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miRNAs, one of the members of the noncoding RNA family, are regulators of
gene expression in inflammatory and autoimmune diseases. Changes in miRNA pool
expression have been associated with differentiation of CD4+ T cells toward an
inflammatory phenotype and with loss of self-tolerance in autoimmune diseases.
Vogt–Koyanagi–Harada (VKH) disease is a chronic multisystemic pathology, affecting
the uvea, inner ear, central nervous system, and skin. Several lines of evidence
support an autoimmune etiology for VKH, with loss of tolerance against retinal
pigmented epithelium-related self-antigens. This deleterious reaction is characterized by
exacerbated inflammation, due to an aberrant TH1 and TH17 polarization and secretion
of their proinflammatory hallmark cytokines interleukin 6 (IL-6), IL-17, interferon γ, and
tumor necrosis factor α, and an impaired CD4+ CD25high FoxP3+ regulatory T cell
function. To restrain inflammation, VKH is pharmacologically treated with corticosteroids
and immunosuppressive drugs as first and second line of therapy, respectively.
Changes in the expression of miRNAs related to immunoregulatory pathways have
been associated with VKH development, whereas some genetic variants of miRNAs
have been found to be risk modifiers of VKH. Furthermore, the drugs commonly used
in VKH treatment have great influence on miRNA expression, including those miRNAs
associated to VKH disease. This relationship between response to therapy and miRNA
regulation suggests that these small noncoding molecules might be therapeutic targets
for the development of more effective and specific pharmacological therapy for VKH. In
this review, we discuss the latest evidence regarding regulation and alteration of miRNA
associated with VKH disease and its treatment.
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INTRODUCTION

miRNAs are short noncoding RNAs (20–23 nucleotides) that finely tune gene expression
(Starega-Roslan et al., 2011). The best-known mechanism of action for gene regulation by
miRNAs is post-transcriptional regulation through RISC-dependent binding or degradation
of the target mRNAs, but other new functions have been described (Wu et al., 2010;
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Ramchandran and Chaluvally-Raghavan, 2017). Recognition of
targets by the miRNA is based on the pairing of a short fragment
(6–8 bases), which allows a single miRNA to bind to and regulate
the activity of multiple targets, pathways, and, thus, cell function.
This feature of miRNA also affects the immune system, and
their dysregulation can lead to immune-related disorders such
as autoimmunity.

The pathogenic role of miRNA in autoimmune diseases stems
from their capability to regulate the activity of major immune-
related pathways and immune cell function. For instance, Toll-
like receptors (TLRs) and their signaling pathways are regulated
by miRNAs, suggesting that miRNA dysregulation could reshape
response toward endogenous DAMPs and foster autoimmunity
(Nahid et al., 2011; He et al., 2014). Moreover, aberrant miRNA
expression disrupts regulatory T cell (Treg) and tolerogenic
dendritic cell function and phenotype stability (Li et al., 2014;
Wu et al., 2018; Dekkema et al., 2019; Lyszkiewicz et al.,
2019; Zhang et al., 2019; Chen et al., 2020; Geng et al., 2020;
Tang et al., 2020). Involvement of miRNA in autoimmune
diseases is also supported by the correlation of miRNA levels
and many disease biomarkers. Let-7f expression is reduced
in active systemic lupus erythematosus (SLE) and negatively
correlates with disease activity index and proteinuria (Geng
et al., 2020), whereas circulating exosomal miR-21 and miR-146a
correlate with anti-SSA and anti-dsDNA levels, respectively (Li
et al., 2020). Several miRNAs correlate with anti-citrullinated
peptide antibodies levels and disease activity score in patients
with rheumatoid arthritis (RA) (De La Rosa et al., 2020).
miRNA may promote autoimmunity through direct binding to
TLR-7/8 (Kim et al., 2016; Hegewald et al., 2020); therefore,
general overexpression of miRNA may facilitate self-tolerance
failure through mechanisms other than regulation on gene
expression. In summary, miRNAs contribute to autoimmunity
through the disruption of immune-related pathways, impairment
of regulatory cell phenotype, or mounting immune response
through TLR engagement.

VOGT–KOYANAGI–HARADA DISEASE

Vogt–Koyanagi–Harada (VKH) disease is a rare autoimmune
disease with ocular and systemic compromise. Ocular
manifestations are characterized mainly by severe bilateral
granulomatous panuveitis, exudative retinal detachments,
and optic nerve edema, with eventual development of ocular
pigmentary changes as late features in advanced phases of
the disease. Systemic symptoms include tinnitus, hearing loss,
vertigo, meningismus, vitiligo, and poliosis (O’keefe and Rao,
2017). A recent study suggests that delayed diagnosis and
inadequate treatment lead to iris deterioration in patients with
chronic recurrent disease (Chee and Win, 2021). VKH disease
generally affects young women and is the leading cause of
noninfectious uveitis with a known etiological factor in many
high-risk populations, including India, Thailand, and Chile,
and a major cause of panuveitis in Tunisia, Iran, Japan, and the
Hispanic population in the United States (Liberman et al., 2015;
O’keefe and Rao, 2017).

VKH etiopathogenesis is only partially understood; however,
several studies provide evidence that the disease is caused by
the immune reaction against pigmented cell–related autoantigens
(Kobayashi et al., 1998; Otani et al., 2006). Therefore,
understanding the mechanisms of immune dysregulation in
the context of VKH is necessary to create more specific and
effective therapies.

CD4+ T Cells and Their Role in VKH
Pathogenesis
As an autoimmune disorder, immune response against self is
an underlying pathogenic mechanism of VKH, leading to the
destruction and functional impairment of the retinal pigment
epithelium and adjacent layers of the eye. Failure of tolerogenic
mechanisms lead to the activation of self-reactive immune
cells, including CD4+ T cells, which are major contributors to
VKH. Increased CD4+ T cell population has been observed in
the aqueous humor and cerebrospinal fluid of VKH patients
(Norose et al., 1990, 1994; Ohta and Yoshimura, 1998). Initial
phenotypical characterization of CD4+ T cells in VKH revealed
an immune response shifted toward the TH1 subset with
increased expression of activation markers CD25 and HLA-DR,
the proinflammatory cytokine interferon γ (IFN-γ), and the
transcription factor T-Bet (Norose and Yano, 1996; Li et al., 2005;
Sugita et al., 2006). Notably, these TH1 cells have cytolytic activity
on melanoma cells and cells expressing peptides related with
pigmented tissues and express memory T cell markers, suggesting
that loss of tolerance toward pigmented epithelium and long-
term TH1 response are a crucial factor in VKH pathogenesis
(Norose and Yano, 1996; Sugita et al., 2006). The introduction of
the TH17 subset expanded the knowledge of the role of CD4+ T
cells in autoimmunity. Interleukin 23 (IL-23) is a cytokine of the
IL-12 family that induces differentiation of CD4+ T cells into the
TH17 subpopulation to secrete the hallmark cytokine IL-17. IL-23
is increased in patients with active VKH (Wang et al., 2018) and is
associated with active uveitis (Chi et al., 2008; Przepiera-Bedzak
et al., 2016; Velez et al., 2016), and its administration enhances
IFN-γ and IL-17 secretion in peripheral blood mononuclear
cells (PBMCs) and isolated CD4+ T cells in vitro (Chi et al.,
2007). Treatment-induced remission is associated with decreased
expression of TH1 and TH17 cytokines and related transcription
factors in PBMCs and CD4+ T cells (Liu et al., 2009).

Treg-inducing mechanisms seem to be defective in VKH; in
a study published by Commodaro et al. (2010), no difference
in the frequency of circulating Treg between controls and VKH
patients, with or without active disease, was found. However, IL-
10 and transforming growth factor β secretion was significantly
stronger in the PBMCs from inactive VKH patients after
in vitro stimulation, whereas IFN-γ was higher in active patients,
without differences between control and inactive VKH groups
(Commodaro et al., 2010). This study suggests that function,
rather than number of Tregs, and maybe other regulatory cells,
is impaired in VKH patients with active disease. In agreement
with this, serum levels of the immunoregulatory cytokine IL-27
are decreased in patients with active VKH, which suppresses IL-
17 expression and promotes IL-10 secretion in naive CD4+ T cells
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(Wang et al., 2012). Another immunoregulatory cytokine, IL-35,
is also decreased in VKH patients, and culturing PBMCs with
anti-CD3 and anti-CD28 antibodies in presence of IL-35 inhibits
secretion of IFN-γ and IL-17 but enhances IL-10 release (Hu
et al., 2019). Altogether, data show that deregulation of CD4+ T
cells is an important event in VKH pathophysiology; therefore,
understanding the mechanisms that cause these changes might
be key for the development of effective therapies for this disease.

Current Pharmacological Therapies for
VKH
Systemic corticosteroids (CSs) (prednisolone) are the mainstay of
clinical management of VKH, with evidence endorsing the use of
high doses at early phases resulting in shorter treatment periods,
reduced disease severity, and better subclinical manifestations
(Chee et al., 2007; Jap et al., 2008; Kitaichi et al., 2008; Kawaguchi
et al., 2010), whereas CS administration for at least 6 months
is key to reduce the risk of recurrence (Lai et al., 2009; Errera
et al., 2011). CS therapy is known to have several side effects,
including systemic (diabetes, Cushing syndrome, osteoporosis)
and eye-related features (cataract, glaucoma, visual impairment)
(Valenzuela et al., 2020b).

Immunomodulatory therapy (IMT), including
mycophenolate mofetil (MMF), methotrexate (MTX),
cyclosporin A (CsA), and azathioprine, is usually used as a
CS-sparing treatment with successful visual acuity improvement
and reduction of sunset glow fundus development in some
reports (Agarwal et al., 2006; Shen et al., 2016; Abu El-Asrar et al.,
2017; Yang et al., 2018; Ei Ei Lin et al., 2020). Early use of CS and
IMT combined as a first-line therapy increases the chances of
remission and lowers the risk of chronic disease compared with
CS monotherapy (Herbort et al., 2017, 2019).

Biologics have been introduced in uveitis management, and
guidelines recommend them upon systemic CS/IMT treatment
failure (Rosenbaum et al., 2019; Valenzuela et al., 2020b). Studies
have shown that the use of adalimumab [anti-tumor necrosis
factor α (TNF-α) antibody] (Couto et al., 2018; Hiyama et al.,
2021) and rituximab (anti-CD20 antibody) (Abu El-Asrar et al.,
2020) improves visual acuity, alleviates inflammation, and allows
for CS tapering. Case reports have shown favorable results for the
use of infliximab (anti-TNF-α) (Wang and Gaudio, 2008; Zmuda
et al., 2013) and intravitreal bevacizumab (anti-VEGF-A) (Wu
et al., 2009; Park et al., 2011) as treatment of VKH.

miRNAs AND THEIR ROLE IN VKH
ETIOLOGY AND TREATMENT

miRNAs as Mediators of VKH
Pathogenesis
miRNAs have been implicated in the development of VKH
disease. Asakage and colleagues recently reported their results
on differentially expressed miRNAs (DEmiRs) in the serum of
patients with noninfectious uveitis, including VKH, using a
microarray approach (Asakage et al., 2020). The results revealed
a set of 188 DEmiRs in VKH patients when compared with

healthy controls (HCs), of which 59 DEmiRs were unique to
VKH when compared with sarcoidosis and Behçet’s disease
(BD). The authors used several approaches such as unsupervised
hierarchical analysis and principal component analysis to show
that VKH is related with a distinctive miRNA expression
profile compared with uveitis of different etiology. Differential
expression and copy number variation (CNV) in several miRNAs
between VKH and BD have been described, probably due to
the difference in the nature of these immunological disorders
(autoimmune/adaptive in VKH vs. autoinflammatory/innate in
BD) (Qi et al., 2013; Zhou et al., 2014; Hou et al., 2016). This
distinctive miRNA expression pattern suggests that a specific
miRNA-mediated mechanism is central to VKH pathogenesis.
A summary of the findings and a brief discussion on the role of
miRNAs involved in VKH are provided in Table 1.

miR-20a: Patients with active VKH have lower expression
of miR-20a-5p in CD4+ T cells compared to HC, which
is associated with a hypermethylated miR-20a-5p promoter
(Chang et al., 2018). Overexpression of miR-20a-5p indirectly
decreases IL-17 expression in VKH CD4+ T cells through
the regulation of oncostatin M and CCL1 expression (Chang
et al., 2018). Accordingly, a comprehensive analysis based
on literature-supported miRNA-mRNA interactions found that
miR-20a may suppress TH17 differentiation through the targeting
of several regulators (Honardoost et al., 2015). Moreover, miR-
20a expression increases upon T cell activation and inhibits
T cell receptor signaling, while also decreasing the expression
of CD69, IL-2, IL-8, and, especially, IL-10 (Reddycherla et al.,
2015). Altogether, evidence suggests that miR-20a participates in
a negative feedback loop that modulates CD4+ T cell activation
and polarization.

miR-23a: A high copy number (>2) of the miR-23a coding
gene is linked to VKH. This CNV directly correlates with

TABLE 1 | miRNAs associated with VKH.

miRNA Association with VKH Immunoregulatory
effect

References

miR-20a Hypermethylated
promoter and
downregulated in
CD4+ T cells

Inhibits TH17
differentiation.
Attenuates TCR
signaling and regulates
cytokine expression in
activated CD4+ T cells.

Qi et al., 2013

miR-23a Increased gene copy
number

Correlates with IL-6
expression in PBMCs.
Regulates the
expression of IL-17 and
HO-1.

Wu et al., 2009

miR-146a Increased gene copy
number

Promotes Treg function.
Inhibits TH17
differentiation.

Wu et al., 2009

miR-182 Association with C
allele of the
rs76481776 variant

Evidence indirectly
suggests a protective
effect in VKH.

Liu et al., 2016

miR-301a Decreased gene copy
number

Promotes TH17 and
TNF-α expression.

Wu et al., 2009

let-7g-3p Good predictor of VKH Unknown. Park et al., 2011
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TABLE 2 | miRNAs involved in response to pharmacological treatment in VKH and
corticosteroid resistance.

Corticosteroid response

miRNA Regulation by
corticosteroids

References

miR-17-92
cluster
(miR-20a)

Downregulation Moschos et al., 2007; Molitoris et al.,
2011

miR-20a Downregulation Moschos et al., 2007

miR-23a Inhibition of maturation Hudson et al., 2014b; Kwok et al., 2017

miR-146a Downregulation Heier et al., 2016; Lambert et al., 2018

miR-182 Downregulation Dong et al., 2020

miR-301a Downregulation Moschos et al., 2007

Corticosteroid resistance

miRNA Contribution to CSR References

miR-15b-16 Prevent CSR Rainer et al., 2009

miR-21 Promotes CSR Wang et al., 2011

miR-29a Promotes CSR Glantschnig et al., 2019

miR-124 Controversial Lv et al., 2012; Kim et al., 2015; Liang
et al., 2017

miR-128b Prevents CSR Kotani et al., 2009

miR-130b Promotes CSR Tessel et al., 2011

miR-182 Promotes CSR Yang et al., 2012; Hudson et al., 2014a

miR-221 Controversial Kotani et al., 2009; Xu et al., 2019

miR-222 Promotes CSR Xu et al., 2019

miR-331-3p Promotes CSR Lucafo et al., 2020

IMT

Drug Effect References

Mycophenolate
mofetil

Upregulates miR-146a
in SLE CD4+ T cells

Tang et al., 2015

Methotrexate Downregulates
miR-146a-5p but
MTX-responsive
patients have increased
levels comapred to
non-MTX-responsive
patients.

Singh et al., 2019

Cyclosporine A Upregulates miR-23a
and miR-182

Van Den Hof et al., 2014; Yang et al.,
2017

Adalimumab Decreases
miR-146a-5p

Prattichizzo et al., 2016; Mensa et al.,
2018

increased miR-23a expression in PBMCs from HC, whereas
overexpression of miR-23a increases IL-6 production in human
retinal pigment epithelial cells (Hou et al., 2016). Conversely,
miR-23a has been shown to restrain IL-17-mediated response by
inhibiting the nuclear factor κB pathway (Hu et al., 2017) and to
facilitate the expression of the immunoregulatory enzyme HO-1
by targeting its inhibitor Bach-1 (Su et al., 2020). Thus, miR-23a
might act as a balancing factor in inflammation with opposing
proinflammatory and anti-inflammatory roles. It is possible that
the effect of miR-23a depends on the tissue it is expressed or is
modified by the inflammatory milieu.

miR-146a: High miR-146a encoding gene copy number has
been linked to VKH disease (Hou et al., 2016). However,

no association with several miR-146 single-nucleotide
polymorphisms (SNPs) was found in a similar study
performed by the same authors (Zhou et al., 2014). The
C allele of one of these SNPs (rs2910164 C > G) impairs
nuclear processing of the pri-miR-146a, leading to lower
mature miR-146a expression in PBMCs (Jazdzewski et al.,
2008; Zhou et al., 2014), indicating that it has a functional
impact. The lack of association of SNPs with VKH and the
increased number of miR-146a encoding gene copies in these
patients suggest that an aberrant overexpression of mature
miR-146a, not its down-regulation, may have a role in the
disease. Evidence supports a tolerogenic effect of miR-146a by
enhancing Treg function (Lu et al., 2010; Zhou et al., 2015)
and impairing TH17 differentiation (Liu et al., 2016; Li et al.,
2017). How a high CNV of miR-146a gene is linked to VKH
is still unknown.

miR-182: The rs76481776 SNP, located in the MIR182 gene,
is associated with a limited expression of mature miR-182 in CC
in versus TT or CT genotypes (Saus et al., 2010). A significant
association with VKH was found for the C allele but not the
T allele of the rs76481776 SNP in a Han Chinese cohort (Yu
et al., 2014). Accordingly, the authors also report that CD4+ T
cells from HC with the CC genotype have a lower expression
of mature miR-182 compared with cells from donors carrying
at least one T allele (Yu et al., 2014). Given the association of
the C allele with VKH, the evidence suggests that miR-182 has
protective role.

miR-301a: A low copy number of the MIR301A gene is
associated with VKH in the Han Chinese population (Hou
et al., 2016). Literature shows that miR-301a promotes TH17
differentiation and TNF-α production by targeting SNIP1 and
PIAS3 (Mycko et al., 2012; He et al., 2016). There seems to
be a contradiction between the low copy number and the
proinflammatory effects of miR-301a in the context of VKH,
although the relationship between CNV and expression has not
been evaluated. A low copy number could sustain enough miR-
301a expression without the activation of compensating negative
feedback mechanisms, promoting inflammation.

Let-7g-3p: In one study, the authors identified a predictive
panel of 24 miRNA in VKH patients, with let-7g-3p being the
best predictor (Asakage et al., 2020), suggesting a strong link
with disease development. A decreased expression of circulating
let-7g-3p was found in Graves disease patients in remission
(Hiratsuka et al., 2016). However, most of the knowledge on the
immunoregulatory effects of let-7g is related with let-7g-5p (Yang
et al., 2020). The role of let-7g-3p in VKH is still unclear.

miRNA in Therapeutic Response
The current pharmacologic treatment for VKH includes
immunosuppressive and immunomodulatory drugs, which are
known to modify the expression of some of the previously
reported VKH-related miRNA, accordingly to in vitro, animal
model, and human studies evidence.

Corticosteroids: The expression of miR-20a, or the cluster
miR17-92 in which it is located, is down-regulated by CS in
mice lung tissue and murine T-cell lymphoma cell line (Moschos
et al., 2007; Molitoris et al., 2011). The same effect is seen
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in miR-301a expression after CS stimulation (Moschos et al.,
2007). Intracellular level of miR-23a is also down-regulated
by dexamethasone (Dex) in both human endothelial cells and
C2C12 myotubes, although the mechanism seems to be different
as the one for miR-20a and miR-301a (Hudson et al., 2014b; Kwok
et al., 2017). The use of Dex reverts the up-regulation of miR-
146 induced by TNF-α in human bronchial epithelial cells in vitro
and also in serum of pediatric patients with Crohn disease (Heier
et al., 2016; Lambert et al., 2018). Finally, Dex decreases the level
of miR-182 in preadipocytes, allowing C/EBPα-driven adipocyte
differentiation (Dong et al., 2020).

MMF: The active metabolite of MMF, mycophenolic acid, is
known to up-regulate miR-146a in T cells from SLE patients after
treatment, according to microarray-based analysis and reverse
transcription–quantitative polymerase chain reaction analysis
(Tang et al., 2015).

MTX: RA patients who exhibit clinical improvement have
higher blood levels of miR-146a-5p and other miRNAs at 4
months after MTX treatment initiation, supporting a mechanistic
link between miR-146a expression and therapeutic response to
MTX (Singh et al., 2019).

CsA: CsA-induced gingivae growth in rats occurs together
with an up-regulation of miR-23a (Yang et al., 2017). The same
effects over miR-23a expression are seen in primary mouse
hepatocytes treated with CsA in vitro (Van Den Hof et al., 2014).

Adalimumab: A significant down-regulation of miR-146a-
5p was observed in PBMCs from psoriasis patients after
adalimumab treatment, reaching levels compared to that of the
HC group (Mensa et al., 2018). Moreover, adalimumab reduced
the expression of miR-146a in THP-1 and endothelial cells in vitro
(Prattichizzo et al., 2016).

It is important to remark that none of the aforementioned
publications established a direct relationship between changes
of the miRNA expression and the therapeutic actions of the
VKH-related drugs. How these drugs modify the levels of
miRNAs is still under investigation, although the mechanisms
behind might include (i) impairment of miRNA maturation, as
CS down-regulates Dicer, Drosha, and DGCR8/Pasha and also
induces G3BP1, all of them key miRNA processing enzymes
(Smith et al., 2010; Kwok et al., 2017; Clayton et al., 2018); (ii)
increasing exocytosis of miRNAs, making them less available
intracellularly (Hudson et al., 2014a,b); (iii) histone modification
in the promoter of miRNA genes by action of MMF or
its active metabolite (Tang et al., 2015; Yang et al., 2015);
and (iv) miRNA gene expression by indirect mechanisms that
include extracellular adenosine signaling after MTX treatment
(Yang et al., 2021). Less known are the mechanisms for CsA
and adalimumab, although both drugs modify the profile
expression of a number of different miRNAs (Gooch et al., 2017;
Wcislo-Dziadecka et al., 2018).

A different but relevant aspect in the pharmacological
treatment of VKH is the refractoriness to CS treatment [CS
resistance (CSR)]. Recently, our group published a systematic
review about CSR, a crucial issue in the management of
uveitides such as VKH, which can be broadly described as
refractory uveal inflammation despite the administration of
high dose of CS (Valenzuela et al., 2020a). The VKH-related

miRNA miR-182 confers CSR inhibiting apoptosis in lymphoma
cells (Yang et al., 2012) and prevents CS-induced atrophy of
skeletal muscle by targeting FOXO3a (Hudson et al., 2014a).
Most data on CSR-related miRNAs involve molecules with
unknown relationship with VKH; a summary of these findings
is provided next as it could guide future research (Table 2).
Evidence shows that a shift in the relative expression of the
GR isoforms α and β after CS treatment constitutes a marker
for CS sensitivity (Urzua et al., 2017, 2019). In this regard,
miR-130b overexpression was found to inhibit GRα expression
and conferred CSR to multiple myeloma cells (Tessel et al.,
2011). Similarly, transfection of miR-331-3p mimic promotes
CS sensitivity in several transformed cell lines by inhibiting
JKN phosphorylation (Lucafo et al., 2020). Other pro-CSR
miRNAs are miR-21, miR-29a and miR-222; conversely, miR-
15b, miR-16, and miR-128b promote CS sensitivity in cancer
cells (Kotani et al., 2009; Rainer et al., 2009; Wang et al.,
2011; Glantschnig et al., 2019; Xu et al., 2019). Evidence for
both pro- and anti-CSR effects of miR-221 and miR-124 has
been reported (Kotani et al., 2009; Lv et al., 2012; Kim et al.,
2015; Liang et al., 2017; Xu et al., 2019). Although CSR is
a slightly different concept in the context of cancer, it also
involves impairment of pharmacological response to CS; hence,
some of these miRNAs might be involved in CSR in VKH
patients as well.

CONCLUSION

VKH is a complex disease with incompletely understood
etiopathogenesis that requires aggressive long-term CS treatment
with a high risk of wasting side effects. Although scarce,
evidence supports a role of miRNAs in the development of VKH
disease, therapeutic response, and even therapy resistance. Future
research in the subject must aim to not only find the association
of miRNAs with VKH and the use of therapy but also determine
potential targets and functional changes caused by the differential
expression of these regulatory RNAs. Successful progress in this
task will contribute to establishing new pharmacological targets
and biomarkers for disease activity and therapy response.
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