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Obesity is a chronic disease that interferes with normal repair processes, including
adipose mesenchymal stem/stromal cells (ASCs) function. ASCs produce extracellular
vesicles (EVs) that activate a repair program in recipient cells partly via their micro-RNA
(miRNA) cargo. We hypothesized that obesity alters the miRNA expression profile of
human ASC-derived EVs, limiting their capacity to repair injured cells. Human ASCs
were harvested from obese and age- and gender-matched non-obese (lean) subjects
during bariatric or cosmetic surgeries, respectively (n = 5 each), and their EVs isolated.
Following high-throughput sequencing analysis, differentially expressed miRNAs were
identified and their gene targets classified based on cellular component, molecular
function, and biological process. The capacity of human lean- and obese-EVs to
modulate inflammation, apoptosis, as well as mitogen-activated protein kinase (MAPK)
and Wnt signaling in injured human proximal tubular epithelial (HK2) cells was evaluated
in vitro. The number of EVs released from lean- and obese-ASCs was similar, but
obese-EVs were smaller compared to lean-EVs. Differential expression analysis revealed
8 miRNAs upregulated (fold change > 1.4, p < 0.05) and 75 downregulated (fold
change < 0.7, p < 0.05) in obese-EVs vs. lean-EVs. miRNAs upregulated in obese-
EVs participate in regulation of NFk-B and MAPK signaling, cytoskeleton organization,
and apoptosis, whereas those downregulated in obese-EVs are implicated in cell cycle,
angiogenesis, and Wnt and MAPK signaling. Treatment of injured HK2 cells with obese-
EVs failed to decrease inflammation, and they decreased apoptosis and MAPK signaling
significantly less effectively than their lean counterparts. Obesity alters the size and
miRNA cargo of human ASC-derived EVs, as well as their ability to modulate important
injury pathways in recipient cells. These observations may guide development of novel
strategies to improve healing and repair in obese individuals.
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INTRODUCTION

Adipose mesenchymal stem/stromal cells (ASCs), multipotent
cells with capacity for self-renewal and differentiation, emerged
as a promising clinical cell-based therapy because of their
potential for autologous transplantation. These cells possess
important pro-angiogenic and immunomodulatory properties,
can be obtained in large amounts from several tissues, including
adipose tissue, and their delivery has shown potential efficacy for
the treatment of several diseases (Dominici et al., 2006).

ASCs release multiple extracellular vesicles (EVs), which play
an important role in mediating ASC paracrine function (Lotvall
et al., 2014). ASC-derived EVs carry genetic and protein content
capable of promoting repair in recipient cells (Lai et al., 2011;
Yeo et al., 2013). Furthermore, many protective effects of ASC-
derived EVs have been attributed to their cargo of micro-
RNAs (miRNAs), non-coding RNA fragments that function as
post-transcriptional regulators of gene expression. In line with
this, we have previously shown that EVs isolated from porcine
adipose tissue-derived ASCs contain multiple miRNAs capable
of modulating several cellular pathways, including angiogenesis,
cellular transport, apoptosis, and proteolysis (Eirin et al., 2014).

However, experimental data suggest that cardiovascular risk
factors may alter the miRNA content of ASC-derived EVs,
limiting their capacity to repair damaged tissues. We have
shown that EVs isolated from adipose tissue ASCs of obese
pigs contain miRNAs that modulate pathways involved in the
development of obesity, diabetes, and insulin signaling (Meng
et al., 2018). Furthermore, we found that obesity alters the cargo
of mitochondria-related miRNAs (Farahani et al., 2020) as well
as miRNAs capable of targeting several pro-angiogenic genes
in swine ASC-derived EVs (Eirin et al., 2020). Importantly,
intra-renal delivery of porcine obese-EVs failed to preserve the
microvasculature and improve function in pigs with renovascular
disease (Eirin et al., 2020; Song et al., 2020), suggesting that swine
obesity-induced changes in the miRNA content of EVs might
exert important post-transcriptional changes in recipient cells,
and in turn impair the reparative capacity of EVs. Yet, whether
obesity modulates the miRNA content of human ASC-derived
EVs remains to be clarified. Thus, the current study tested the
hypotheisis that obesity alters the miRNA cargo of ASC-derived
EVs, and limits their capacity to repair injured renal tubular cells.

MATERIALS AND METHODS

Studies were performed in EVs isolated from adipose tissue-
derived ASCs harvested from obese and age- and gender-
matched non-obese (lean) subjects during bariatric or cosmetic
surgeries, respectively at the First Hospital Affiliated to Jinan
University, Guangdong, China (IRB number: [2018] 048).
Informed written consent was obtained after receiving approval
from the Institutional Research Ethics Committee. Our studies
adhered to the standard biosecurity of the First Hospital Affiliated
to Jinan University. Entry criteria for obese patients included
age > 18 years old and body mass index (BMI) > 30 kg/m2,
whereas exclusion criteria included heavy smoking, drug abuse,

cancer, severe heart valve or systemic inflammatory diseases
(asthma, chronic peptic ulcer, tuberculosis, rheumatoid arthritis,
periodontitis, ulcerative colitis, Crohn’s disease, sinusitis, active
hepatitis, type-I Diabetes, thyroid autoimmune disease, or
any acute inflammatory state associated with bacterial or
viral infection). Entry criteria for lean controls included
age > 18 years, BMI < 25 kg/m2, and healthy overall state,
whereas exclusion criteria included heavy smoking and drug
abuse. Blood samples were collected in all patients and fasting
blood sugar, fasting insulin, hemoglobin A1C (HbA1c), total
cholesterol, uric acid, serum creatinine, cystatin-C, plasma renin
activity (PRA), and C-reactive protein (CRP) were assessed by
standard procedures.

ASCs and EV Harvesting
ASCs were isolated from 5–10 g of subcutaneous abdominal fat,
digested in collagenase-H, filtered with 0.2 mm syringe filter,
and cultured for 3 about weeks in advanced minimal essential
medium (GIBCO/Invitrogen, Grand Island, NY, United States)
with 5% platelet lysate (PLTmax R©, Mill Creek Life Sciences,
Rochester, MN) in 37◦/5% CO2, as previously described (Crespo-
Diaz et al., 2011). Cells were characterized using flow cytometry
(Amnis FlowSight high-speed cellular imaging, Millipore) for
the expression of ASC markers (CD73+, CD90+, CD105+,
CD14−, CD34−, and CD45−), and trans-differentiation into
chondrocytes, adipocytes, and osteocytes, as previously described
(Ebrahimi et al., 2013). The third passage was collected and
EVs isolated from supernatants of ASCs by ultracentrifugation.
Briefly, the conditioned medium of 107 ASCs was centrifuged to
remove debris. Cell-free supernatants were then subjected to a
second ultra-centrifugation, washed with M199, and centrifuged
one more time (see Supplementary Material). Following the
standards described by Minimal information for studies of
extracellular vesicles 2018 (MISEV2018) guidelines (Thery et al.,
2018), EVs were characterized based on the expression of
common EV (CD9, CD63, and CD81) protein markers (western
blotting), transmission electron microscopy (TEM negative
staining, JEOL 1200 EXII), and nanoparticle tracking analysis
(NTA, NanoSight NS300) to assess EV concentration and size
distribution (Filipe et al., 2010).

miRNA Sequencing
The EV miRNA cargo in all samples was assessed by miRNA
sequencing, as described (Li et al., 2020; see Supplementary
Material), after passing quality control tests (Supplementary
Tables 1, 2). Total RNA was extracted from EVs using
the exoRNeasy Maxi Kit (cat#77044, Qiagen, Germany).
Libraries for small RNA sequencing were constructed before
miRNA sequencing following the QIAseq miRNA Library Kit
(cat#331505, Qiagen, Germany) standard protocol. The library
was constructed in the GenCoding Lab (Guangzhou, China),
and the sequencing was performed in the Haplox Biotechnology
Lab (Shenzhen, China) using an Illumina NGS system (MiSeq
Personal Sequencer, NextSequence500, HiSeq 2500). Data
were analyzed with CLC (Biomedical) Genomics Workbench.
Unaligned FASTQs were used to generate aligned BAMs, raw
and normalized known mature miRNA expression counts and
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predicted novel miRNAs, which were expressed as normalized
total reads. Differential expression analysis was performed
with edgeR2.6.2. miRNAs with fold-change (obese-EVs/lean-
EVs) > 1.4 (log2 = 0.5) were considered upregulated, whereas
those with fold-change < 0.7 (log2 = −0.5) were considered
downregulated in obese-EVs vs. lean-EVs. Differential p-values
were FDR-corrected using the Benjamini-Hochberg-Yekutieli
procedure (Kim and van de Wiel, 2008).

TargetScan7.21 and MiRWalk 2.0 (Sticht et al., 2018) were
used to identify genes targeted by miRNAs dysregulated in obese-
EVs. Functional enrichment analysis of miRNA target genes
was performed using Gene Set Enrichment Analysis (GSEA)
(Subramanian et al., 2005), and genes were classified by molecular
function, cellular component, and biological process.

miRNA Validation
To validate the miRNA profile enclosed only within human
EVs to remove any external adhering RNA, we treated lean-
and obese-EVs with 0.2 µg/ml of RNAse A (Thermo Fisher
Scientific) for 30 min at 37◦C, and measured expression of
randomly selected candidates by quantitative-polymerase chain
reaction (qPCR).

EV Functional Studies
To explore the functional implications of obesity-induced
changes in the EV cargo, we compared the capacity of human
lean- and obese-EVs in human proximal tubular epithelial
cells (HK2 cells) to modulate inflammation, apoptosis, as
well as mitogen-activated protein kinase (MAPK) and Wnt
signaling, important processes identified in miRNA sequencing.
We used HK2 cells because obesity frequently coexists with
and is associated with poor outcomes in kidney disease
(Martins et al., 2010). HK2 were co-incubated with 10 ng/ml
tumor necrosis factor (TNF)-α and 10 µM antimycin-A
(AMA) for 24 h, a model that mimics renal ischemic injury
in vitro (Zhang et al., 2013; Liang et al., 2014), and injured
HK2 cells were then co-cultured for 24 h with a pool
of 10 µg/ml of either lean- or obese-EVs harvested from
different subjects (∼1 × 1010 EVs/ml). All experiments were
performed in triplicate. Inflammation was assessed by nuclear
translocation of the pro-inflammatory transcription factor
nuclear factor (NF)-kB, as previously described (Pawar et al.,
2019). Immunofluorescent staining of HK2 cells for NF-kB
(abcam, 1:200, Cambridge, MA, United States) and 4’,6’-diamino-
2-phenylindole (DAPI, Thermo Fisher Scientific, Waltham,
MA) was performed. Nuclear and cytoplasmic localization was
assessed and double positive (NFkB+/DAPI+) areas quantified
using a computer-aided image analysis program (ZEN R© 2012
blue edition; Carl Zeiss SMT, Oberkochen, Germany). HK2
cell apoptosis was evaluated by terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) staining (abcam,
cat#, ab21171, Cambridge, MA) (Eirin et al., 2018). Apoptotic
cells were identified under fluorescence microscopy by co-
staining with nuclear (DAPI, blue) and TUNEL (green), manually
counted (20 images/sample), and results from all fields averaged.

1http://www.targetscan.org/vert_72/

Expression of phosphorylated p38 (p-p38) MAPK and WNT-
1 was assessed by Western blotting (Cell signaling, cat#: 9212,
1:1,000 and abcam cat#: ab15251, 1:100, respectively).

Statistical Analysis
Statistical analysis was performed using JMP software package
version 14 (SAS Institute, Inc., Cary, NC, United States). Results
were expressed as mean + SD. The Shapiro–Wilk test was
used to test for deviation from normality. Parametric (Student’s
t-test) and non-parametric (Kruskal-Wallis) tests were used as
appropriate, and significance was accepted for p < 0.05.

RESULTS

Systemic Characteristics
Table 1 shows the clinical, laboratory, and demographic
characteristics of lean and obese subjects included in the study
(n = 5 each). Gender and age did not differ between the groups,
whereas BMI and waistline circumference were higher in obese
compared to lean individuals, as was mean blood pressure.
Fasting blood sugar levels and HbA1c were similar in lean
and obese subjects, but fasting insulin levels were higher in
obese individuals. Total cholesterol, serum creatinine, and CRP
levels were comparable between lean and obese participants,
whereas uric acid, cystatin-c, and PRA levels were elevated in
obese patients, likely reflecting obesity-induced hyperfiltration
and renal damage, respectively.

ASC and EV Characterization
Flow cytometry analysis confirmed that ASCs expressed
common ASC markers including CD73, CD90, and
CD105, but did not express CD14, CD34, and CD45

TABLE 1 | Systemic characteristics in Lean and Obese subjects (n = 5, each).

Parameter Lean Obese

Gender (female/male) 3/2 3/2

Age (years) 24.5 ± 2.8 26.2 ± 6.1

Body Mass Index (kg/m2) 19.4 (18.4–20.1) 50.1 (40.6–72.6)*

Waistline circumference (cm) 61.0 (59.5–67.0) 139.2 (129.3–171.0)*

Mean blood pressure (mmHg) 78.8 ± 6.1 113.9 ± 8.*

Fasting blood sugar (mg/dl) 5.0 (4.3–5.3) 7.1 (4.6–8.9)

Fasting insulin (mIU/L) 13.3 (11.9–17.3) 42.9 (21.5–64.7)*

HbA1c (mmol/mol) 5.2 (5.0–5.5) 6.5 (5.2–7.9)

Total cholesterol (mmol/L) 4.4 ± 0.3 5.2 ± 0.9

Uric acid (µmol/L) 289.5 (271.3–328.1) 546.2 (429.3–668.9)*

Serum creatinine (µmol/L) 55.8 ± 16.7 58.8 ± 22.4

Cystatin-C (mg/L) 0.9 (0.8–0.9) 1.2 (0.9–1.5)*

PRA (ng/ml/h) 0.6 (0.4–0.7) 3.2 (1.9–3.7)*

CRP (mg/L) 3.7 (2.5–4.7) 7.3 (2.5–12.1)

*p ≤ 0.05 vs. Lean. HB1AC, hemoglobin A1C; PRA, plasma renin activity; CRP,
C-reactive protein. Normal distributed data were expressed as mean + SD and
compared used Parametric (Student’s t-test) tests, whereas data that did not
followed a normal distribution were expressed as median (range) and compared
using non-parametric (Kruskal-Wallis) tests. Significance for all tests was accepted
for p < 0.05.
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(Figure 1A). ASC-derived EVs expressed common EV
markers, including CD9, CD63, and CD81 (Figure 1B)
and exhibited the classic “cup-like” morphology on
transmission electron microscopy (Figure 1C). The
number of EVs released from lean- and obese-ASCs was
similar, but obese-EVs were smaller compared to lean-EVs
(Figures 1D,E).

Identification and Functional Analysis of Differentially
Expressed miRNAs
A total of 2,464 miRNAs were mapped, among which 8
were upregulated in obese-EVs vs. lean-EVs (Figure 2A).
Supplementary Table 3 shows the entire list of target genes of
miRNAs upregulated in obese-EVs. Molecular function analysis
of these target genes revealed avid transcription factor and
GTPase activator activity, as well as ubiquitin and actin binding
activity (Figure 2B). These miRNAs are capable of targeting genes
equally distributed in cellular and membrane compartments,
including endosome, synapse, Golgi apparatus, and synaptic

vesicle membrane (Figure 2C). Functional clustering analysis of
these miRNA targets indicated that the most prominent gene
ontology categories include regulation of MAPK and apoptotic
process, actin and cytoskeleton organization, and regulation of
NF-kB signaling (Figure 2D).

We also identified 75 miRNAs downregulated in obese-EVs
compared to lean-EVs (Figure 3A). Supplementary Table 4
shows the entire list of target genes of miRNAs downregulated
in obese-EVs. Target genes of these miRNAs have protein
kinase, actin, GTPase activator, and chromatin binding activity
(Figure 3B), and are again similarly distributed between cellular
and membrane compartments, such as endosome, cytoskeleton,
and cytoplasmic vesicles (Figure 3C). These target genes are
primarily involved in modulation of cell cycle, angiogenesis, as
well as Wnt and MAPK signaling (Figure 3D).

In a subset of samples treated with RNAse, expression
of candidate miRNAs followed the same patterns as the
original miRNA sequencing findings (in RNAse-untreated
EVs). Specifically, hsa-miR-222-5p and has-miR888-5p were

FIGURE 1 | Characterization of ASC-derived EVs and their daughter EVs. (A) Flow cytometry analysis of human ASCs. Cells were stained with anti-CD73, CD90,
CD105, CD14, CD34, and CD45 antibodies. (B) ASC-derived EVs expressed common EV markers, including CD9, CD63, and CD81 by Western blotting.
(C) Transmission electron microscopy showing ASC-derived lean- and obese-EVs exhibiting the classic “cup-like” morphology. (D) Representative size-distribution
curve of lean- and obese-EVs by nanosight tracking analysis (NTA). (E) Quantification of EV concentration and size by NTA (Student’s t-test). *p < 0.05 vs. Lean-EVs.
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FIGURE 2 | Upregulated miRNA in human ASC-derived EVs and their gene targets. Heat map of miRNAs upregulated in obese-EVs vs. lean-EVs (A). GSEA analysis
of the molecular function (B), cellular component (C), and biological process (D) of gene targets of miRNAs upregulated in obese-EVs.

upregulated (Figure 4A), and hsa-miR-6752-5p and has-
miR6838-3p were downregulated (Figure 4B) in obese-EVs vs.
lean-EVs, whereas expression of hsa-miR-4648 and has-miR-10a-
3p did not differ between the groups (Figure 4C).

EV Functional Studies
Treatment of HK2 cells with TNF-α and AMA increased nuclear
translocation of NF-kB (NF-kB/DAPI co-localization), apoptosis
(TUNEL + cells) (Figure 5A), and MAPK signaling (p-p38
expression) (Figure 5B), but decreased Wnt signaling (WNT-
1 expression).

Treatment of uninjured HK2 cells with lean-EVs did not affect
nuclear NF-kB translocation, apoptosis, or Wnt signaling, but
increased p-p38 expression. Contrarily, treatment of uninjured
HK2 cells with obese-EVs increased nuclear translocation of NF-
kB compared to uninjured untreated HK2 cells and uninjured
HK2 cells treated with lean-EVs, did not affect apoptosis or
Wnt signaling, and increased p-p38 expression compared to
uninjured HK2 cells.

Treatment of injured HK2 cells with lean-EVs decreased
nuclear NF-kB translocation, apoptosis (TUNEL + cells), and
MAPK signaling (p-p38 expression) compared to injured
untreated HK2 cells. However, treatment of injured HK2 cells

with obese-EVs failed to decrease nuclear translocation of NF-
kB. Although obese-EVs decreased the number of TUNEL + cells
and p-p38 expression, the decrease was significantly less effective
than their lean counterparts. WNT-1 expression in injured
HK2 cells remained unaltered after treatment with either lean-
or obese-EVs.

DISCUSSION

The current study shows that obesity alters the size and
miRNA cargo of human ASC-derived EVs. The number of EVs
released from lean- and obese-ASCs was similar, but obese-EVs
were smaller compared to lean-EVs, in line with our previous
observations in swine obese-EVs (Conley et al., 2019). miRNAs
upregulated in obese-EVs target preferentially clusters of genes
participating in regulation of NF-kB and MAPK signaling,
cytoskeleton organization, and apoptosis, whereas miRNAs
downregulated in obese-EVs target groups of genes implicated
in cell cycle, angiogenesis, and MAPK and Wnt signaling.
Furthermore, treatment of injured human renal tubular cells
with obese-EVs failed to decrease inflammation and exerted
lower anti-apoptotic efficacy and MAPK signaling modulation

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 May 2021 | Volume 9 | Article 660851

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-660851 May 13, 2021 Time: 15:55 # 6

Eirin et al. Human Stem Cell Extracellular Vesicles

FIGURE 3 | Downregulated miRNA in human ASC-derived EVs and their gene targets. Heat map of miRNAs downregulated in obese-EVs vs. lean-EVs (A). GSEA
analysis of the molecular function (B), cellular component (C), and biological process (D) of gene targets of miRNAs upregulated in obese-EVs.

compared to lean-EVs. These observations indicate that obesity
alters packaging of miRNAs into human ASC-derived EVs,
favoring inclusion of miRNAs involved in pro-inflammatory
signaling and programed cell death and exclusion of those
implicated in cell proliferation and angiogenic pathways. These
alterations may in turn be linked to impaired ability of EVs to
repair renal tubular cells in vitro.

Accumulating evidence suggests that EVs are pivotal
mediators of the paracrine function of ASCs (Lai et al., 2011; Yeo
et al., 2013). These membrane microparticles contain multiple
genes and proteins, as well as miRNAs, which modulate gene
expression in recipient cells by degradation of translational
repression. We have previously shown that miRNAs enriched
in porcine ASC-derived EVs are predicted to mediate post-
transcriptional control of genes implicated in several cellular
pathways, including angiogenesis, cellular transport, apoptosis,
and proteolysis (Eirin et al., 2014). We have also shown
that intra-renal infusion of swine ASC-derived EVs confers
important protective effects in the post-stenotic pig kidney

(Eirin et al., 2017, 2018). Furthermore, a previous clinical trial
suggests that ASC-derived EV therapy is safe and effective
in ameliorating renal inflammation and improving estimated
glomerular filtration rate in patients with chronic kidney disease
(Nassar et al., 2016), underscoring the potential of EVs to
preserve renal function.

However, many potential candidates for autologous ASC-
derived EV therapy are exposed to the deleterious effects of
obesity, which interferes with many aspects of ASC biology and
function (Meng et al., 2018). In this study, we took advantage
of high-throughput sequencing analysis to characterize and
compare the miRNA profile of EVs harvested from human
lean- and obese- adipose tissue-derived ASCs, and further
explored whether obesity-induced changes in the miRNA cargo
interfere with their ability to repair injured tubular cells. We
identified 8 miRNAs upregulated and 75 downregulated in obese-
EVs vs. lean-EVs. Functional annotation clustering analysis of
targets of miRNAs upregulated in obese-EVs indicated that these
miRNAs are capable of modulating several cellular functions. Top
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FIGURE 4 | miRNA sequencing validation. In samples treated with RNAse expression of candidate miRNAs by qPCR followed the same patterns as the original
miRNA sequencing findings (without RNAse treatment). hsa-miR-222-5p and has-miR-888-5p, which were upregulated in obese-EVs vs. lean-EVs by miRNA
sequencing analysis were also upregulated in obese-EVs vs. lean-EVs treated with RNAse (A). hsa-miR-6752-5p and has-miR-6338-3p, which were downregulated
in obese-EVs vs. lean-EVs by miRNA sequencing analysis were also downregulated in obese-EVs vs. lean-EVs treated with RNAse (B). hsa-miR-4648 and
has-miR-10a3p, which did not differ between obese-EVs and lean-EVs by miRNA sequencing analysis remained similar in obese-EVs and lean-EVs treated with
RNAse (C) (all Student’s t-test). *p < 0.05 vs. Lean-EVs.

functional categories of miRNA target genes include regulation
of NF-kB signaling, a pro-inflammatory pathway that regulates
immune response by activation of cytokines, chemokines, and
adhesion molecules (Lawrence, 2009). In line with this, we
observed that treatment with obese-EVs increased NF-kB nuclear
translocation in both untreated and injured human renal tubular
cells, suggesting that obesity may trigger a pro-inflammatory
response in EV-recipient cells.

Upregulated miRNAs in obese-EVs can also target
cytoskeleton genes, including genes involved in the control

of cell shape and adhesion such as Palladin Cytoskeletal
Associated Protein (PALLD), and genes involved in adherens
junctions like Actin Binding LIM Protein Family Member 3
(ABLIM3). The cytoskeleton not only plays an important role
in cellular repair (Abreu-Blanco et al., 2012), but also serves
as a key effector and mediator of cell signaling (Moujaber and
Stochaj, 2020). For example, cytoskeletal proteins can regulate
the onset of programmed cell death pathways, such as apoptosis
(Gourlay and Ayscough, 2005). In line with this notion, we
found that miRNAs upregulated in obese-EVs are capable of

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 May 2021 | Volume 9 | Article 660851

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-660851 May 13, 2021 Time: 15:55 # 8

Eirin et al. Human Stem Cell Extracellular Vesicles

FIGURE 5 | Effects of lean- and obese-EVs on pathways detected in RNA sequencing. Representative immunofluorescence staining of HK2 cells with NFk-B/DAPI
and TUNEL, and quantification of NFk-B/DAPI co-localization and the number of TUNEL + cells (A) (Student’s t-test). HK2 cells were co-incubated with 10 ng/ml
TNF-α and 10µM AMA for 24 h and subsequently treated with human lean- or obese-EVs. Western blot quantification of p-p38 and WNT-1 synthesis in study
groups (B) (Student’s t-test). ∗p < 0.05 vs. HK2, †p < 0.05 vs. HK2 + lean-EVs.

targeting several genes involved in apoptosis, such as the BCL-2
Associated X-Apoptosis Regulator (BAX) and members of the
caspase pathway, like caspase-2 (CASP2) and caspase-9 (CASP9).
Interestingly, unlike the anti-apoptotic effect of lean-EVs, we
found that the reduction in the number of TUNEL + cells was
significantly less effectively achieved by obese-EVs than their
lean counterparts, suggesting that obesity-induced changes in
the miRNA cargo of EVs may be associated with limited ability
to modulate apoptosis in target cells.

In contrast, top functional categories of target genes of
miRNAs downregulated in obese-EVs include cell cycle and pro-
angiogenic pathways. Cell cycle miRNA targets include genes
involved in DNA repair (e.g., BRCC3, LIG3, and DCLRE1A),
chromosome segregation (e.g., MIS18A, RCC2, and MKI67), and
cell adhesion (e.g., CSNK2A1, PARD3, and SRC). Activation of
cell cycle is a critical step in stem cell-induced tissue regeneration
(Fan et al., 2020). In order to recover, injured cells must enter
and progress through the cell cycle, which allows transcription of

genes necessary for DNA replication and mitosis. In agreement
with this concept, we have shown that EVs isolated from
porcine lean-ASCs are enriched with several transcription factors
involved in chromosome organization (Eirin et al., 2014) and
increase proliferation of human umbilical endothelial cells (Eirin
et al., 2020). However, increased cellular senescence, a state of
permanent cell cycle arrest, is associated with impaired cellular
proliferation (van Deursen, 2014).

miRNAs with lower expression in obese-EVs compared to
lean-EVs can also target genes implicated in pro-angiogenic
pathways. This includes genes participating in angiopoietin
signaling (e.g., ANGPT2, ANGPT4, and ANGPTL3), which
regulate blood vessel development, vascular permeability,
inflammation, and angiogenic remodeling (Eklund and
Saharinen, 2013). Likewise, miRNAs downregulated in obese-
EVs can modulate expression of Vascular Endothelial Growth
Factor A (VEGFA), and its receptor Kinase Insert Domain
Receptor (KDR). Activation of VEGF is an important effector
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of ASC and ASC-derived EV protective effects that induces
proliferation and migration of vascular endothelial cells. We
have previously shown in experimental renovascular disease
that intra-renal delivery of porcine ASC-derived EVs increased
expression of VEGF and improved the microvasculature of the
post-stenotic kidney (Eirin et al., 2018). However, synthesis of the
pro-angiogenic molecule WNT-1 remained unaltered in injured
HK2 cells treated with either lean- or obese-EVs, arguing against
a major effect of EVs in modulating Wnt signaling in damaged
renal tubular cells, despite the RNA sequencing prediction.

MAPK signaling genes can also be targeted by miRNAs both
up- and downregulated in obese-EVs compared to lean-EVs.
The MAPK signaling pathway is characterized by a family of
signaling cascades that elicit cellular responses in response to
environmental conditions and stimuli (Chen and Thorner, 2007).
p38 can exert protective or deleterious roles in different cell types,
which are highly dependent on the type of stimulus. Activation of
p38 elicits protective effects during ischemic conditions (Nakano
et al., 2000; Fujimoto et al., 2004; Hsu et al., 2007) and plays
an important role in the activation of brown adipose tissue
(Leiva et al., 2020). However, activation of p38 has been linked
to inflammatory cytokine production (Li et al., 2005) and ASC
aging (Zhang et al., 2020), and its inhibition potentiates ASC and
EV therapy (Zhang et al., 2017; Chen et al., 2020). Our in vitro
studies revealed that treatment of uninjured HK2 cells with
EVs increased expression of p-p38, underscoring the potential
of EVs to activate members of MAPK signaling in recipient
cells. Contrarily, treatment of injured HK2 cells with either lean-
or obese-EVs decreased p-p38 expression, but the effect was
more pronounced in lean-EVs compared to obese-EVs, implying
that miRNAs packed in obese-EVs might have lower ability to
modulate MAPK signaling induced by injurious stimuli.

Our study is limited by a small sample size of relatively young
patients. Nevertheless, BMI and waistline circumference were
markedly higher in obese vs. lean subjects. Notably, our patients
were also morbidly obese. Evidently, despite their young age,
obesity sufficed to alter the miRNA cargo of ASC-derived EVs
and impair their ability to modulate injury pathways in vitro. Our
study is also limited by the use of a single EV isolation method
(ultracentrifugation) and thus validated sequencing findings
following treatment with RNAse. In addition, our results should
be interpreted cautiously, given a low mapping rate of the miRNA
reads. Further studies are needed to confirm these findings in a
larger cohort of patients and in patients with milder obesity, to
explore the impact of obesity in the antioxidant effects of EVs,
and whether these changes compromise the in vivo reparative
capacity of EVs in obese subjects. The roles of altered levels of
glucose, uric acid, and other abnormal laboratory measures also
need to be investigated.

In summary, we found that obesity modifies the size and
miRNA cargo of human ASC-derived EVs. Primarily miRNAs
enriched in obese-EVs participate in regulation of NF-kB
and MAPK signaling, cytoskeleton organization, and apoptosis,
whereas those downregulated in obese-EVs are implicated in cell
cycle, angiogenesis, and MAPK and Wnt signaling. Importantly,

obesity-induced changes in the miRNA cargo of EVs indeed
impaired their ability to modulate inflammation, apoptosis, and
MAPK signaling in vitro in injured renal tubular cells. Therefore,
our studies suggest that miRNAs included in EVs may play
an important role in regulating cellular injury pathways in
ASC-derived EV-treated cells. Therefore, special consideration
should be given to subjects with a very high body mass index,
because the therapeutic efficacy of EVs derived from ASCs may
decrease proportionally.
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