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This study aims to investigate the prognostic significance of p-JNK in breast cancer
patients receiving neoadjuvant chemotherapy (NACT) and analyze the relationship
between anisomycin, p-JNK. A total of 104 breast cancer patients had NACT were
enrolled in this study. The western blot and immunohistochemistry assays were used
to determine the protein expressions of p-JNK in human breast cancer cell lines and
patients’ cancer tissues. The chi-square test and Fisher’'s exact test were adopted to
gauge the associations between breast cancer and clinicopathological variables by
p-JNK expression, whereas the univariate and multivariate Cox proportional hazards
regression models were used to analyze the prognostic value of p-JNK expression.
The Kaplan-Meier plots and the log-rank test were adopted to determine patients’
disease-free survival (DFS) and overall survival (OS). Findings indicated that the p-JNK
expression had prognostic significance in univariate and multivariate Cox regression
survival analyses. Results of log-rank methods showed that: (1) the mean DFS and
OS times in patients with high p-JNK expression were significantly longer than those
in patients with low p-JNK expression (x° = 5.908, P = 0.015 and % = 6.593,
P = 0.010, respectively). p-dJNK expression is a significant prognostic factor that can
effectively predict the survival in breast cancer patients receiving NACT. Treatment with
the JNK agonist anisomycin can induce apoptosis, lead to increased p-JNK expression
and decreased p-STAT3 expression. Moreover, the p-JNK expression was inversely
correlated with p-STAT3 expression.
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INTRODUCTION

Breast cancer is the most common malignancy for females all over
the world (Santucci et al.,, 2020; Siegel et al., 2020). Accounting
for approximately 30% of all new cancer cases, breast cancer
is the leading cause of cancer-related morbidity and mortality
worldwide among women from 20 to 59 years old (Santucci et al.,
20205 Siegel et al., 2020). Situations in China are even worse. It
is estimated that around 9.6% breast cancer deaths occurred in
China (Fan et al., 2014; Dibden et al., 2020). Since the 1990s, the
incidence of breast cancer in China has been doubling the global
rates (11.6%) (Linos et al., 2008; Bray et al., 2018). Researchers
further estimate that, by 2021, for women aged 55-69 years old,
breast cancer case numbers in China are expected to jump from
less than 60 cases to more than 100 cases per 100,000, resulting
in an unprecedented total of 2,500,000 cases (Linos et al., 2008;
Bray et al., 2018). These daunting numbers, undoubtedly, call
for timely research and innovations that can effectively address
potential needs and wants of Chinese breast cancer patients.

With the help of screening tests, such as mammography
and magnetic resonance imaging, an increasing number of
breast cancer patients have benefited from an early stage
diagnosis. These diagnoses, in turn, can often be effectively
addressed by advanced diagnosis treatments (e.g., fine needle
aspiration and core needle biopsy). However, it is important
to note that approximately 20-25% of patients are diagnosed
with advanced breast cancer (e.g., metastatic breast cancer)
that requires more sophisticated cancer care and management
(Harbeck and Gnant, 2017). In the last several decades,
surgery, often combined with adjuvant chemoradiotherapy,
has been used to treat patients with advanced breast cancer,
distant metastasis, or local recurrence (Harbeck et al., 2019).
However, to date, no treatment is available that has the
potential to cure advanced breast cancer, or significantly
prolongs long-term patient survival. This, in turn, calls
for more effective treatment strategies that can improve
breast cancer patients quality of life and prolong their
survival time.

Neoadjuvant chemotherapy (NACT) is regarded as one of
most effective before-operation therapies in treating cancer,
ranging from esophageal carcinoma, breast cancer, to colorectal
cancer (Das, 2017; Derks and van de Velde, 2018; Montemurro
et al., 2020). For early breast cancer, NACT can help patients
avoid mastectomy by shrinking tumor volume (Mieog et al.,
2007). For patients who need mastectomy, NACT can help
increase breast-conserving surgery’s success rates as well as
the likelihood of eradicating micro metastatic disease (Asselain
et al., 2018; Caldana et al., 2018). Moreover, NACT can provide
useful information about local tumor’s chemosensitivity to
different chemotherapy regimens in vivo, helping clinicians and
oncologists to make evidence-based decisions of subsequent drug
selection (Adamson et al., 2019; Pathak et al., 2019).

Although a plethora of NACT regimens have been applied
in the treatment of breast cancer, there has yet to be an
internationally recognized NACT regimen for treating advanced
breast carcinoma (Klein et al., 2019; Shien and Iwata, 2020).
Some histologic and immunologic indicators, such as hormone

receptor (HR), human epidermal growth factor receptor-2 (HER-
2), and Ki-67 of breast cancer, have significant implications in
the prognosis and choice of treatment for breast cancer (Ge
et al.,, 2015). However, some cases received NACT failed to
achieve tumor regression, furthermore, the prognosis of NACT-
refractory patients would become worse due to the delay in
the curative treatment (Kunnuru et al, 2020). Hence, there
is an urgent need to identify novel and sensitive indicators,
such as mitogen-activated protein kinase (MAPK), to improve
therapeutic options for breast cancer patients and provide better
treatment measures.

A growing body of research indicates that MAPK plays
an important role in regulating inflammatory responses, cell
proliferation and differentiation, stress responses, apoptosis, and
immune response (Chen and Avila, 2019; Wu et al., 2020). MAPK
is often discussed in light of its major subfamilies, which include
the extracellular signal-regulated kinases (ERKs), c-Jun NH2-
terminal kinases (JNKs), and p38 MAPK isoforms as well as
its activated expressions (p-ERK, p-JNK, and p-p38) (Davidson
etal,, 2006). Activation of MAPK is often followed by a cascade of
sequential phosphorylation events, such as the phosphorylation
of MAPKs on threonine and tyrosine residues by specific
upstream MAPK kinases (MEKs or MKKs) (Oh et al., 2020).

Among MARK subfamilies, ERKs are largely activated
by growth factor signals, while JNKs and p38 are largely
activated by a spectrum of stress related stimuli (Haque
et al, 2019; Farkhondeh et al, 2020). It is universally
acknowledged that ERKs promote cell growth, proliferation,
differentiation, while JNKs and p38 mediate apoptotic signals.
The JNKs are the major protein kinases that regulate a
variety of physiological processes, including cell proliferation,
differentiation, and survival, inflammatory responses, as
well as morphogenesis. Subsequently, the JNK pathway
is associated with a number of disease states, including
inflammatory, diabetes, neurodegenerative disorders, and
cancer. It is becoming increasingly clear that the persistent
activation of JNKs is closely related to cancer development,
progression, and metastasis (Izadi et al., 2020; Xu and Hu,
2020). This realization, in turn, has made JNKs attractive
as potential drug targets for therapeutic interventions with
small molecule kinase inhibitors, such as ATP-competitive
and ATP-non-competitive JNK inhibitors (Oh et al, 2019;
Li et al., 2020).

Some studies have indicated that anisomycin is a potent
protein synthesis inhibitor, and have the potential to interfere
with protein and DNA synthesis by inhibiting peptidyl
transferase or the 80S ribosome system (Li et al, 2012).
Anisomycin is a key JNK activator that is known for its ability
to increase levels of phospho-JNK (p-JNK) (Li et al., 2012).
Anisomycin was widely used as an agonist for p38 mitogen-
activated protein kinase (p38 MAPK) and Jun-NH2 terminal
kinase (JNK), as it can induce apoptosis through the activation
of the p38 MAPK and JNK signaling pathways (Nie et al,
2020). Several reports suggest that JNK can be used to study the
formation of primary tumors as a tumor suppressor, where JNK
serves an inhibitory role by mediating the activation of apoptosis
(Reno et al., 2009).
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The activated JNK phosphorylates various substrates, such
as p53, nuclear factor-activated T cells (NFAT) and signal
transducer and activator of transcription 3 (STAT3), could
result in the stimulation of a series of apoptotic signaling
cascades (Cellurale et al., 2012). JNK can also activate the
phosphorylation of the STAT-3 at tyr-705 (Yacobi and Levy,
1975). However, activation of c-Jun NH,-terminal kinase
(JNK) and p-JNK has not been studied in breast cancer
undergoing NACT, and the expression and clinical role of
p-JNK in breast cancer are unknown at present. Hence,
we aim to use anisomycin, a potent activator of JNK,
to (1) examine the role played by JNK in breast cancer
cells and (2) analyze the expression of p-JNK in breast
malignant transformation and in breast cancer patients with
clinical follow-up.

MATERIALS AND METHODS

Patients and Samples

In this study, 104 archived formalin fixed paraffin embedded
(FFPE) breast cancer samples and 65 FFPE adjacent normal
breast tissues were obtained from the Cancer Hospital Chinese
Academy of Medical Sciences in China. All enrolled cases
were diagnosed with the histology by core needle biopsy,
and had received NACT between June of 2009 to December
of 2015. Treatment details (ie., clinical and demographic
data) for all patients were extracted from the patients
medical records. Patients’ clinical and pathological stages
were defined in accordance with the eighth edition of the
American Joint Committee Cancer Staging Manual (AJCC)
(Abdel-Rahman, 2018).

Ethical Approval and Informed Consent

This study was approved by the ethics committee of the
Cancer Hospital Chinese Academy of Medical Sciences and was
performed within the standards of the Declaration of Helsinki
as well as its later amendments for medical research involving
human subjects. Written informed consent was obtained from all
patients before the study.

Classification Standard and Response

Evaluation

The eighth edition of the AJCC and the Union for International
Cancer Control (UICC) were used to evaluate the Tumor
Node Metastasis (TNM) stage groupings (Abdel-Rahman, 2018;
Kandori et al., 2019). Molecular subtypes of breast cancer were
divided into Luminal A, Luminal B HER2-positive, Luminal
B HER2-negative, HER2-enriched and Triple negative (Zhao
et al, 2020). The Miller and Payne grade (MPG) was used
to estimate the histological response, and categorized into five
grades that are in line with the number of tumor cells in
excision/mastectomy specimens compared with the pretreatment
core biopsy. Histologic tumor grades were accessed by the Elston-
Ellis modification of Scarff-Bloom-Richardson grading system,
and based on three factors (Phukan et al, 2015): (1) gland
formation, (2) nuclear features, and (3) mitotic activity. The

response rate was defined based on the Response Evaluation
Criteria in Solid Tumors (RECIST) guidelines, and were stratified
into four groups: (1) complete response (CR) was defined as
the complete remission of the tumor; (2) partial response (PR)
was defined as least a 50% decrease in the tumor volume;
(3) stable disease (SD) was defined as a steady state or a
response less than 50%; and (4) progression of disease (PD)
was defined as an unequivocal increase of at least 25% in
the tumor volume (Freites-Martinez et al., 2020). The sum
of CR and PR forms the clinical objective response rate, the
sum of SD and PD defines the non-clinical response rate,
whereas and the sum of CR, PR and SD constitutes the
clinical benefit rate.

Reagents and Materials

Anisomycin was purchased from TargetMol (Shanghai, China).
Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine
serum (FBS) for cell culture were purchased from Gibco-BRL
(Grand Island, NY, United States). DMEM: F12 (1:1 Mix)
and horse serum for cell culture were purchased from Beijing
fine workmanship industry Biotechnology Co., Ltd (Beijing,
China) and Gibco BRL (Grand Island, NY, United States),
respectively. Cell Counting Kit-8 (CCK-8) reagents were
purchased from Dojindo (Tokyo, Japan). The anti-PARP
antibody (9542), anti-caspase3 antibody (9662), anti-cleaved
caspase-3 antibody (9664), anti-STAT3 antibody (9132) and
anti-p-STAT3 antibody (9131) were purchased from Cell
Signaling Technology (CST, Danvers, MA, United States).
The anti-p-JNK1/2/3 antibody (AP0631) was purchased from
ABclonal Technology (Wuhan, China). The anti-B-actin
antibody (A5316) were purchased from Sigma (St. Louis,
MO, United States).

Cell Culture

Human breast cancer cell lines (MDA-MB-231, MDA-MB-436,
BT549, Hs578T) were obtained from the Beijing Institute of
Genomics in the Chinese Academy of Sciences (Beijing, China).
MDA-MB-231 cells were cultured in Leibovitz’s L-15 medium
supplemented with 10% fetal bovine serum and L-glutamine.
MDA-MB-231 cells were maintained at 37°C in a humidified
cell incubator without CO,. BT549 was cultured in RPMI
1640 medium supplemented with 10% fetal bovine serum,
penicillin (100 U/ml) and streptomycin (100 pg/ml). MDA-
MB-436 and Hs578T cells were conventionally preserved in
DMEM, which contained 10% FBS, 100 U/mL penicillin, 100
pg/mL streptomycin, 4.5 g/L D-Glucose, 5 ml L-Glutamine, and
110mg/L Sodium Pyruvate.

Human mammary epithelial cell line (184B5) was obtained
from the Beijing Institute of Genomics in the Chinese Academy
of Sciences (Beijing, China). And this cell line conventionally
preserved in DMEM: F12 (1:1 Mix), which contained 5% horse
serum, with 15 mM HEPES, 2mM L-glutamine, 100 U/mL
penicillin and 100 pg/mL streptomycin, 20 ng/ml EGF, 100 ng/ml
cholera toxin, 0.01 mg/ml insulin, 500 ng/ml hydrocortisone.
Most of the cells were stored in a humidified cell incubator (at
37°C with 5% CO5), except MDA-MB-231.
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IC50 of Anisomycin in Human Breast

Cancer Cell Lines

In our study, in comparison with the controls, drug concentration
required to inhibit exactly 50% of the cell viability is
considered as the median inhibitory concentration (IC50). The
relative cell viability (%) was calculated using the equation
ODT/ODC x 100% (where ODT represents the absorbance
of the treatment group, and ODC represents the absorbance
of the control group). IC50 values were estimated from the
concentration-response curve. Briefly, the appropriate number of
cells was plated in each well of a 96-well plate and exposed to
different concentrations of anisomycin for 48 h. Subsequently,
the Cell Counting Kit-8 (CCK-8) reagents were added, and
the cells were incubated for 1 h at a dilution of 1:10. At
the end of the incubation, using a microplate reader (BioTek,
Winooski, VT, United States), the absorbance in each well was
measured at 450 nm.

Apoptosis and Western Blot

Apoptosis was analyzed with the FITC Annexin V Apoptosis
Detection Kit (BD biosciences, CA, United States). Western blot
was performed according to the standard protocol. B-actin was
used as an endogenous control. The antibodies used for western
blot in this study were listed with dilutions: PARP, caspase3,
cleaved caspase3, p-JNK STAT3, and STAT3 (1:1000) as well as
B-actin (1:5000).

Immunohistochemistry (IHC)

Breast tumors and normal samples used  for
immunohistochemical analyses were collected from breast
cancer patients treated at the Cancer Hospital Chinese Academy
of Medical Sciences between June of 2009 to December of 2015.
Solutions made of 10% formaldehyde were used to treat fresh
tissue specimens; formalin-fixed (pH 7.0) and paraffin-embedded
archival tumor tissue of each patient were adopted in this study.
5-pm sections were cut from paraffin-embedded blocks for H&E
staining and immunohistochemistry. Then they were dewaxed
in xylene and dehydrated in an alcohol gradient of 100, 95, 85,
and 70%. To deparaffinize, the slides were washed three times
for a duration of 5 min. The endogenous peroxidase activity was
blocked by incubating it in 0.3% hydrogen peroxide following
methanol for 30 min at 37°C. To provide stable pH, we used
phosphate buffered saline (PBS) to wash the slides three times for
5 min. Antigen retrieval was achieved by soaking the slices into
citrate buffer at 95°C for 15 min, and then blocked with 10% goat
serum albumin and incubated with primary antibodies overnight
in a chamber with desired levels of moisture. After washing by
PBS, the slides were incubated with a secondary antibody at room
temperature for an hour before it was washed by PBS once again.
Diaminobenzidine (DAB) was used as a chromogen, and the
sections were counterstained with hematoxylin. The arrays were
scanned by the Aperio Image Scope system (Leica Biosystems,
United States), The antibody used for immunohistochemistry
assay (IHC) in this study were listed with dilution: p-JNK (1:100).
The immunoreactivity of the p-JNK protein were scored on the
basis of the intensity of the predominant cytoplasmic staining

area using the following classification system: 0, negative; 1,
weakly-positive; 2, median-positive; 3, strongly-positive. All
specimens were evaluated by two investigators blinded to the
clinical information of the patients.

Follow-Up

All patients included in this study had postoperative follow-
ups in the hospital inpatients or outpatients every 3 months for
the first to second year, every 6 months for the third to fifth
year after surgery, and then every 12 months from fifth year
forward. Disease-free survival (DFS) was calculated from the date
of the surgery operation to the time when either local recurrence,
distant metastases, relapse, or death (from any reason) occurred.
Overall survival (OS) was defined as the time from the date of
operation to the date of death from any reason or final follow-up.
Survival duration was measured from the date of the operation to
death or at the final follow-up.

Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8.0
and SPSS software version 17.0 (SPSS, Inc., Chicago, IL,
United States). The clinicopathologic categorical variables were
performed as frequencies and percentages (%). Based on the
context, either chi-square test or Fisher’s exact test was adopted to
evaluate the associations between clinicopathological and cancer-
related variables. Patients’ survival rates were calculated with
the help of the Kaplan-Meier method, where the log-rank test
was used to examine the significance of the differences in the
survival rate. The Cox proportional hazards regression model
was used to examine the independent prognostic factors. The
Image] software' was used to analyze cell activity and protein
expression. We evaluated it by using unpaired Student’s ¢-test for
the comparison of two samples and using a one-way ANOVA test
for the comparison of more than two samples. Each experiment
was repeated at least three times, and the quantitative data were
presented as mean =+ standard deviations (SD). a was set at
0.05, and for all statistical analyzes, P values less than 0.05 were
considered statistically significant.

RESULTS

p-JNK Expression in Human Breast
Cancer and Survival in Breast Cancer
Patients

p-JNK Expression in Human Breast Cancer and
Adjacent Normal Breast Tissues

We stained 104 human breast cancer specimens and 65
human adjacent normal breast tissue for p-JNK expression by
immunohistochemistry. In 104 human breast cancer specimens,
36 patient samples (34.6%, 36/104) were observed to negative
or weakly-positive, and 68 patient samples (65.4%, 68/104) were
observed to median-positive or strongly-positive. In 65 human
adjacent normal breast tissues, 34 patient samples (52.3%, 34/65)

'http://rsb.info.nih.gov/ij/
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were observed to negative or weakly-positive, and 31 patient
samples (47.7%, 31/104) were observed to median-positive or
strongly-positive (see Figure 1).

Demographic and Clinicopathologic Characteristics
of Patients

Table 1 shows the clinicopathological characteristics of breast
cancer patients included in the current study. Though both males
and females are susceptible to breast cancer, all patients in our
study were females (median age = 46 years, 27 to 73 years
old). Among all patients, 98 of them were married (94.2%).
A majority of the patients did not have a family history of cancer
(n = 80; 76.9%). Patients’ body mass index (BMI) ranged from
18.08 to 33.73 (median = 23.77). Overall, 64 patients (61.5%)
were diagnosed with premenopausal breast cancer, whereas
the rest of the patients had a postmenopausal breast cancer
diagnosis (n = 40; 38.5%). Moreover, 88 patients (84.6%) had
mastectomy surgery, while 16 (15.4%) patients received breast
conserving surgery. The clinicopathological characteristics were
similar between the two groups (see Table 1). Preliminary
analyses showed that patients with low p-JNK expression were
significantly associated with marital status (x? = 3.973, P = 0.046).

Univariate and Multivariate Cox Regression Survival
Analyses

To analyze the independent prognostic factors, we adopted
both the univariate and multivariate Cox proportional-hazards
analyses, modeled on time-varying p-JNK expression. Univariate
analysis and multivariate analysis were adopted to assess
independent prognostic factors (US-LNM, US-BIRADS, clinical
T stage, clinical N stage, clinical TNM stage, pre-chemotherapy
times, response, tumor size, pathological response, pathological
T stage, pathological N stage, pathological TNM stage, positive
axillary lymph nodes, postoperative chemotherapy, postoperative
endocrine therapy, postoperative targeted therapy, lymph

vessel invasion, p-JNK expression). Results of univariate and
multivariate Cox regression analyses showed that OS was
significantly associated with US-LNM, US-BIRADS, clinical T
stage, clinical N stage, clinical TNM stage, pre-chemotherapy
times, tumor size, pathological response, pathological T stage,
pathological N stage, pathological TNM stage, postoperative
chemotherapy, postoperative endocrine therapy, postoperative
targeted therapy, lymph vessel invasion, p-JNK expression (see
Supplementary Table 1).

DFS and OS for the p-JNK Expression of Patients
Patients with high p-JNK expression had prolonged DES and OS,
as indicated by results of univariate analyses (P = 0.031, hazard
ratio (HR): 0.276, 95% confidence interval (CI): 0.086-0.890
and P = 0.004, HR: 0.176, 95% CI: 0.053-0.581, respectively).
Furthermore, patients with high p-JNK expression were also
related to prolonged DFS and OS by multivariate analysis
(P = 0.003, HR: 0.214, 95% CI: 0.077-0.597 and P = 0.007,
HR: 0.194, 95% CI: 0.059-0.633, respectively; Supplementary
Table 1). The mean DFS and OS for all enrolled cases with
low p-JNK expression were 35.97 months (range from 4.67
to 85.07 months) and 58.40 months (range from 6.43 to
119.03 months), respectively; and the mean DFS and OS for all
patients with high p-JNK expression were 38.66 months (range
from 6.23 to 101.30 months) and 61.88 months (range from 14.47
to 133.50 months), respectively. The mean DFS and OS times
in patients with high p-JNK expression were significantly longer
than those in patients with low p-JNK expression by using log-
rank methods (%2 = 5.908, P = 0.015 and ¥? = 6.593, P = 0.010,
respectively; see Figures 2A,B).

Association of Chemotherapy and p-JNK Expression
in Patients

All patients had anthracyclines-based and taxanes-based
neoadjuvant chemotherapy regimens. Among them, 4 patients

4x

A
40 %

Negative

FIGURE 1 | Expression of p-JNK in human breast cancer tissues.
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TABLE 1 | Patients’ demographic and clinicopathologic characteristics.

TABLE 1 | Continued

Parameters Low p-JNK High p-JNK X2 Pvalue Parameters Low p-JNK  High p-JNK x2 P value
Cases (n) 36 68 | 1(2.78%) 3 (4.41%)
Age (years) 0.446 0.504 Il 14 (38.89%) 24 (35.29%)
<46 15 (41.67%) 33 (48.53%) 1} 21(58.33%) 41 (60.29%)
>46 21 (568.33%) 35 (561.47%) Operative time 0.001  0.987
Marital status 3.973 0.046 <90 17 (47.22%) 32 (47.06%)
Married 36 (100.00%) 62 (91.18%) >90 19 (52.78%) 36 (52.94%)
Unmarried 0 (0.00%) 6 (8.82%) Type of surgery 0.095 0.758
Family history 0.023 0.880 Mastectomy 31(86.11%) 57 (83.82%)
No 28 (77.78%) 52 (76.47%) Breast-conserving surgery 5(13.89%) 11 (16.18%)
Yes 8 (22.22%) 16 (23.53%) Tumor size 0.231  0.891
BMI 0.042 0.837 <2cm 15 (41.67%) 30 (44.12%)
<23.77 18 (50.00%) 34 (560.00%) >2and <5cm 19 (652.78%) 33 (48.53%)
>283.77 18 (50.00%) 34 (50.00%) >5cm 2 (5.56%) 5 (7.35%)
Menopause 0.239 0.625 Histologic type 0.635 0.465
No 21 (568.33%) 43 (63.24%) Ductal 36 (100.00%) 67 (98.53%)
Yes 15 (41.67%) 25 (36.76%) Lobular 0 (0.00%) 1(1.47%)
ABO blood type 0.105 0.999 Histologic grade 4445 0.108
A 10 (27.78%) 18 (26.47%) | 4 (11.11%) 2 (2.94%)
B 12 (33.33%) 22 (32.35%) Il 24 (66.67%) 41 (60.29%)
¢} 9 (25.00%) 19 (27.94%) Il 8 (22.22%) 25 (36.76%)
AB 5 (13.89%) 9 (13.24%) Pathological TNM classification
Tumor site 0.350 0.554 Pathological T stage 0.264  0.992
Right 17 (47.22%) 28 (41.18%) Tis/TO 1(2.78%) 3 (4.41%)
Left 19 (562.78%) 40 (58.82%) ™ 14 (38.89%) 24 (35.29%)
US-Primary tumor site 1.327 0.857 T2 17 (47.22%) 33 (48.53%)
Upper outer quadrant 24 (66.67%) 46 (67.65%) T3 2 (5.56%) 4 (5.88%)
Lower outer quadrant 4 (11.11%) 4 (5.88%) T4 2 (5.56%) 4 (5.88%)
Lower inner quadrant 1(2.78%) 2 (2.94%) Pathological N stage 3.468 0.483
Upper inner quadrant 6 (16.67%) 12 (17.65%) NO 12 (33.33%) 18 (26.47%)
Central 1(2.78%) 4 (5.88%) N1 12 (33.33%) 15 (22.06%)
US-Tumor size 0.698 0.705 N2 4 (11.11%) 9 (13.24%)
<2cm 9 (25.00%) 14 (20.59%) N3 8 (22.22%) 26 (38.24%)
>2and <5cm 24 (66.67%) 45 (66.18%) Pathological TNM stage 2.230 0.681
>5cm 3(8.33%) 9 (13.24%) Tis/TO 1(2.78%) 1(1.47%)
US-LNM 0.003 0.960 | 5 (13.89%) 11 (16.18%)
No 24 (66.67%) 45 (66.18%) Il 16 (44.44%) 21 (30.88%)
Yes 12 (33.33%) 23 (33.82%) 1} 14 (38.89%) 35 (51.47%)
US-BIRADS 3.654 0.161 Total lymph nodes 0.058 0.810
4 4(11.11%) 6 (8.82%) <23 15 (41.67%) 30 (44.12%)
5 10 (27.78%) 32 (47.06%) >23 21(58.33%) 38 (55.88%)
6 22 (61.11%) 30 (44.12%) Positive lymph nodes 1.700 0.192
Clinical stage <2 18 (60.00%) 25 (36.76%)
Clinical T stage 0.218 0.994 >2 18 (50.00%) 43 (63.24%)
™ 5 (13.89%) 8 (11.76%) Total axillary lymph nodes 0.170  0.680
T2 19 (62.78%) 37 (54.41%) <23 17 (47.22%) 35 (51.47%)
T3 7 (19.44%) 12 (17.65%) >23 19 (52.78%) 33 (48.53%)
T4 5 (13.89%) 11 (16.18%) Positive axillary lymph nodes 1.700 0.192
Clinical N stage 2.582 0.630 <2 18 (50.00%) 25 (36.76%)
NO 6 (16.67%) 14 (20.59%) >2 18 (50.00%) 43 (63.24%)
N1 15 (41.67%) 18 (26.47%) Postoperative chemotherapy 0.421 0.517
N2 11 (30.56%) 25 (36.76%) No 4 (11.11%) 5 (7.35%)
N3 4 (11.11%) 11 (16.18%) Yes 32 (88.89%) 63 (92.65%)
Clinical TNM stage 0.262 0.877 Postoperative radiotherapy 0.422 0.516
(Cntinued) (Cntinued)
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TABLE 1 | Continued

Parameters Low p-JNK High p-JNK X2 P value
No 10 (27.78%) 15 (22.06%)
Yes 26 (72.22%) 53 (77.94%)

Postoperative endocrine therapy 0.514 0.474
No 18 (60.00%) 29 (42.65%)
Yes 18 (560.00%) 39 (57.35%)

Postoperative targeted therapy 1.704  0.192
No 22 (61.11%) 50 (73.53%)
Yes 14 (38.89%) 18 (26.47%)

received the AC/ACF regimen, 10 patients received the CT/ACT
regimen, 53 patients received the AT regimen, 25 patients
received TP/ATP regimen, 10 patients received T regimen,
whereas 2 patients had other regimens (e.g., ACTP, X regimen).
The clinical objective response rate (CR + PR) was 57.7%
(60/104), the clinical benefit rate (CR + PR + SD) was 99.0%
(103/104), while the non-clinical response rate (SD + PD) was
42.3% (44/104). The Miller-Payne grading (MPG) system was
used to evaluate patients’ pathological response, and the grade
1 rate was 8.7% (9/104), the grade 2 rate was 40.4% (42/104),
the grade 3 rate was 46.2% (48/104), the grade 4 rate was 1.0%
(1/104), and the grade 5 rate was 3.8% (4/104). The pathological
response of pCR rate was 5.8% (6/104), and the pathological
response of non-pCR rate was 94.2% (98/104). Overall, most
patients had postoperative chemotherapy (n = 95; 91.3%), only 9
patients (8.7%) did not receive postoperative chemotherapy. And
there was no significance difference among these chemotherapy
parameters (see Table 2).

Association of Pathology Parameters
and p-JNK Expression in Patients

Prior to chemotherapy, patients molecular subtypes were
diagnosed by core needle biopsy. Analyses showed that 35
patients had Luminal B HER2 negative subtype, 32 patients
were triple-negative subtype, 15 patients categorized with
HER2-enriched subtype, 14 patients were Luminal B HER2
positive subtype, and 8 patients had Luminal A subtype.
Furthermore, 57 patients were Luminal type and 47 patients
were non-Luminal type, 32 patients were triple-negative type
and 72 patients were non-triple-negative type, 15 patients were
HER?2 enriched type and 89 patients were non-HER2 enriched
type. Among these different molecular subtypes, the results
indicated that molecular by HER2 status were significantly
different by p-JNK expression (x> = 4.990, P = 0.025, see
Table 3).

After operation, we also detected different molecular subtypes
in patients by postoperative pathology (IHC). The molecular
subtypes were shown in Table 3. We divided these molecular
subtypes were into four categories: Luminal A, Luminal B,
HER2-enriched, and triple-negative. Results of the log-rank
test showed that the mean DFS and OS times for patients in
molecular subtypes were not significant (x? = 2.812, P = 0.422,
see Figure 3A, and x? = 2.757, P = 0.431, see Figure 3B,
respectively). We found that mean DFS and OS times in patients

with high p-JNK expression were longer than those in patients
with low p-JNK expression in Luminal A (49.50 months vs
36.75 months, 68.35 months vs 51.57 months, respectively) and
Luminal B molecular subtypes(37.24 months vs 35.48 months,
62.70 months vs 52.90 months, respectively). Whereas mean
DFS and OS time in patients with high p-JNK expression
was similar to patients with triple-negative molecular subtype
(36.98 months vs 37.90 months, 65.44 months vs 65.42 months).
However, the mean DFS and OS times in patients with high
p-JNK expression were shorter than those in patients with
low p-JNK expression in HER2-enriched molecular subtype
(32.28 months vs 33.26 months, 41.67 months vs 57.56 months,
respectively). Findings showed that the mean OS time in
patients with high p-JNK expression was significantly longer
than that in patients with low p-JNK expression in the
Luminal B molecular subtype (x2 = 3.950, P = 0.047) (see
Figures 3C-J).

Correlation Between Lymph Vessel Invasion and
p-JNK Expression in Patients

According to univariate and multivariate analyses, the
lymph vessel invasion was a significant prognostic factor
(see Supplementary Table 1). To further investigate the
prognostic efficiency of p-JNK expression, we analyzed the
lymph vessel invasion by p-JNK expression. The lymph vessel
invasion status was divided into two categories: without lymph
vessel invasion and with lymph vessel invasion. The mean
DES and OS in patients without lymph vessel invasion were
43.13 months and 65.61 months with high p-JNK expression;
39.42 months and 64.76 months with low p-JNK expression,
respectively. The results indicated that the mean DFS and OS
times in patients with high p-JNK expression by the log-rank test
were longer than those in patients with low p-JNK expression
without lymph vessel invasion (x> = 2.715, P = 0.099 and
x> = 3.477, P = 0.062, respectively; Figures 4A,B). The mean
DFS and OS times in patients with lymph vessel invasion were
25.96 months and 48.31 months with low p-JNK expression;
37.57 months and 57.77 months with high p-JNK expression,
respectively. The results indicated that the mean DFS and
OS times in patients with high p-JNK expression by the log-
rank test were longer than those in patients with low p-JNK
expression with lymph vessel invasion (x? = 4.302, P = 0.038 and
x2 = 14.020, P<0.001, respectively; Figures 4C,D). The results
also indicated that patients with lymph vessel invasion and low
p-JNK expression survived shorter, and had worse prognose (see
Figure 4).

Correlation Between p-JNK Expression and Side
Effects of Chemotherapy

In this study, hematologic and gastrointestinal reactions
were found to be common toxicities after NACT. The
National Cancer Institute-Common Toxicity Criteria (NCI-
CTC) was adopted to evaluate and analyze any potential
side effects of NACT (Eisenhauer et al., 2009). To further
evaluate side effects of NACT, p-JNKs were utilized in
our study. Findings indicated that before-NACT p-JNK
expressions were not significantly related to toxicities

Frontiers in Cell and Developmental Biology | www.frontiersin.org

March 2021 | Volume 9 | Article 656693


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Chen et al.

p-JNK in Breast Cancer

100+ == Low p-JNK (n=36)
== High p-JNK (n=68)
80+

601
401

204

P=0.015

0 T T T T T 1

0 20 40 60 80 100 120
Disease free survival (months)

Cumulative survival rate (%)>

p-JNK expression, assessed by the Kaplan-Meier analysis.
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of enrolled patients, except mouth ulcers (see Table 4).
None of the patients enrolled in the study suffered from
chemotherapy-related deaths.

TABLE 2 | The relationship between patients’ chemotherapy and
p-JNK expression.

Parameters Low p-JNK High p-JNK x2 P value
Cases (n) 36 68
Neoadjuvant Chemotherapy 4.669 0.323
AC/ACF 2 (5.56%) 2 (2.94%)
CT/ACT 3(8.33%) 7 (10.29%)
AT 21 (58.33%) 32 (47.06%)
TP 8(22.22%) 13(19.12%)
Others 2(5.56%) 14 (20.59%)
Pre-chemotherapy times 0.010 0.919
<6 12 (33.33%) 22 (32.35%)
>6 24 (66.67%) 46 (67.65%)
Response 0.701 0.704
PR 20 (55.56%) 40 (58.82%)
sSD 16 (44.44%) 27 (39.71%)
PD 0 (0.00%) 1(1.47%)
Miller and Payne grade 1.542 0.819
1 4(11.11%)  5(7.35%)
2 16 (44.44%) 26 (38.24%)
3 15 (41.67%) 33 (48.53%)
4 0 (0.00%) 1(1.47%)
5 1(2.78%) 3 (4.41%)
Pathological response 1.080 0.299
pCR 0 (0.00%) 2 (2.94%)
non-pCR 36 (100.00%) 66 (97.06%)
Postoperative chemotherapy regimen 3.899 0.564
0 4 (11.11%)  5(7.35%)
AC/ACF 2 (5.56%) 4 (5.88%)
CT/ACT 2 (5.56%) 7 (10.29%)
AT 7(19.44%) 10 (14.71%)
TP 14 (38.89%) 19 (27.94%)
Others 7(19.44%) 23 (33.82%)
Postoperative chemotherapy times 1.495 0.221
<4 14 (38.89%) 35 (561.47%)
>4 22 (61.11%) 33 (48.53%)

Anisomycin Activates JNK and Induces
Apoptosis

Anisomycin Induces Apoptosis in Breast Cancer

To assess the cytotoxicity of anisomycin on breast cancer
cells, cells were treated with anisomycin at the following
concentrations: 100, 50, 10, 5, 1, 0.8, 0.4, 0.2, 0.1, 0.05, 0.01, 0
uM for 48h. Cell viability was analyzed by CCK-8 assay. The
data demonstrated that the IC50 value of human mammary
epithelial cell line (184B5) was 0.3403uM. The IC50 value
of human breast cancer cell lines (MDA-MB-231, MDA-MB-
436, BT549, Hs578T) were 0.1316, 0.1080, 0.0582, 0.1063 pwM,
respectively (see Figure 5A). And 0.2 pM was chosen as the
suitable concentration in the subsequent experiments.

We next investigate the effect of anisomycin on apoptosis.
The breast cancer cells were treated with 0 or 0.2 uM
anisomycin for 48h, and then detected by flow cytometry. As
expected, anisomycin can induce apoptosis in breast cancer cell
lines. Moreover, human mammary epithelial cell line (184B5)
treated with anisomycin showed reduced apoptosis compared
with human breast cancer cell lines (Figures 5B,C). And
we also detected the expression of PARP and caspase-3 by
western blot after adding different concentrations of anisomycin,
and found that breast cancer cells with higher concentration
anisomycin showed significantly increased expression of both
cleaved caspase-3 and cleaved PARP than those with lower
concentration anisomycin (see Figures 6A-E).

Anisomycin Activates JNK and Inhibits the Activation
of STAT3

Anisomycin was known to induce cell death and JNK activation
was required for Anisomycin induced apoptosis (Zhou et al.,
2019; Zhang et al., 2020). We examined the p-JNK expression
by western blot after the treatment of anisomycin in human
breast cancer cell lines (MDA-MB-231, MDA-MB-436, BT549,
Hs578T). The results indicated that anisomycin was a potent
activator of JNK in human breast cancer cell lines. And
anisomycin would present a better option for delineating the
effects of p-JNK expression (Figure 6). Previous studies showed
that STAT3 activation is mediated by the combined action of JAK,
SRC, c-ABL, and JNKs (Chakraborty et al., 2017). To further
investigate the mechanism of anisomycin inducing apoptosis,
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TABLE 3 | The relationship between patients’ pathology parameters and p-JNK expression.

Parameters Low p-JNK High p-JNK X2 P value
Cases (n) 36 68
Core needle biopsy (Before chemotherapy)
Molecular subtype (common) 7.156 0.128
Luminal A 2 (5.56%) 6 (8.82%)
Luminal B HER2 + 2 (5.56%) 12 (17.65%)
Luminal B HER2- 12 (33.33%) 23 (33.82%)
HER2 enriched 9 (25.00%) 6 (8.82%)
Triple negative 11 (30.56%) 21 (30.88%)
Molecular subtype (by Luminal) 2.387 0.122
Luminal type 16 (44.44%) 41 (60.29%)
non-Luminal type 20 (55.56%) 27 (39.71%)
Molecular subtype (by Triple) 0.001 0.973
Triple negative 11 (30.56%) 21 (30.88%)
non-Triple negative 25 (69.44%) 47 (69.12%)
Molecular subtype (by HER2) 4.990 0.025
HER2 enriched 9 (25.00%) 6 (8.82%)
non-HER2 enriched 27 (75.00%) 62 (91.18%)
ER status 0.784 0.376
Negative 17 (47.22%) 26 (38.24%)
Positive 19 (52.78%) 42 (61.76%)
PR status 0.377 0.539
Negative 16 (44.44%) 26 (38.24%)
Positive 20 (55.56%) 42 (61.76%)
HER2 status 0.369 0.543
Negative (0- + +) 25 (69.44%) 51 (75.00%)
Positive (+ + +) 11 (30.56%) 17 (25.00%)
Ki-67 status 0.317 0.573
Negative (< 14%) 8 (22.22%) 12 (17.65%)
Positive (>14%) 28 (77.78%) 56 (82.35%)
Postoperative pathology (IHC)
Molecular subtype (common) 4.287 0.369
Luminal A 5 (13.89%) 12 (17.65%)
Luminal B HER2 + 1(2.78%) 8 (11.76%)
Luminal B HER2- 8 (22.22%) 15 (22.06%)
HER2 enriched 9 (25.00%) 9 (13.24%)
Triple negative 13 (36.11%) 24 (35.29%)
Molecular subtype (by Luminal) 1.495 0.221
Luminal type 14 (38.89%) 35 (561.47%)
non-Luminal type 22 (61.11%) 33 (48.53%)
Molecular subtype (by Triple) 0.007 0.934
Triple negative 13 (36.11%) 24 (35.29%)
non-Triple negative 23 (63.89%) 44 (64.71%)
Molecular subtype (by HER2) 2.276 0.131
HER2 enriched 9 (25.00%) 9 (13.24%)
non-HER2 enriched 27 (75.00%) 59 (86.76%)
ER status 3.286 0.070
Negative 21 (568.33%) 27 (39.71%)
Positive 15 (41.67%) 41 (60.29%)
PR status 0.487 0.485
Negative 19 (52.78%) 31 (45.59%)
Positive 17 (47.22%) 37 (54.41%)
HER2 status 0.685 0.408
Negative (0- + +) 26 (72.22%) 54 (79.41%)
Positive (+ + +) 10 (27.78%) 14 (20.59%)
(Cntinued)
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TABLE 3 | Continued

Parameters Low p-JNK High p-JNK x2 P value
Ki-67 status 2.350 0.125
Negative (< 14%) 16 (44.44%) 20 (29.41%)

Positive (>14%) 20 (55.56%) 48 (70.59%)
AR status 0.097 0.755
Negative 32 (88.89%) 59 (86.76%)
Positive 4 (11.11%) 9 (13.24%)
CK5/6 status 0.878 0.349
Negative 28 (77.78%) 47 (69.12%)
Positive 8 (22.22%) 21 (30.88%)
E-cad status 0.685 0.408
Negative 10 (27.78%) 14 (20.59%)
Positive 26 (72.22%) 54 (79.41%)
EGFR status 1.279 0.258
Negative 17 (47.22%) 40 (58.82%)
Positive 19 (52.78%) 28 (41.18%)
P53 status 0.009 0.923
Negative 15 (41.67%) 29 (42.65%)
Positive 21 (58.33%) 39 (567.35%)
TOP2A status 0.266 0.606
Negative 9 (25.00%) 14 (20.59%)
Positive 27 (75.00%) 54 (79.41%)
Lymph vessel invasion 0.002 0.961
Negative 21 (58.33%) 40 (58.82%)
Positive 15 (41.67%) 28 (41.18%)
Neural invasion 0.001 0.985
Negative 28 (77.78%) 53 (77.94%)
Positive 8 (22.22%) 15 (22.06%)
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FIGURE 3 | Patients’ DFS and OS for the p-JNK expression, by molecular subtypes. (A) Patients’ DFS by molecular subtypes, assessed by the Kaplan-Meier
analysis. (B) Patients’ OS by molecular subtypes, assessed by the Kaplan-Meier analysis. (C) Patients’ DFS by Luminal A subtype, assessed by the Kaplan-Meier
analysis. (D) Patients’ OS by Luminal A subtype, assessed by the Kaplan-Meier analysis. (E) Patients’ DFS by Luminal B subtype, assessed by the Kaplan-Meier
analysis. (F) Patients’” OS by Luminal B subtype, assessed by the Kaplan-Meier analysis. (G) Patients’ DFS by HER2-enriched subtype, assessed by the
Kaplan-Meier analysis. (H) Patients’” OS by HER2-enriched subtype, assessed by the Kaplan-Meier analysis. (I) Patients’ DFS by triple-negative subtype, assessed
by the Kaplan-Meier analysis. (J) Patients’ OS by triple-negative subtype, assessed by the Kaplan-Meier analysis.
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FIGURE 4 | Patients’ DFS and OS by lymph vessel invasion status. (A) Patients’ DFS without lymph vessel invasion by p-JNK expression, assessed by the
Kaplan-Meier analysis. (B) Patients’ OS without lymph vessel invasion by p-JNK expression, assessed by the Kaplan-Meier analysis. (C) Patients’ DFS with lymph
vessel invasion by p-JNK expression, assessed by the Kaplan-Meier analysis. (D) Patients’ OS with lymph vessel invasion by p-JNK expression, assessed by the
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we used western blot to detect the STAT3/p-STAT3 expression
after the treatment of anisomycin in human breast cancer cell
lines (i.e., MDA-MB-231, MDA-MB-436, BT549, and Hs578T).
The results indicated that anisomycin was a potent inhibitor of
STAT3 in human breast cancer cell lines. In other words, findings
showed that anisomycin induced apoptosis by activating JNKs
and restraining the activation of STAT3 (see Figure 7).

DISCUSSION

Approximately 2.1 million people will be diagnosed with breast
cancer in 2018, effectively making the ever-growing breast
cancer population even larger (Ferlay et al., 2018). Breast
cancer is a heterogeneous disease that can be caused by many
signaling pathways that are responsible for cell proliferation
and cell apoptosis, such as PI3K/AKT/mTOR, JAK/STAT,
PTEN/AKT/MDM2/p53, and AKT/NF-«kB signaling pathway
(Wanetal., 2019; Lee et al., 2020; Martinez-Rodriguez et al., 2020;
Narayanankutty, 2020; Nunnery and Mayer, 2020). Subsequently,
due to genetic variability, different breast patients often exhibit

varied susceptibility to different signaling pathways. Hence,
providing patients with individualized treatments is of critical
importance in helping patients better cope with cancer care and
management. However, although many of potential targets of
treatments exist in breast cancer cells, the mechanism of these
anti-cancer targets is still not clear.

MAPKs can be activated via a kinase signaling cascade in
which a MAP3K activates a MAP2K, and in turn activates a
MAPK. JNKs are subfamilies of MAPKs (Aikin et al., 2020).
There are three proteins of JNKs in mammals: JNK1, JNK2
and JNK3, and they are encoded by three distinctive genes
jnkl (Mapks8), jnk2 (Mapk9), and jnk3 (Mapk10), respectively.
Although JNK1 and JNK2 are expressed in most tissues, JNK3
expression is mainly limited in brain, heart and testis (Kumar
et al., 2015). Upon activation by the upstream MAP2Ks, JNKs
phosphorylate can activate a considerable number of nuclear
and non-nuclear proteins, such as the transcription factor
activator protein-1 (AP-1) (Lee et al., 2020). And these proteins
control a diversity of cellular responses, such as cell growth,
cell proliferation, cell differentiation, cell survival and cell death.
The aberrant expression and activation of JNKs are found in
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TABLE 4 | Correlation between p-JNK expression and patients’
chemotherapy side effects.

Parameters Low p-JNK High p-JNK x2 P value

Cases (n) 36 68

Decreased appetite 0.004 0.949
No 6 (16.67%) 11 (16.18%)
Yes 30 (83.33%) 57 (83.82%)

Nausea 0.017 0.897
No 4 (11.11%) 7 (10.29%)
Yes 32 (88.89%) 61 (89.71%)

Vomiting 0.487 0.485
No 19 (52.78%) 31 (45.59%)
Yes 17 (47.22%) 37 (54.41%)

Diarrhea 0.225 0.635
No 33 (91.67%) 64 (94.12%)
Yes 3(8.33%) 4 (5.88%)

Mouth ulcers 3.851 0.049
No 34 (94.44%) 68 (100.00%)
Yes 2 (5.56%) 0 (0.00%)

Alopecia 0.446 0.504
No 15 (41.67%) 33 (48.53%)
Yes 21 (58.33%) 35 (561.47%)

Peripheral neurotoxicity 0.004 0.949
No 30 (83.33%) 57 (83.82%)
Yes 6 (16.67%) 11 (16.18%)

Anemia 2.781 0.095
Grade O 15 (41.67%) 40 (568.82%)
Grade 1-2 21 (58.33%) 28 (41.18%)
Grade 3-4 0 (0.00%) 0 (0.00%)

Leukopenia 4.347 0.113
Grade 0 11 (30.56%) 13 (19.12%)
Grade 1-2 14 (38.89%) 41 (60.29%)
Grade 3-4 11 (30.56%) 14 (20.59%)

Neutropenia 0.979 0.613
Grade O 7 (19.44%) 13 (19.12%)
Grade 1-2 12 (33.33%) 29 (42.65%)
Grade 3-4 17 (47.22%) 26 (38.24%)

Thrombocytopenia 0.099 0.752
Grade O 28 (77.78%) 51 (75.00%)
Grade 1-2 8 (22.22%) 17 (25.00%)
Grade 3-4 0 (0.00%) 0 (0.00%)

Gastrointestinal reaction 1.910 0.385

Grade 0 4 (11.11%) 8 (11.76%)

Grade 1-2 31 (86.11%) 60 (88.24%)
Grade 3-4 1(2.78%) 0 (0.00%)

Myelosuppression 0.152 0.927
Grade 0 5 (13.89%) 10 (14.71%)
Grade 1-2 10 (27.78%) 21 (30.88%)
Grade 3-4 21 (58.33%) 37 (64.41%)

Hepatic dysfunction 0.131 0.717
Grade 0 22 (61.11%) 44 (64.71%)
Grade 1-2 14 (38.89%) 24 (35.29%)
Grade 3-4 0 (0.00%) 0 (0.00%)

many cancer cell lines and tissue samples (Mohebali et al., 2020;
Qu et al, 2020). In primary hepatocellular carcinoma (HCC),
compared with the non-neoplastic lesions, the activation of JNK1

in tumor size was significantly increased, and absence of JNK1
impaired hepatocyte proliferation and tumor formation (Chang
et al., 2009; Gao et al., 2019). In mice with DEN induced liver
cancer, the levels of activated JNK (p-JNK) were decreased by
D-JNKI-1 injection for inhibited three months in the treatment
group, whereas the levels of p-JNK was continuously expressed
high (Davoli et al., 2014). However, the p-JNK was rarely studied,
especially in breast cancer patients who had NACT.

In order to study the p-JNK expression in breast cancer
patients’ tissues, we stained 104 human breast cancer specimens
and 65 human adjacent normal breast tissue for p-JNK expression
by immunohistochemistry. The results indicated that 65.4% of
reviewed cases were observed to be strongly-positive in human
breast cancer specimens, however, 47.7% of the cases were
observed to be strongly-positive in human adjacent normal
breast tissues. To further analyze the relationship between the
expression of p-JNK and the prognosis of breast cancer patients,
we used the univariate and multivariate Cox proportional-
hazards models to evaluate relevant independent prognostic
factors. The results proved that p-JNK expression was an
independent prognostic factor of DFS and OS. Patients with high
p-JNK expression related to prolonged DFS and OS than those
patients with low p-JNK expression by log-rank methods.

Anisomycin was a potent protein synthesis inhibitor, and was
widely used as an agonist for p38 MAPK and JNK. It is generally
known that anisomycin induced apoptosis in a variety of cell
types through the activation of the p38 MAPK and the JNK
pathway (Li et al., 2018; Yang et al., 2020). In our study, we found
that anisomycin could significantly inhibit cell proliferation and
promote cell apoptosis. The IC50 of human breast cancer cell
lines were higher than human mammary epithelial cell lines.
We also used western blot to detect the expression of cleaved
caspase-3 and cleaved PARP, and found that the expression of
cleaved caspase-3 and cleaved PARP were significantly higher by
high concentration anisomycin. Some studies have proved that
anisomycin was a JNK activator, and also increased phospho-
JNK (Guan et al.,, 2020; Yoon et al.,, 2020). Hence, we used
western blot to detect the p-JNK expression by anisomycin, and
the results indicated that anisomycin was a potent activator of
JNK in human breast cancer cell lines. Combined with cleaved
caspase-3 and cleaved PARP, we found that the p-JNK expression
is positively associated with the cleaved caspase-3 and cleaved
PARP by anisomycin.

JNKs, as subtypes of MAPKs, mediate the stress-dependent
serine phosphorylation of STAT3 (Chen et al, 2013). JNKs
were activated by UV or anisomycin or by their upstream
kinase MEKK1 phosphorylation STAT3 in vitro (Nikaido
et al., 2018). STAT3 was also phosphorylated by cotransfection
of JNKs with MEKK1 in vivo (Ni et al., 2003). And the
experiments confirmed that the major phosphorylation site
of STAT3 by JNKs was identified to be Ser-727 in vitro
(Lim and Cao, 1999; Schuringa et al., 2000; Miyazaki et al.,
2008). The STAT family of transcription factors integrated
cytokine and growth factor signaling to transcriptionally
regulate a diverse array of cellular processes (Corry et al.,
2020). STAT3 had become one of the common investigated
oncogenic transcription factors and was associated with cell
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conditioned with 0 uM or 0.2 uM anisomycin for 48 h. (C) Flow cytometry analyzed apoptosis of 184B5, MDA-MB-231, MDA-MB-436, BT549, and Hs578T.
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MDA-MB-436 (C), BT549 (D), and Hs578T (E) cells were treated with indicated concentration of anisomycin. After being treated with anixomycin for 48 h, western
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proliferation, differentiation, progression, metastasis and
chemoresistance (Qin et al., 2019). STAT3 was activated via the
phosphorylation of Y705 by cytoplasmic non-receptor tyrosine
kinases (Johnson et al., 2018).

One study showed that NSC-743380 modulates functions
of multipathways, including activating MAP kinase JNK and
inhibiting JAK/STAT3 pathway, had potential in vitro and in vivo
antitumor activities (Guo et al, 2011). In our study, we used
western blot to detect the expression of p-JNK and p-STAT3 by
anisomycin, and the results indicated that the protein expression
of p-JNK increased with anisomycin concentration, whereas
the protein expression of p-STAT3 decreased with anisomycin
concentration, and they had the inverse correlation relations.

Meanwhile, as results of univariate and multivariate Cox
regression analyses suggested, occupation, US-LNM, US-
BIRADS, clinical T stage, clinical N stage, clinical TNM stage,
tumor size, pathological T stage, postoperative endocrine

therapy, postoperative targeted therapy, and lymph vessel
invasion were significant prognostic factors in predicting
patients’ improved DFS and OS. Lymph vessel invasion is
thought to play an important role in tumor metastasis, and
acts as the modulation of antitumor immune responses (David
Nathanson et al., 2020; Testa et al., 2020; Wang et al., 2020). The
tumor angiogenesis and its indicative vascular density are closely
related to the prognosis of breast cancer (Huang et al., 2020;
Koch et al., 2020). In our research, the results also indicated that
lymph vessel invasion was the significant prognostic factor, and
the patients with lymph vessel invasion and low JNK expression
survived shorter. Although the molecular subtypes were not
significant prognostic factors by univariate and multivariate
analyses, the mean DFS and OS times in patients with high
JNK expression were longer than those in patients with low
JNK expression in molecular subtypes, especially in Luminal B
molecular subtype.
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Limitations

There are several limitations in this study. Firstly, we only
examined the anisomycin in breast cancer cells, but not in
patients with breast cancer. Future prospective and randomized
controlled trials can further extend our research on anisomycin
in breast cancer patients. Secondly, this study was a retrospective
single-center study and the number of enrolled patients was
not large. Future study can benefit from having more patients
enrolled, and adopting a multicenter study design. Furthermore,
having a large sample size can also help improve rigor in
subgroup analyses.

CONCLUSION

In summary, anisomycin was a potent activator of JNK in human
breast cancer cell lines, and can present a better option for
delineating the effects of p-JNK expression. p-JNK expression, on
the other hand, is a significant and effective prognostic predictor
of survival time in breast cancer patients receiving NACT.
Taken together, we demonstrated that p-JNKs are independent
prognostic markers for breast cancer patients. Further research
should pour more attention into understanding the functions of
p-JNKs and p-STAT3 in breast cancer formation and treatment,
to help clinicians and scholars better understand breast cancer
development and progression, and in turn, offer new insights and
novel solutions that could guide future breast cancer research.
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