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Hepatoblastoma (HB) is a rare disease but nevertheless the most common hepatic
tumor in the pediatric population. For patients with advanced HB, the prognosis is
dismal and there are limited therapeutic options. Multiple microRNAs (miRNAs) were
reported to be involved in HB development, but the miRNA–mRNA interaction network
in HB remains elusive. Through a comparison between HB and normal liver samples in
the GSE131329 dataset, we detected 580 upregulated differentially expressed mRNAs
(DE-mRNAs) and 790 downregulated DE-mRNAs. As for the GSE153089 dataset, the
first cluster of differentially expressed miRNAs (DE-miRNAs) were detected between
fetal-type tumor and normal liver groups, while the second cluster of DE-miRNAs
were detected between embryonal-type tumor and normal liver groups. Through the
intersection of these two clusters of DE-miRNAs, 33 upregulated hub miRNAs, and
12 downregulated hub miRNAs were obtained. Based on the respective hub miRNAs,
the upstream transcription factors (TFs) were detected via TransmiR v2.0, while the
downstream target genes were predicted via miRNet database. The intersection of
target genes of respective hub miRNAs and corresponding DE-mRNAs contributed
to 250 downregulated candidate genes and 202 upregulated candidate genes. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
demonstrated the upregulated candidate genes mainly enriched in the terms and
pathways relating to the cell cycle. We constructed protein–protein interaction (PPI)
network, and obtained 211 node pairs for the downregulated candidate genes and
157 node pairs for the upregulated candidate genes. Cytoscape software was applied
for visualizing the PPI network and respective top 10 hub genes were identified using
CytoHubba. The expression values of hub genes in the PPI network were subsequently
validated through Oncopression database followed by quantitative real-time polymerase
chain reaction (qRT-PCR) in HB and matched normal liver tissues, resulting in six
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significant downregulated genes and seven significant upregulated genes. The miRNA–
mRNA interaction network was finally constructed. In conclusion, we uncover various
miRNAs, TFs, and hub genes as potential regulators in HB pathogenesis. Additionally,
the miRNA–mRNA interaction network, PPI modules, and pathways may provide
potential biomarkers for future HB theranostics.

Keywords: hepatoblastoma, miRNA, mRNA, PPI, TF

INTRODUCTION

Hepatoblastoma (HB) is a rare disease with an annual incidence
of 1.5 cases per million children per year (Spector and Birch,
2012). Nevertheless, it is the predominant hepatic tumor in
the pediatric population (Schnater et al., 2003). The past three
decades have witnessed a consistently increasing incidence of HB
(Linabery and Ross, 2008). Surgical resection and chemotherapy
have dramatically improved the prognosis for HB children,
with the 3-years event-free survival (EFS) > 80% (Aronson
et al., 2014). However, there are limited therapeutic strategies
for advanced HB children, with the 3-years EFS of only 34%
(Semeraro et al., 2013). In addition, patient survivors may suffer
severe side effects of chemotherapeutic or immunosuppressive
agents. Therefore, there is an urgent need to unveil the molecular
mechanisms underlying this rare tumor in order to identify novel
biomarkers for therapeutic tailoring.

MicroRNAs (miRNAs) are ∼22 nucleotide non-coding RNAs
that post-transcriptionally suppress messenger RNAs (mRNAs)
expression (Lou et al., 2019). Through base-pairing interactions
with mRNAs, miRNAs play crucial roles in proliferation (Roy
et al., 2017), apoptosis (Liu et al., 2020), epithelial-mesenchymal
transition (Weng et al., 2019), and autophagy (Kuang et al.,
2020) of human cells. Moreover, the dysregulated expression of
miRNA is associated with the pathogenesis of various human
tumors, including HB (Cui et al., 2019b). In the context of
HB, miR-193a-5p promotes proliferative, migrative, and invasive
properties of HB through targeting DPEP1 and augmenting
PI3K/AKT/mTOR signaling pathway (Cui et al., 2019a); miR-
492 serves as an endogenous tumor-promoting factor to induce
proliferation, anchorage-independent growth, migrative and
invasive properties of HB cells by targeting CD44, and high level
of miR-492 expression is correlated with high-risk or aggressive
HB (von Frowein et al., 2018); miR-21 enhances apoptosis in
HB cells through targeting ASPP2 and augmenting ASPP2/p38
signaling pathway (Liu et al., 2019). In other words, the intimate
relationship between altered expression of certain miRNA and
its target gene has been uncovered in HB. Transcription factors
(TFs) are endogenous proteins that regulate the transcription
process of mRNAs or miRNAs. The function of TFs can be either
oncogenic or tumor suppressive depending on context (Lambert
et al., 2018). Recently, multiple TFs have been demonstrated to
modulate the aggressive phenotype and cellular process in HB
development (Zhang et al., 2019; Nakra et al., 2020; Wagner et al.,
2020).

In recent years, high-throughput technologies have enabled
us to identify the key genes, miRNAs, and TFs in the initiation
and progression of human tumors. To date, there has been

a scarce number of integrated genome-wide studies on HB
(Zhang L. et al., 2018; Aghajanzadeh et al., 2020) via research
on several cases or one dataset. To gain a better understanding
of the underlying mechanisms behind HB, this study aimed
to explore the miRNA–mRNA interaction network, TFs, and
biological pathways involved in HB through comprehensive
bioinformatic approaches.

MATERIALS AND METHODS

Data Retrieval and Extraction
HB-related data were obtained from the Gene Expression
Omnibus (GEO1) database portal via the keyword
“hepatoblastoma.” The dataset was included when all four
items of the following criteria were met: (1) there were both HB
and normal liver samples; (2) the dataset had miRNA or mRNA
transcriptome data; (3) data for all samples were completely
presented; (4) HB and normal liver samples could be clearly
distinguished using principal component analysis (PCA). After
screening, we chose one mRNA dataset (accession number:
GSE131329) and one miRNA dataset (accession number:
GSE153089) for further analysis. GSE131329 (Hiyama et al.,
2019), consisting of 53 HB samples and 14 normal liver samples,
was analyzed via GPL6244 platform (Affymetrix Human Gene
1.0 ST Array). GSE153089 (Honda et al., 2020), comprising of
30 HB samples and 14 normal liver samples, was analyzed via
GPL21572 platform (Affymetrix Multispecies miRNA-4 Array).
General information of the two datasets used for the present
study is shown in Supplementary Table 1.

The GSE153089 dataset included nine specimens from
metastatic tumor, 21 specimens from primary tumor (11 fetal
subtypes and 10 embryonal subtypes), and 14 specimens from
surrounding normal liver (Honda et al., 2020). Due to the lack
of metastatic tumor samples in the GSE131329 dataset (Hiyama
et al., 2019), we excluded all specimens from metastatic tumor
in the GSE153089 dataset before further analysis. The remaining
specimens in the GSE153089 dataset were subsequently divided
into three groups, namely, normal surrounding liver, fetal-
type tumor, and embryonal-type tumor groups. Each patient in
the GSE153089 dataset possessed no more than one specimen
from the same group except for patient 7. There were two
fetal-type tumor specimens for patient 7 (Sample ID: 25F-1
and 25F-2), one (Sample ID: 25F-2) of which was randomly
excluded for further analysis. Detailed information of samples

1https://www.ncbi.nlm.nih.gov/geo/
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in the GSE153089 dataset used for the present study is listed in
Supplementary Table 2.

Screening of Differentially Expressed
miRNAs and Differentially Expressed
mRNAs
Raw data files (∗.CEL) of GSE153089 and GSE131329 were
imported using the oligo (Carvalho and Irizarry, 2010) R
package. The data were sequentially filtered, background
corrected, log base 2 transformed, and normalized. Based on the
platform annotation information, gene symbol was obtained via
conversion of the probe. If one gene symbol corresponded to two
or more probes, the mean expression level of these corresponding
mRNAs or miRNAs was treated as the final expression value.
Before and after clustering and removing outliers, we detected
the distribution patterns of HB and normal liver samples via
PCA. DE-mRNAs and DE-miRNAs were then detected using
the limma R package (17). An adjusted P < 0.05 and | log2FC|
> 1 indicated statistical significance. Benjamini–Hochberg (BH)
method was used to adjust the P value. Regarding the GSE131329
dataset, DE-mRNAs were obtained based on the comparison
between HB and normal liver samples. As for the GSE153089
dataset, the first cluster of DE-miRNAs were detected between
fetal-type tumor and normal liver groups, while the second
cluster of DE-miRNAs were detected between embryonal-type
tumor and normal liver groups. Through the intersection of these
two clusters of DE-miRNAs, the upregulated or downregulated
hub miRNAs were obtained.

Prediction of Potential TFs and Target
Genes of Hub miRNAs
Based on the hub miRNAs, we predicted the upstream TFs via
TransmiR v2.0 (Tong et al., 2019), an easy-accessible public

tool integrating experimentally verified TF-miRNA regulatory
relationships from the publications. The Cytoscape software
was subsequently utilized to visualize TF-miRNA regulatory
relationships (Shannon et al., 2003). In addition, miRNet
database was used for the prediction of the downstream target
genes of hub miRNAs (Fan et al., 2016).

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Analyses
To further explore functional annotation of the candidate genes,
we performed Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analyses via the clusterProfiler
R package (Yu et al., 2012). GO terms consisted of biological
process (BP), cellular component (CC), and molecular function
(MF). An adjusted P < 0.05 was considered significantly
enriched, and BH method was used to adjust the P value.

Protein–Protein Interaction Network
To unveil the relationships between the candidate genes, we
established the PPI network via the STRING database (Szklarczyk
et al., 2015). PPI pairs were considered significant with a
combined score ≥ 0.4. Cytoscape software was subsequently
applied to visualize the network (Shannon et al., 2003). On
the basis of the degree obtained through Cytoscape plugin
CytoHubba (Chin et al., 2014), top 10 hub genes were detected
in the PPI network.

Hub Genes Verification Through
Oncopression Database
We applied Oncopression database2 to validate expression levels
of top 10 up-regulated hub genes and top 10 down-regulated

2http://oncopression.com/

FIGURE 1 | Differentially expressed microRNAs analysis of the GSE153089 dataset. (A) DE-miRNAs between fetal-type tumor and normal liver samples were
visualized via volcano plot. (B) DE-miRNAs between embryonal-type tumor and normal liver samples were visualized via volcano plot. Red points representing
up-regulation; blue points indicating down-regulation; gray points representing normal expression. DE-miRNAs, differentially expressed microRNAs.
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FIGURE 2 | Putative TFs and target genes of the hub miRNAs. (A) The intersection of the two clusters of upregulated DE-miRNAs. (B) The intersection of the two
clusters of downregulated DE-miRNAs. Putative TFs for (C) upregulated or (D) downregulated hub miRNAs. (E) Upregulated or (F) downregulated hub
miRNA-target gene network. DE-miRNAs, differentially expressed microRNAs; TFs, transcription factors.

hub genes. Oncopression is a web-based integrated gene
expression profile using single sample normalization method
UPC (Lee and Choi, 2017).

Tissue Samples
Hepatoblastoma and matched normal liver tissue samples from
eight children undergoing surgical excision for primary HB were
obtained from our hospital between 2014 and 2019. None of the
patients received adjuvant radiotherapy or chemotherapy prior to
surgery. Tissues were stored at −80◦C immediately after harvest

until further use. The pathological diagnosis of the tissue adjacent
to each frozen tissue specimen was confirmed by at least two
independent pathologists.

RNA Extraction and Quantitative
Real-Time Polymerase Chain Reaction
Total RNAs were isolated from the tissues using TRIzol reagent
(Life Technologies, Carlsbad, CA, United States). Total mRNA
was subsequently reverse-transcribed to produce complementary
DNA (cDNA) using TaKaRa reverse transcription kit (TaKaRa
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FIGURE 3 | Intersection of target genes of hub miRNAs and corresponding DE-mRNAs. (A) DE-mRNAs between HB and normal liver samples in the GSE131329
dataset were visualized using volcano plot. Red points representing up-regulation; blue points indicating down-regulation; gray points representing normal
expression. The intersection of target genes of (B) upregulated or (C) downregulated hub miRNAs and corresponding DE-mRNAs. DE-mRNAs, differentially
expressed mRNAs.

Bio, Shiga, Japan). The SYBR Green fluorescence system (Roche,
IN, United States) was used, and mRNA qRT-PCR was performed
using a quantitative mRNA kit (TaKaRa Bio, Shiga, Japan).
Based on the 2−11Ct method, the relative mRNA levels
were normalized to GAPDH mRNA levels. All primers were
synthesized by Sangon (Shanghai, China). The sequence of
primers is summarized in Supplementary Table 3.

Statistical Analysis
We conducted data analysis and visualization using R software
(version 3.6.3) and GraphPad Prism (version 8.0.1). The
expression levels of mRNAs or miRNAs between groups in the
datasets were compared via a moderated t-test. For differential
expression analysis of mRNAs or miRNAs in the datasets, a P
value < 0.05 and | log2FC| > 1 were considered statistically
significant. The mRNA expression levels of hub genes in HB and
matched normal liver tissues from our hospital were statistically
analyzed by a paired Student t test, and P values below 0.05 were
considered significant.

RESULTS

Hub miRNAs Identification
The expression levels of fetal-type tumor and normal
liver samples in the GSE153089 dataset prior to and after
normalization are shown (Supplementary Figures 1A,B). PCA
results before and after removing outliers (GSM4633970,
GSM4633988, and GSM4633998) are also presented
(Supplementary Figures 1C,D). Based on the differential
expression analysis, we detected 41 upregulated DE-miRNAs and
36 downregulated DE-miRNAs, which are presented via volcano
plot in Figure 1A. In addition, these DE-miRNAs between
fetal-type tumor and normal liver samples were regarded as the
first cluster of DE-miRNAs.

The expression values of embryonal-type tumor and normal
liver samples in the GSE153089 dataset prior to and after
normalization are shown (Supplementary Figures 2A,B). PCA
results before and after removing outliers (GSM4633970

and GSM4633988) are also presented (Supplementary
Figures 2C,D). Through the differential expression analysis, we
detected 37 upregulated DE-miRNAs and 33 downregulated
DE-miRNAs, which are presented via volcano plot in Figure 1B.
Additionally, these DE-miRNAs between embryonal-type
tumor and normal liver samples were regarded as the second
cluster of DE-miRNAs.

Through the intersection of the aforementioned two clusters
of DE-miRNAs, a total of 33 upregulated DE-miRNAs and
12 downregulated hub miRNAs were obtained (Figures 2A,B).
Detailed information of respective hub miRNAs is also listed
(Supplementary Tables 4,5).

TFs and Target Genes Predicted by Hub
miRNAs
As for the upregulated hub miRNAs, the predicted TFs included
HNF4A, GTF2I, CEBPB, CREB1, MAZ, NR3B3, SHP, KLF4,
PKM, and EED (Figure 2C). Regarding the downregulated hub
miRNAs, the predicted TFs included NR3B3, SHP, CDKN1A,
KLF3, USP7, and HSF2 (Figure 2D). Detailed information
of the TFs predicted for the upregulated or downregulated
DE-miRNAs is also listed (Supplementary Tables 6,7). Apart
from the predicted TFs, we also predicted 5,772 target genes
of the upregulated hub miRNAs and 5,600 target genes of
the downregulated hub miRNAs. Upregulated hub miRNA-
target gene network and downregulated hub miRNA-target gene
network are presented in Figures 2E,F, respectively.

DE-mRNAs Identification
The expression levels of all samples in the GSE131329
dataset before and after normalization are visualized in
Supplementary Figures 3A,B, respectively. PCA results prior
to and after excluding the outlier (GSM3770543) are also
shown (Supplementary Figures 3C,D). We then obtained 580
upregulated DE-mRNAs and 790 downregulated DE-mRNAs,
which are presented via volcano plot in Figure 3A. The
detailed information of these respective DE-mRNAs is listed
(Supplementary Tables 8,9). Subsequently, we intersected the
target genes of upregulated hub miRNAs and downregulated
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FIGURE 4 | Gene Ontology terms and KEGG pathway enrichment analyses of the downregulated candidate genes. (A) The enriched GO-BP terms based on
downregulated candidate genes. (B) The downregulated candidate genes and their enriched GO-BP terms. (C) The enriched GO-CC terms based on
downregulated candidate genes. (D) The downregulated candidate genes and their enriched GO-CC terms. (E) The enriched GO-MF terms based on
downregulated candidate genes. (F) The downregulated candidate genes and their enriched GO-MF terms. (G) KEGG pathway analysis showing the enriched
pathways based on downregulated candidate genes. (H) Heatmap showing specific downregulated candidate genes and their enriched pathways. BP, biological
process; CC, cellular component; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MF, molecular function.
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FIGURE 5 | Gene Ontology terms and KEGG pathway enrichment analyses of the upregulated candidate genes. (A) The enriched GO-BP terms based on
upregulated candidate genes. (B) The upregulated candidate genes and their enriched GO-BP terms. (C) The enriched GO-CC terms based on upregulated
candidate genes. (D) The upregulated candidate genes and their enriched GO-CC terms. (E) The enriched GO-MF terms based on upregulated candidate genes.
(F) The upregulated candidate genes and their enriched GO-MF terms. (G) KEGG pathway analysis showing the enriched pathways based on upregulated
candidate genes. (H) Heatmap showing specific upregulated candidate genes and their enriched pathways. BP, biological process; CC, cellular component; GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MF, molecular function.
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FIGURE 6 | Construction of PPI network based on downregulated or upregulated candidate genes. PPI network of (A) downregulated or (B) upregulated candidate
genes. (C) The top 10 hub genes of downregulated candidate genes based on the node degree. (D) The top 10 hub genes of upregulated candidate genes based
on the node degree. PPI, protein–protein interactions.

DE-mRNAs, resulting in a total of 250 downregulated candidate
genes (Figure 3B). In addition, the intersection of target
genes of downregulated hub miRNAs and upregulated DE-
mRNAs resulted in 202 upregulated candidate genes (Figure 3C).
Detailed information of these downregulated and upregulated
candidate genes is also listed (Supplementary Tables 10, 11).

Functional Annotation Enrichment
Analyses
Biological process analysis indicated that enriched GO terms
for downregulated candidate genes included response to
nutrient levels, response to metal ion, small molecule catabolic
process, and steroid metabolic process (Figure 4A). CC analysis
showed that the candidate genes were markedly enriched
in collagen-containing extracellular matrix, mitochondrial
matrix, vesicle lumen, cytoplasmic vesicle lumen, secretory
granule lumen, and blood microparticle (Figure 4C). In the
process of MF analysis, the candidate genes were markedly
enriched in coenzyme binding, cytokine activity, heme binding,
tetrapyrrole binding, and oxidoreductase activity (Figure 4E).

The complex relationships between these candidate genes
and their related GO terms were visualized using the cnetplot
R package (Figures 4B,D,F). Moreover, KEGG analysis
identified complement and coagulation cascades, TNF signaling
pathway, mineral absorption, and valine, leucine and isoleucine
degradation as markedly enriched pathways (Figure 4G).
Besides, the enriched pathways and their associated candidate
genes were unveiled, which are shown as heatmap in Figure 4H.

We then conducted GO terms analysis based on the
upregulated candidate genes. BP analysis revealed that nuclear
division, organelle fission, mitotic nuclear division, and
chromosome segregation served as the top enriched GO
terms (Figure 5A). CC analysis identified chromosomal
region, spindle, microtubule, and condensed chromosome as
significantly enriched GO terms (Figure 5C). In addition, MF
analytic results revealed microtubule binding, single-stranded
DNA binding, DNA-dependent ATPase activity, DNA helicase
activity, and histone kinase activity as markedly enriched
GO terms (Figure 5E). The complex relationships between
the aforementioned enriched GO terms and their associated
candidate genes are also shown (Figures 5B,D,F). KEGG
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FIGURE 7 | The comparison of hub genes expression levels in HB and normal liver tissue samples from Oncopression database. After UPC-normalization, the
expression levels range from 0 to 1 where 0 and 1 indicate no expression and the highest expression, respectively. *P value < 0.05; **P value < 0.01; ***P
value < 0.001; ****P value < 0.0001.

analysis identified cell cycle, cellular senescence and PI3K-AKT
signaling as significantly enriched pathways (Figure 5G), and the
associations of these pathways and their related candidate genes
were visualized using heatmap (Figure 5H).

PPI Network Construction and Hub
Genes Screening
The downregulated or upregulated candidate genes were
loaded into the STRING database, resulting in the construction
of respective PPI network. A total of 211 node pairs were
obtained for the downregulated candidate genes (Figure 6A),
while 157 node pairs were obtained for the upregulated
candidate genes (Figure 6C). The node pairs were input
into Cytoscape software to visualize genes in respective PPI
network. The respective top 10 hub genes were detected via
Cytoscape plugin CytoHubba (Figures 6B,D). Specifically,
the top 10 upregulated hub genes were CDK1, CCNB1,
KIF11, PLK1, NCAPG, TOP2A, AURKA, TP53, ASPM,
and TPX2, while the top 10 downregulated hub genes
included IL6, DECR1, EGFR, CXCL8, CAT, IGF1, IL1B,
F2, PTGS2, and FOS.

Hub Genes Verification via Oncopression
Database
Oncopression database was utilized to validate the expression
values of respective top 10 hub genes in the PPI network.
As shown in Figure 7, eight of the top 10 downregulated
hub genes (IL6, EGFR, CXCL8, CAT, IGF1, IL1B, PTGS2, and
FOS) had significantly lower expression levels in HB tissue
samples compared to normal liver tissue samples, while nine
of the top 10 upregulated hub genes (CDK1, CCNB1, KIF11,
NCAPG, TOP2A, AURKA, TP53, ASPM, and TPX2) had
markedly higher expression levels in HB tissues in comparison
to normal liver tissues.

Hub Genes Verification via qRT-PCR
Through literature search, we identified AURKA (Zhang Y.
et al., 2018; Tan et al., 2020) and CDK1 (Tian et al., 2021)
as previously reported oncogenic genes in HB. In contrast,
the role of the other 15 hub genes in HB has not been
reported to date or remains controversial. Based on HB and
matched normal liver tissue samples in eight children with
HB, the mRNA expression levels of these 15 hub genes were
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FIGURE 8 | The comparison of hub genes expression levels in HB and normal liver tissues in eight children with HB from our hospital. HB, hepatoblastoma. *P
value < 0.05; **P value < 0.01; ***P value < 0.001; ****P value < 0.0001.

validated by qRT-PCR. The expression levels of EGFR, CAT,
IGF1, IL1B, PTGS2, and FOS were significantly lower for
HB tissues when compared with normal liver tissues. On
the other hand, the expression values of CCNB1, KIF11,
NCAPG, TOP2A, TP53, ASPM, and TPX2 in HB tissues
were significantly higher than those in the normal liver
tissues (Figure 8). Lastly, according to the predicted miRNA–
mRNA pairs and the final verification results, we constructed
the potential miRNA–mRNA interaction network involved in
HB (Figure 9).

DISCUSSION

The extreme rarity of HB has hindered our understanding of its
underlying molecular mechanisms, and the majority of potential
hub genes, DE-miRNAs and TFs in this study were reported
for the first time in HB pathogenesis. Therefore, our work may
serve as an important resource for future studies to unveil
the underlying mechanisms of these key biomarkers and/or
therapeutic targets involved in HB.

The dysregulation of miRNA–mRNA interaction network
in liver is associated with various liver diseases, such as liver
regeneration (Wang et al., 2019) and hepatocellular carcinoma
(Zhang and Du, 2017; Lou et al., 2019). In the context of HB,
previous studies have identified multiple miRNAs as promising
therapeutic targets (von Frowein et al., 2018; Cui et al., 2019a;
Liu et al., 2019). In order to provide an overall picture of
miRNA–mRNA interaction network in HB pathogenesis, we
performed a comprehensive bioinformatic analysis on the basis
of two independent GEO datasets. Among the TFs predicted for
DE-miRNAs in this study, CDKN1A was reported to regulate
the G1/S transition and affect replication and damage repair
of DNA during mitosis (Tokumoto et al., 2003). In addition,
AP2 negatively controls the growth of HepG2 HB cells through
CDKN1A activation (Zeng et al., 1997). USP7, another predicted
TF in this study, was reported to promote proliferation, migration
and invasion of HB cell lines through activation of PI3K/AKT
signaling (Ye et al., 2021). Apart from CDKN1A and USP7,
HNF4A was reported to be essential for Smad2/3 binding regions
in HepG2 HB cells, thus affecting transcription regulated by TGF-
β (Mizutani et al., 2011). Future studies are needed to validate
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FIGURE 9 | The potential miRNA–mRNA interaction network involved in HB. HB: hepatoblastoma.

the molecular mechanisms of KLF4, PKM, and other TFs in the
pathogenesis of HB development.

In the process of functional annotation enrichment analyses,
GO-MF analysis on the basis of downregulated candidate genes
identified enriched terms relating to oxidative stress injury such
as oxidoreductase activity (Figure 4E). Similar to our findings,
previous study also reported that oxidative stress injury plays
an essential role in HB development (Tang et al., 2018). Our
KEGG analysis of the upregulated candidate genes revealed that
the PI3K/AKT pathway is another crucial pathway involved in
HB (Figure 5G). In human embryonal tumors, the PI3K/AKT
pathway is perhaps the most frequently reported pathway with
hyperactivation (Vivanco and Sawyers, 2002; Zhang et al., 2004;
Hartmann et al., 2006). In HB cells, it was reported that
additive anti-tumor effects can be achieved after combination
chemotherapy with PI3K inhibitors (Hartmann et al., 2009).

The cell cycle is composed of the interphase and the mitotic
phase. The interphase, including G1, S, and G2 phases, is
characterized by the synthesis of DNA and proteins (Norbury
and Nurse, 1992). Uncontrolled cell cycle is recognized as a
hallmark of tumor and, therefore, constitutes a major therapeutic
target for the development of anti-tumor agents. Our KEGG
enrichment analysis of the upregulated candidate genes identified
cell cycle as the most significantly enriched pathway in HB
(Figure 5G). For BP within the GO analysis, we found that the
upregulated candidate genes played vital roles in multiple cell
cycle events, including mitotic nuclear division and chromosome
segregation (Figure 5A). Cellular defects that affect chromosome
separation may increase aneuploidy, which in turn accelerate
tumor progression (Pines, 2006). Moreover, other key events that
interfere with the cell cycle were also observed in CC and MF
within the GO analysis (Figures 5C,E).

In addition to the functional annotation enrichment analyses,
almost all the upregulated hub genes obtained in this study,
including CCNB1, KIF11, NCAPG, TOP2A, ASPM, and TPX2,
have been previously reported to be implicated in regulating
cell cycle progression. Indeed, the upregulated cell cycle-related
proteins can accelerate cellular proliferation in human tumors
(Malumbres and Barbacid, 2009). Moreover, the progression
through distinct cell cycle phases is monitored by checkpoints
that allow or prohibit the progression from one stage to another.
Abnormal cell cycle check point hampers the detection and
repair of genetic damage, leading to uncontrolled cell division
and tumorigenesis. The majority of tumor cells exhibit cell
cycle checkpoint defects, among which G1/S phase checkpoint
defect is the most typical one (Zhao et al., 2012). CCNB1 is a
regulatory protein involved in the G2/M cell cycle transition,
and CCNB1 overexpression promotes chromatin bridging by
suppressing separase activation (Nam and van-Deursen, 2014).
In addition, the proliferation of human HB cell line HepG2 is
suppressed by lycorine in a dose-dependent manner through
downregulating cyclin A, CCNB1 and CDK1 (Liu et al., 2018).
Centrosome linker refers to the protein that concatenates
centrosomes during interphase. In the complex of mitotic
spindle assembly, the dissolution of the centrosome linker is
driven by KIF11 (Hata et al., 2019), a motor protein capable
of hydrolyzing ATP. Besides, TPX2 can also regulate mitotic
spindle assembly through kinetochore dependent microtubule
nucleation and AURKA localization (Moss et al., 2009). NCAPG
serves as the regulatory subunit of the condensin complex, which
is essential for the conversion between interphase chromatin
and mitotic chromosome in the presence of topoisomerases
(Kimura et al., 2001). TOP2A, one type of nuclear enzyme,
is critical for removing topological barriers left on DNA

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 August 2021 | Volume 9 | Article 655703

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-655703 August 2, 2021 Time: 13:30 # 12

Chen et al. Hepatoblastoma and miRNA–mRNA Interaction Network

during mitosis (Linka et al., 2007). ASPM is implicated in the
regulation of mitotic spindle and the orchestration of mitotic
processes. Also, the microtubule dynamics at spindle poles are
modulated by ASPM with the help of the katanin complex
(Jiang et al., 2017).

TP53 is famous for its tumor suppressive role in a variety
of human tumors (Aubrey et al., 2018). Interestingly, our
results demonstrated that TP53 plays an oncogenic role in HB
development. Actually, there are two types of TP53, namely,
mutant TP53 (mutp53) and wild type TP53 (wtp53). Missense
mutation is the predominant form of mutp53 and expresses full-
length mutp53 protein (Olivier et al., 2004). Mutp53 cannot
activate the target genes of wtp53 or induce MDM2 expression,
leading to the accumulation of mutp53 proteins in HB (Yue et al.,
2017). Loss of heterozygosity (LOH) represents the phenomenon
that mutp53 may inhibit the function of wtp53 and provide
tumor cells with oncogenic functions (Baker et al., 1990). In
addition, gain of function (GOF) is defined as the effect of mutp53
on promoting proliferation, metastasis, and anti-apoptosis of
tumor cells. A greater number of metastatic tumors was observed
for mice expressing mutp53 when compared with TP53−/− mice
(Lang et al., 2004; Olive et al., 2004). The expression of mutp53
has been associated with chemoresistance in certain tumors due
to GOF and the loss of wtp53 pro-apoptotic function (Yue et al.,
2017). Patients with Li-Fraumeni syndrome and mutp53 were
reported to have earlier development of tumors compared with
those with Li-Fraumeni syndrome and TP53 deletion (Bougeard
et al., 2008). Mutp53 can promote oncogenic cellular changes and
alter cellular transcriptional profile. Therefore, to the best of our
knowledge, the more likely scenario in this study was that most
of over-expressed TP53 proteins in HB may belong to mutp53,
thereby exerting oncogenic functions.

It is common that one dataset consists of a combination of
paired and independent observations, and the terminology for
this described scenario is “partially paired data” (Guo and Yuan,
2017). It should be noted that there are partially paired data
in both datasets used for the present study. However, we did
not take the inherent pairing structure into consideration in the
DE analyses, which can lead to suboptimal results (Kuan and
Huang, 2013). When analyzing partially paired data, the optimal
pooled t-test, the test based on the modified maximum likelihood
estimator, or the paired t-test, is to be recommended under
different conditions in order to improve the statistical power
(Guo and Yuan, 2017). Therefore, ignoring the matching for
partially matched samples is one of the limitations of this study.

In conclusion, our results identify a variety of DE-miRNAs,
TFs, and hub genes as potential regulators in the pathogenesis
of HB. In addition, the miRNA–mRNA interaction network,
PPI modules, and pathways may suggest putative diagnostic
biomarkers or therapeutic targets for future HB theranostics.
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