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Introduction: SUMOylation is one of the post-translational modifications. The
relationship between the expression of SUMOylation regulators and the prognosis of
glioblastoma is not quite clear.

Materials and Methods: The single nucleotide variant data, the transcriptome
data, and survival information were acquired from The Cancer Genome Atlas, Gene
Expression Omnibus, and cBioportal database. Wilcoxon test was used to analyze
differentially expressed genes between glioblastoma and normal brain tissues. Gene
set enrichment analysis was conducted to find the possible functions. One risk scoring
model was built by the least absolute shrinkage and selection operator Cox regression.
Kaplain—Meier survival curves and receiver operating characteristic curves were applied
to evaluate the effectiveness of the model in predicting the prognosis of glioblastoma.

Results: Single-nucleotide variant mutations were found in SENP7, SENP3, SENP5,
PIAS3, RANBP2, USPL1, SENP1, PIAS2, SENP2, and PIAS1. Moreover, UBE2I, UBA2,
PIAS3, and SENP1 were highly expressed in glioblastoma, whereas PIAS1, RANBP2,
SENP5, and SENP2 were downregulated in glioblastoma. Functional enrichment
analysis showed that the SUMOylation regulators of glioblastoma might involve cell
cycle, DNA replication, and other functions. A prognostic model of glioblastoma was
constructed based on SUMOQOylation regulator-related molecules (ATF7IP, CCNB1IP1,
and LBH). Kaplain—-Meier survival curves and receiver operating characteristic curves
showed that the model had a strong ability to predict the overall survival of glioblastoma.

Conclusion: This study analyzed the expression of 15 SUMOylation regulators in
glioblastoma. The risk assessment model was constructed based on the SUMOylation
regulator-related genes, which had a strong predictive ability for the overall survival of
patients with glioblastoma. It might provide targets for the study of the relationship
between SUMOylation and glioblastoma.
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INTRODUCTION

Glioblastoma is the most malignant intracranial tumor
originating from glial cells. Common treatments for glioblastoma
include microsurgery, the use of chemotherapy drugs, such as
temozolomide, and radiotherapy. However, the prognosis
of patients with glioblastoma is still very poor. Studies have
shown that the 5-year survival rate is only approximately 5%

(Stupp et al., 2009; Ostrom et al., 2017). Due to the high cost of
treatment of glioblastoma and poor treatment effect, it has always
been one of the difficulties in tumor treatment (Cloughesy et al.,
2020; Faria et al., 2020; Reardon et al., 2020). Therefore, it is of
great importance to find effective molecular targets and improve
the prognosis of glioblastoma.

Epigenetic modification is a heritable change in gene
expression without DNA change, which plays a very important
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role in the development of glioblastoma (Kelly and Issa,
2017; Uddin et al, 2020). SUMOylation is one of the post-
translational modifications. Through the catalysis of tertiary
enzymes, the small ubiquitin-like modifier (SUMO) proteins
bind to lysine residues (Rodriguez et al, 2001; Sampson
et al., 2001), which can play various regulatory roles in tumor
subcellular localization and transcription activities (Eifler and
Vertegaal, 2015; Seeler and Dejean, 2017). The process of
SUMOylation requires the activation of three kinds of enzymes
(Johnson, 2004). SUMO-activating enzymes (E1, including SAE1,
UBA2) can form heterodimers and transfers SUMO molecules
to SUMO-conjugating enzyme (E2, including UBE2I). The
SUMO-conjugating enzyme then transfers SUMO molecules
to the lysine residue of the substrate. SUMO ligases (E3,
including PIAS1, PIAS2, PIAS3, PIAS4, and RANBP2) make the
substrate bind more closely to SUMO molecules. In addition,
SUMOylation can be reversed by SUMO proteases (SENPI,
SENP2, SENP3, SENP5, SENP6, SENP7, and USPL1), which is
also called deSUMOylation. However, the relationship between
the expression of SUMOylation regulators and the prognosis of
glioblastoma is not quite clear.

This study aims to analyze the genome and transcriptome
of glioblastoma and explore the expression characteristics and
prognostic value of SUMOylation regulators and their related
molecules in glioblastoma.

MATERIALS AND METHODS

Data Sources
The single-nucleotide variant (SNV) data of glioblastoma came
from The Cancer Genome Atlas (TCGA) database'. The

'https://cancergenome.nih.gov/

transcriptome data of glioblastoma was acquired from the TCGA
database and the Gene Expression Omnibus (GEO) database
(GSE13041 and GSE83300)>. The survival information of the
TCGA dataset came from the cBioportal database’.

Data Processing

Based on the data acquired, the SNV of SUMOylation regulators
of glioblastoma was analyzed by the R language “maftools”
package. The intersection genes of TCGA and GEO datasets
were taken for subsequent expression and prognostic analysis.
Wilcoxon test was used to analyze differentially expressed genes
between glioblastoma and normal brain tissues. A heatmap was
drawn for visualization. Because isocitrate dehydrogenase (IDH)
mutations have a great impact on the prognosis of glioblastoma,
we further analyzed the expression of SUMOylation regulators in
different IDH mutation subgroups.

Functional Enrichment Analysis

To explore the biological functions that SUMOylation might
regulate, the R language “clusterProfiler” package performed
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis of glioblastoma genes.

Construction of a Prognostic Model

To find out the prognostic importance of SUMOylation
regulator-related molecules, a prognostic model of glioblastoma
was constructed. The TCGA dataset was used as the training
group, whereas the GEO datasets (GSE13041 and GSE83300)
were used as the validation group. In the training group,
the differentially expressed genes between glioblastoma and

Zhttps://www.ncbi.nlm.nih.gov/geo/
Shttps://www.cbioportal.org/
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FIGURE 2 | Heatmap of all SUMOylation regulators in glioblastoma. *o < 0.05, **p < 0.01, and ***p < 0.001.
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normal brain tissue were identified first. When the Pearson
correlation coefficient was greater than 0.6, related molecules of
the SUMOylation regulators were selected. Correlations between
genes and overall survival of glioblastoma were performed by
univariate Cox regression. Later, a risk-scoring model was built
by the least absolute shrinkage and selection operator Cox
regression. Kaplain-Meier survival curves and ROC curves were
drawn in both the training group and the validation group to
evaluate the effectiveness of the model in predicting the prognosis
of glioblastoma. The nomogram was presented accordingly.

Statistical Analysis
R language (4.0.2) was used for data analysis and graphing. When
P < 0.05, it was considered statistically significant.

RESULTS

Single-Nucleotide Variant Overview of
SUMOylation Regulators in Glioblastoma

As SNV status was often associated with abnormal gene
expression, we first checked the SNV status of SUMOylation
regulators. From the perspective of SNV types, missense
mutation, SNP, and C > T were the main mutation forms,
as shown in Figures 1A-C. Most cases only have one
single SNV of SUMOylation regulators (Figures 1D,E).
SENP7, SENP3, SENP5, PIAS3, RANBP2, USPL1, SENPI,
PIAS2, SENP2, and PIAS1 showed SNV, and SENP7 had
the highest SNV frequency (Figure 1F). The relationship
between the distribution of the SNV and the cases are
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FIGURE 3 | Expression in different IDH mutation status subgroups of (A) UBE2I, (B) UBA2, (C) PIAS3, (D) SENP1, (E) PIAS1, (F) RANBP2, (G) SENP5, and
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shown in Figure 1G. Because of the low SNV frequency of
SUMOylation regulators (20/590), we could not accurately
estimate the exact relationship between SNV and certain
clinical characteristics, which required more sequencing
studies by researchers.

Differentially Expressed SUMOylation

Regulators

Next, this study investigated the expression difference of
SUMOylation regulators between glioblastoma and normal brain
tissue. The heatmap of the expression of all SUMOylation
regulators in glioblastoma is shown in Figure 2. As can
be seen from the figure, UBE2I, UBA2, PIAS3, and SENP1
were upregulated in glioblastoma, whereas PIAS1, RANBP2,
SENPS5, and SENP2 were downregulated in glioblastoma. Among
the eight differentially expressed genes, SENP1, PIAS1, and
SENP2 also had different expressions in different IDH mutation
status subgroups. Compared with the IDH mutant type, these
three genes were downregulated in the IDH wild type, as
shown in Figure 3. Although many SUMOylation regulators
were abnormally expressed in glioblastoma or in different
glioblastoma IDH status, we did not find their significant
predictive effect on overall survival. We presume this might
be because SUMOylation was not the original driving factor of
glioblastoma or might play a role at a certain stage of glioblastoma
development. This phenomenon required further research into
SUMOylation in the future.

Functional Enrichment Analysis

By calculating the correlation between genes, the upstream
and downstream genes of the target gene can be found to
gain a deeper understanding of the biological functions of
the target gene. In this study, KEGG enrichment analysis
was performed on genes whose correlation coefficients with
SUMOylation regulators were greater than 0.6. The results are
shown in Figure 4. SUMOylation regulators may be related to
cell cycle, DNA replication, and other functions. These results

suggested that SUMOylation might be involved in the regulation
of glioblastoma cell proliferation.

Construction of a Glioblastoma
Prognostic Model Based on
SUMOylation Regulator-Related

Molecules

Next, we used survival analysis to identify the SUMOylation-
related prognostic signatures and test their prognostic values.
Two hundred thirty-nine SUMOylation regulator-related
molecules were differentially expressed in glioblastoma (|log 2
FC| > 1). Univariate Cox regression results suggested that
KANK2, MYO15A, SEMA3E, ATF7IP, CCNB1IP1, HNRNPC,
PTGIR, ZNF85, PXDN, ZNF432, and LBH were closely related
to the prognosis of glioblastoma. The risk-scoring model for
glioblastoma was constructed by the least absolute shrinkage
and selection operator Cox regression (Figures 5A,B). The
risk score was expressed by the following equation: Risk
score = -0.138 x Expression ATF7IP-0.047 x Expression
CCNBIIP1 + 0.054 x Expression LBH. The relationship
between overall survival and risk score distribution is shown in
Figures 5C,D.

In the training group, divided by the median risk score, the
overall survival of patients with high-risk scores was significantly
worse than that of patients with low-risk scores (Figure 6A,
P < 0.01). The 1- and 3-year areas under the curve of ROC
curves of the training group were 0.710 and 0.807, respectively
(Figure 6B). In one validation group (GSE13041), the overall
survival of patients with high-risk scores was also significantly
worse than that of patients with low-risk scores (Figure 6C,
P < 0.01). The 1- and 3-year areas under the curve of ROC
curves in the GSE13041 group were 0.600 and 0.655, respectively
(Figure 6D). In the other validation group (GSE83300), the
survival curve and ROC plot also showed the predictive power of
the model, as shown in Figures 6E,F. These results showed that
the risk-scoring model based on SUMOylation-related signatures
performed well in predicting the overall survival of glioblastoma
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patients. Finally, a nomogram based on the risk scoring model is
drawn in Figure 6G.

DISCUSSION

This study explored the characteristics of SUMOylation in
glioblastoma in terms of SNV, gene expression, functional

enrichment, and prognostic values. In this study, we first analyzed
the SNV of 15 SUMOylation regulators. SNV mutations were
found in SENP7, SENP3, SENP5, PIAS3, RANBP2, USPLI,
SENPI1, PIAS2, SENP2, and PIAS1. Next, we analyzed the
expression of all the SUMOylation regulators in glioblastoma.
UBE2I, UBA2, PIAS3, and SENP1 were highly expressed
in glioblastoma. PIAS1, RANBP2, SENP5, and SENP2 were
downregulated in glioblastoma. However, the SNV frequency
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of SUMOylation regulators in glioblastoma was relatively low
compared with the well-known IDH. Then, KEGG enrichment
analysis showed that the SUMOylation regulators of glioblastoma
might involve cell cycle, DNA replication, and other functions.
Finally, a prognostic model of glioblastoma was constructed
based on SUMOylation regulator-related molecules (ATF7IP,
CCNBI1IP1, and LBH). Kaplain-Meier survival curves and ROC
curves showed that the model had a strong ability to predict the
overall survival of glioblastoma.

SUMOylation was first discovered in the 1990s (Matunis
et al., 1996; Mahajan et al., 1997). It regulates the localization
and activity of a variety of proteins (Yeh et al, 2000; Geiss-
Friedlander and Melchior, 2007). The unbalanced regulation of
SUMOylation and deSUMOylation is one of tumor pathogenesis
(Wuetal, 2020, 2021; Samarzija, 2021). UBA2 is highly expressed
in small cell lung cancer. Silencing UBA2 can reduce tumor
cell migration and invasion ability and increase the sensitivity
to etoposide and cisplatin (Liu et al., 2015). UBE2I is the only
SUMO conjugating enzyme that is highly expressed in colon
cancer and prostate cancer, whereas it is downregulated in breast,
prostate, and lung cancers (Moschos et al., 2010). In breast cancer,
overexpressed SENP2 enhances the deSUMOylation of NEMO
and inhibits the activation of nuclear factor kappa-light-chain-
enhancer of activated B cells (Gao et al., 2019). In addition, PIAS3
is upregulated in lung cancer, breast cancer, prostate cancer,
colorectal cancer, and brain tumors (Wang and Banerjee, 2004).
The SUMOylation pathway and drugs targeting SUMOylation
are promising to provide new strategies for tumor treatment (He
etal., 2017; Yang et al., 2018).

So far, there are limited treatment options for glioblastoma,
and even with the existing standard treatment, the overall
survival and quality of life of patients are still very poor.
Therefore, the research on the pathogenesis of glioblastoma and
the corresponding molecular targeted drugs are quite promising.
Topotecan, a United States Food and Drug Administration-
approved anti-glioblastoma drug, can reduce overall cell
SUMOylation, CDK6, and HIF-1a levels and regulate the cell
cycle, but the specific target is not clear (Zheng et al., 2020).

As one of the important results of this study, we found
that UBE2I, UBA2, PIAS3, SENPI, PIAS1, RANBP2, SENP5,
and SENP2 were differentially expressed in glioblastoma. A few
studies were reported about these genes and consistent with our
findings. For example, SENP1 is upregulated in glioblastoma.
Knockdown of SENP1 can inhibit the phosphorylation of IkBa
and Akt and inhibit the expression of Bcl-xL and cyclinD1,
thereby promoting glioblastoma cell apoptosis (Xia et al., 2016).
In addition, UBE2I promotes the SUMOylation of CDK6
in glioblastoma and promotes tumor cell development by
regulating the cell cycle (Bellail et al., 2014). UBE2I is highly
expressed in glioblastoma and promotes the SUMOylation of
CRMP2, which in turn drives the proliferation of glioblastoma
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