips exhibit distinct advantages over mono-lineage
cultures (Figure 2). Using relatively immature iPSC-CMs to
represent adult-onset disorders remains challenging. Recent
studies demonstrated that co-culture of fibroblasts, epicardial
cells, or endothelial cells with hiPSC-CMs enhanced the maturity
of hiPSC-CMs, which improved modeling of cardiac diseases
(Bargehr et al., 2019; Giacomelli et al., 2020). Still, there are
some limitations regarding regular 2-D culture, such as lacking
a 3D extracellular matrix and a defined auxotonic load. 3-
D cardiac constructs including organoids and EHTs overcome
these limitations and improve representation of the in vivo
cardiovascular environment. Cardiac organoids are generated
from hPSCs that self-assemble and -organize into complex
native-like organ structures (Richards et al., 2020). Voges et al.
(2017) reported successful generation of an AMI model in human
ESC-derived cardiac organoids. Cryoinjury induced local tissue
damage, while the adjacent cells remained viable. Functional
evaluation showed that tissue regeneration accompanied by
functional recovery was seen 14-days post-injury (Voges et al.,
2017). Another hiPSC-derived cardiac organoids that cooperate
an oxygen-diffusion gradient and that are stimulated with
neurotransmitter noradrenaline was shown to recapitulate the
infarcted, border and remote zones of myocardial infarction in
the human heart, with concurrent modeling of the hallmarks of
AMI, including metabolic shifts, fibrosis and aberrant calcium
handling (Richards et al., 2020).
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FIGURE 1 | Potential applications of hPSC-derived cardiac cells. hESCs or hiPSCs can differentiate into various cardiac cell types in vitro, including cardiomyocytes,
endothelial cells, fibroblasts, smooth muscle cells, and pericytes. The resulting cells can be potentially used for disease modeling, cell therapy, and drug discovery.

FIGURE 2 | Recent methodological advances in hPSC-derived complex platforms. hPSC-derived platforms have grown in complexity from simple, two-dimensional
cultures into multi-lineage co-cultures, heart organoids, engineered heart tissues, and heart-on-a-chip systems.

Engineered heart tissues can be generated by mixing hPSC-
derived cardiomyocytes with extracurricular matrix components
such as fibrinogen, collagen or Matrigel (Breckwoldt et al.,
2017). The generation of EHTs also requires a casting mold that
determines the 3-D shape of the heart tissue, and a support
structure that provides mechanical restraint of the developing

heart tissue (Eder et al., 2016). EHTs are well suited to evaluate
the effects of mechanical stimulation, and therefore can mimic
afterload enhancement-induced disease conditions such as aortic
valve stenosis, chronic hypertension, and cardiac hypertrophy
(Hirt et al., 2012; Tzatzalos et al., 2016). Since EHTs are little heart
muscles, they allow measurements of all essential parameters of
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heart muscle function, including, but not restricted to, contractile
force, conduction velocity, beating rate, rhythm, diastolic tension,
passive tension, and intracellular Ca2+ transients (Hirt et al.,
2014). Besides, EHTs are also compatible with histological
analyses, protein detection, and sequencing techniques, such as
single-cell RNA-sequencing.

The development of 3D stamping and bioprinting techniques
provides scaffolds to generate heart-on-a-chip. EHTs and heart-
on-a-chip methods allowed modeling of specific cardiac diseases,
including Barth-syndrome-associated cardiomyopathy (Wang
et al., 2014), Duchenne muscular dystrophy (Long et al., 2018)
and primary hypertension-induced left ventricular hypertrophy
(Zhao et al., 2019). Zhao et al. (2019) took advantage of
organ-on-a-chip engineering and organoid self-assembly to
generate mature ventricular tissue, and to perform electrical
conditioning for up to 8 months, allowing modeling of chronic,
polygenic conditions. With the generation of a wide variety of
human organ-on-a-chip models, great efforts have been made
to integrate multisensory systems. Zhang et al. (2017) reported
two multiorgan models, liver- and-heart-on-a-chip and heart-
liver-cancer-on-a-chip, for automated and continual in situ
monitoring of organoid behaviors.

Recently, hPSCs have also been proven quite useful in
the study of COVID-19-related heart disorders. To date, this
pandemic has led to more than 121 million infections and 2.6
million deaths worldwide. Apart from respiratory complications,
COVID-19 is also known to induce cardiac complications,
including myocardial injury, arrhythmias, acute coronary
syndrome, which are major indicators of poor prognosis (Nishiga
et al., 2020; Zheng et al., 2020). Since one of the major receptors
for COVID-19 is not recognized by the virus in mice, hPSCs
were rapidly recognized as an invaluable tool to address this
problem, and has already yielded important insight into virus-
host interactions, immune responses and the cytokine storm
(Yang et al., 2020; Yiangou et al., 2020). Combined with various
biochemical, cellular, molecular and genetic studies, these newly
developed hPSCs-cardiac models will likely contribute much
more to uncovering key mechanisms and therapeutic strategies
of COVID-19-induced cardiac damage (Yiangou et al., 2020).

hPSC-BASED CELL THERAPY

Aside from mechanistic studies of cardiac disease, replenishing
damaged myocardium with healthy cells (i.e., cell therapy)
was another hotly pursued area of application. Transplantation
of hESC-derived cardiomyocytes (hESC-CMs) was found to
improve cardiac function in postinfarct rats and pigs (Kehat
et al., 2004; Caspi et al., 2007; Laflamme et al., 2007). More
importantly, Chong et al. (2014) showed that exogenously
transplanted hESC-CMs remuscularized the infarcted area in a
non-human primate model. However, hESCs may not be the
best option for clinical treatment due to ethical concerns and
immune rejection. Ethical concerns arise from their origins,
since these cells are isolated from the inner cell mass of the
human embryo, leading to the destruction of the latter. Immune
rejection occurs due to allogenic transplantation of cells. By

contrast, iPSC technology, in which pluripotent stem cells are
directly reprogrammed from the same patient’s somatic cells,
effectively circumvents the ethical issues associated with the use
of ESCs. Additionally, iPSCs are considered autologous, and are
believed not to require immunosuppression. Gene editing in
hiPSC further helps to reverse disease phenotype by correction
of the pathogenic mutation or variant, raising the possibility of
personalized therapies for autologous stem cell transplantation.

Injecting hPSC-derived cardiac cells into the myocardium
to replace dead cells appears to be a very straightforward
concept. However, in practical terms, controlling the exact cell
number, limited efficiency in cell delivery to target sites, and
batch differences, all pose great challenges to the application
of hPSC-based cell therapy (Matsuura et al., 2013; Guo et al.,
2020). With the development of tissue engineering, stem cell-
derived cell sheets gradually showed their superiority over direct
injection in heart tissue repair (Matsuura et al., 2013). Kawamura
et al. (2012) showed that highly pure (almost 90%) hiPSC-
CMs sheets were able to attenuate left ventricular remodeling,
increase neovascularization as well as inhibit fibrosis 8 weeks after
cell transplantation into 12-week porcine models of myocardial
infarction. The same group demonstrated that the combined use
of cell sheets and the omental flap technique was beneficial even
in treating severe heart failure (Kawamura et al., 2017). Most
recently, it was reported that the transplantation of clinically
relevant dimensions (4 cm× 2 cm× 1.25 mm) of human cardiac
muscle patches significantly improved left ventricular function
and reduced infarct size in infarcted swine (Gao et al., 2018).

Mechanistically, transplantation of hiPSCs-derived cardiac
cells may provide a favorable microenvironment for pre-existing
cells in the infarcted zone to proliferate, thus preventing serious
post-MI events (Ye et al., 2014). The mechanisms by which
injected cells exert these effects are still not fully clear. It
has been shown that only a limited number of transplanted
cells can differentiate and retain in the host myocardium after
delivery, suggesting that the beneficial effects of cell therapy
are mediated by the activation of paracrine pathways which
leads to endogenous regeneration (Tachibana et al., 2017). The
autocrine and paracrine factors facilitate angiogenesis, promote
vascularization, attenuate fibrosis and relieve inflammation. Still,
the clinical translation of hPSC-based cell therapy is facing a
major problem, i.e., the immaturity of hPSC-derived cells, which
can cause life-threatening arrhythmia, and teratoma formation
(Cambria et al., 2017). Even vascularized cell sheets co-cultured
with different types of cells exhibit an immature phenotype. As a
source of de novo cardiomyocytes, hPSC-CMs have so far yielded
only a short-term improvement in cardiac function ranging from
weeks to months. Therefore, more advanced strategies to induce
maturation, vascularization, and to improve durable cardiac
function recovery are worth investigation.

hPSCs-BASED DRUG DISCOVERY

Human pluripotent stem cell technology is also widely used
in cardiovascular drug discovery, providing pharmacologic
and toxicologic predictions. Yazawa et al. (2011) found
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that roscovitine, a compound that increases the voltage-
dependent inactivation of CaV1.2, rescued the cardiomyocyte
phenotypes in Timothy syndrome. Using hPSC-derived
cardiomyocytes and organoids, compounds that promoted
human heart muscle cell proliferation, but minimally affected
heart rhythm and contractility, were identified (Mills et al.,
2019). Although the identified compounds displayed poor
pharmacokinetic properties, and were only maintained
at pro-proliferative doses in vivo for a short period, they
led to the elucidation of mevalonate pathway important
for cardiomyocyte proliferation. Most recently, Theodoris
et al. (2020) reported that a network-based screen in iPSC-
derived cells revealed therapeutic candidates for a common
form of heart disease involving the aortic valves, suggesting
that the combined use of network-based screening, iPSC
technique, and machine learning may represent an effective
approach for drug discovery. Together, these inspiring hPSC-
based drug studies offer meaningful pipelines to identify
drug candidates that may lead to new therapeutic options
for heart disease.

Unexpected cardiotoxicity is a major cause of drug attrition
and drug withdrawal from the market (Laverty et al., 2011).
Traditional methods of preclinical cardiac safety evaluation
mainly rely on animal models, which tend to be expensive,
low-throughput, and exhibit species differences in cardiac
physiology (Mercola et al., 2013). Alternative methods to
identify cardiotoxic drugs involve the heterologous expression
of cardiac ion channels in non-cardiac cells. However, these
non-cardiac cells lack CM-specific structural components such
as sarcomeres, and inhibition of specific ionic currents alone
cannot accurately measure the effects of drug candidates, which
could miss potential arrhythmogenic effects or generate false-
positive readings. Other cells, such as healthy and primary
human CMs, may be used for preclinical evaluation of drug
cardiotoxicity. However, sample access and cellular abundance
may be prohibitive for its use in an industrial setting. Regulatory
agencies around the globe, including US FDA, European
EMA, Health Canada, and Japan NIHS, have recognized the
lack of standardized assessment of cardiac safety, and thus
encouraged the development of the Comprehensive In Vitro
Proarrhythmia Assay (CiPA), which aims to explore the utility of
hPSC-derived cardiomyocyte assays in evaluating cardiac safety
and arrhythmogenesis (Sager et al., 2014). Data from recent
studies support the utility of hPSC-derived cardiomyocytes for
predicting drug-induced arrhythmia (Sager et al., 2014; Gintant
et al., 2016; Blinova et al., 2018). Besides electrophysiology,
hiPSC-CMs are also used to measure drug-induced alterations
in cellular contractility and viability, thus broadening the scope
of cardiac safety evaluation. Sharma et al. (2018) developed a
detailed methodology to generate hiPSC-CMs and subsequently
use these cells to evaluate drug-induced cardiotoxicity by
using contractility and cytotoxicity assays. Using this platform,
they performed cardiotoxicity screening of tyrosine kinase
inhibitors, with results correlating with clinical phenotypes
(Sharma et al., 2017). They also demonstrated that the
observed toxicities could be ameliorated with cardioprotective
insulin/IGF signaling.

Although hPSC-CMs raised hopes that this human test
bed could broaden drug discovery approaches and improve
preclinical drug testing, they are not identical with mature
adult CMs. Important distinctions in ion channel function,
gene expression, structural organization and functional responses
to drugs limit their application for drug testing. Compared
to standard 2D culture formats, engineered 3D heart tissues
improve CM maturity, and exhibit a more physiological 3D
muscle environment, longitudinal alignment, and easy access
of measurements of force, which is one of the most important
parameters of heart function (Eder et al., 2016). However, one
major drawback of EHTs is their inability to scale up for the high-
throughput screening of multiple samples in parallel. To some
extent, EHTs in 24-well format or cardiac tissue miniaturization
might provide possible solutions for drug testing purposes
(Thavandiran et al., 2013; Eder et al., 2016).

Zhao et al. (2019) developed a scalable cardiac tissue
cultivation platform that reconstructs a specific anatomic
portion of the heart to facilitate more directed and accurate
measurements of drug responses. “Human-heart-in-a-jar” is also
a related technology, which involves embedding ventricular-like
hiPSC-CMs in hydrogel to create an electromechanically coupled
cardiac organoids chamber that is capable of pumping fluid. This
organoid chamber is amenable to clinically relevant functional
measurements, such as pressure-volume loop analysis, cardiac
output, and ejection fraction (Li et al., 2018). As the field of iPSC
technology continues to grow, to increase the efficiency of drug
discovery and to reduce the cost, an established set of standards
for the comparison of the quality of iPSC-CMs, quantification of
cardiac contraction and electrophysiology, and validation of data
and reproducibility, is desperately needed.

CHALLENGES AND FUTURE OUTLOOK

Despite major advancements in the application of PSC
technology in cardiac diseases, several challenges remain,
and require further in-depth research. As the structure, signaling,
metabolism, and function in immature CMs are distinct from
their adult counterparts, iPSC-CMs derived disease models
might not be able to accurately reflect the true disease phenotype,
making it difficult to confidently assess the efficacy or toxicity of
drug candidates. Recently, various studies have tried to enhance
the maturity of hiPSC-CMs via different means, including using
T3 hormone, metabolic maturation, 3-D construction, mechanic
stress, electrical stimulation, long-term culturing, and co-culture
with other cell types such as cardiac fibroblasts and endothelial
cells (Ahmed et al., 2020). However, it is worthwhile to point
out that these “matured” cells still differ from adult human
cardiomyocytes in many aspects, and therefore require careful
data interpretation. Other limitations, such as scalability and
clinical compatibility, also need to be addressed before one can
faithfully extrapolate findings from such models. Developing
optimal methods to efficiently generate large-scale mature
hPSC-CMs is therefore of high importance and priority.

Furthermore, limited blood perfusion of cells within complex
structures, especially for cell patches, is another issue yet to be
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overcome. Otherwise, oxygen, nutrient and drug delivery, which
all depend on the microvasculature, would be compromised.
Simple co-culture of cardiomyocytes with endothelial cells only
generates premature micro-vasculatures that are not sufficient
to support perfusion, leading to the small size of cardiac
organoids (i.e., 100 µm). To introduce microvascularization
into cell patches, Schaefer et al. (2018) engineered a bilayer
patch composed of a layer of human iPSC-CMs and a layer
of human blood outgrowth endothelial cells. Implantation of
this bilayer patch into infarcted rat hearts resulted in better
CM survival compared to CM-only patch control. Importantly,
after 4 weeks in vivo, the engrafted microvessels sprouted into
the accompanying CM layer, and even became inosculated with
the host vasculature. Qian et al. (2019) co-cultured human
mesenchymal stem cells and endothelial cells in decellularized
human dermal fibroblast sheets. However, without actual
implantation in vivo, one can hardly infer the reparative effects
of such patches purely based on biochemical data. Clearly,
engineering heart-like tissues with intact microvasculature is still
in its infancy. Once solved, in vitro cardiac models would be able
to accommodate even more diversified functional assessments,
offering greater versatility and yielding higher predictability.

CONCLUSION

In this review, we outlined the current applications of hPSC-
CMs in disease modeling, cell therapy and drug discovery.

While hPSC technology has gained momentum in cardiac repair
over the years, efforts to enhance the maturity of derived cells
and to increase the complexity of tissue structure are still
underway. Integrating genetic-, computer-, and bioengineering-
based approaches will further empower this technique with
greater precision, breadth and depth. It can be foreseen that
through these interdisciplinary endeavors, hPSC technology
will redefine in vitro cardiac modeling, promote personalized
treatment, and increase the efficiency but reduce the cost
of drug discovery.
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