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and Elimination
Alexandria N. Hughes*
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Building a functional nervous system requires the coordinated actions of many glial
cells. In the vertebrate central nervous system (CNS), oligodendrocytes myelinate
neuronal axons to increase conduction velocity and provide trophic support. Myelination
can be modified by local signaling at the axon-myelin interface, potentially adapting
sheaths to support the metabolic needs and physiology of individual neurons. However,
neurons and oligodendrocytes are not wholly responsible for crafting the myelination
patterns seen in vivo. Other cell types of the CNS, including microglia and astrocytes,
modify myelination. In this review, I cover the contributions of non-neuronal, non-
oligodendroglial cells to the formation, maintenance, and pruning of myelin sheaths. I
address ways that these cell types interact with the oligodendrocyte lineage throughout
development to modify myelination. Additionally, I discuss mechanisms by which these
cells may indirectly tune myelination by regulating neuronal activity. Understanding how
glial-glial interactions regulate myelination is essential for understanding how the brain
functions as a whole and for developing strategies to repair myelin in disease.
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INTRODUCTION

Communication in the central nervous system (CNS) depends on faithful and timely action
potential (AP) propagation along neuronal axons. These demands are in part met by myelin,
a proteolipid-rich membrane that insulates axons to increase conduction velocity. Myelin is an
evolutionary solution that reconciles the CNS need for speedy conduction with the size limitations
of the animal brain: Insulation increases conduction velocity exponentially more effectively than
increasing axon diameter, and takes only a fraction of the space. Given this advantage, it is perhaps
unsurprising that myelin has evolved at least seven independent times among animals (Hartline
and Colman, 2007). Nearly all of these myelin analogs share a similar structure and organization,
including multilamellar membrane wraps that extend along axons, punctuated by gaps (nodes of
Ranvier). With the exception of copepods, a remarkable feature of myelin membrane is that it is
not produced by neurons (Wilson and Hartline, 2011). Instead, myelin is formed by glial cells.
In the CNS of vertebrates, the myelinating glia are oligodendrocytes. The non-neuronal origin of
a substance integral for neuronal AP propagation is consistent with the possibility that glia are
conserved calibrators of neural circuits, optimizing circuit timing and function.

Myelin wraps axons to increase conduction velocity. Something underappreciated about
myelination is variability: Oligodendrocytes can form different numbers of myelin sheaths, with
different lengths and thicknesses. Consequently, axons display substantial variability in myelin
patterning and coverage. Some axons are not myelinated, and among those that are, myelination
can be complete or intermittent (Tomassy et al., 2014). Intriguingly, all of these varying parameters,
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including oligodendrocyte differentiation, myelin sheath number,
length, and thickness, and axon selection can be promoted by
neuronal activity, a subject that has been reviewed extensively
(Fields, 2015; Bergles and Richardson, 2016; Hughes and Appel,
2016; Almeida and Lyons, 2017; Mount and Monje, 2017;
Thornton and Hughes, 2020). But while neuronal activity can
promote myelination, myelin variability persists in experiments
in which activity is blocked (Etxeberria et al., 2016) or neurons
are replaced with nanofibers (Bechler et al., 2015), indicating that
activity is only one of potentially numerous factors that foster the
tremendous variability of myelin. What other factors contribute
to myelin variability? An emerging body of work indicates that
other glial cells, including astrocytes, microglia, and cell types of
the vasculature, are also critical myelin cultivators. By promoting
oligodendrocyte differentiation, providing materials from which
to build myelin, and pruning sheaths, glial cells are intimately
involved in nurturing myelin throughout development.

Reductionist approaches have been essential for dissecting
the individual roles of glia in the nervous system. These
approaches have typically centered on neurons—for example,
assaying neuronal physiology upon specific glial manipulations—
because it is well accepted that altered neuronal function might
change CNS function. Here, I evaluate the literature from a
different reductionist standpoint. In this review, I center on
myelinating oligodendrocytes and explore how other glial cells
support the growth and elimination of myelin sheaths. I cover
what is known about regulation of myelin sheaths by other glia,
including astrocytes, microglia, and cell types of the vasculature.
Specifically, I discuss the contributions of these cell types to
myelin synthesis and remodeling of myelin. I take the liberty
of combining findings that span model systems, CNS regions,
and developmental stages and disease states (e.g., remyelination
paradigms) with the goal of identifying common functional roles
for glia that may transcend specific experimental constraints.
Additionally, I discuss how these cell types may regulate
neuronal activity to induce activity-dependent plastic changes
in myelin. I begin by providing an overview of relevant phases
of oligodendrocyte differentiation, myelination, and remodeling,
and the following sections on glial interactions with myelin will
follow this developmental organization.

OLIGODENDROCYTE DEVELOPMENT
AND PLASTICITY

Oligodendrocytes develop from oligodendrocyte precursor cells
(OPCs). During development, OPCs are specified and migrate
toward target axons before they differentiate into myelinating
cells. In the mammalian forebrain, OPCs are born and migrate
from three germinative zones in successive waves (Kessaris et al.,
2006), whereas in the spinal cord OPCs are born and migrate
in two waves. In both of these regions, the first wave is located
ventrally: the medial ganglionic eminence (MGE) in forebrain
and the progenitor of motor neuron (pMN) domain of the ventral
spinal cord. Later, the ventricular zone of the lateral ganglionic
eminence (LGE) and cortex give rise to OPCs, and a dorsal
population of spinal cord OPCs are born (Kessaris et al., 2006;

Winkler et al., 2018). From these birth locations, OPCs migrate
to evenly distribute in the CNS (Noll and Miller, 1993; Ono et al.,
1995; Kirby et al., 2006; Hughes et al., 2013). What cues direct
OPCs to migrate long distances to attain their final positions
in the CNS (Figure 1)? Axon- and meningeal-derived cues,
including Tgfβ-1 (Choe et al., 2014) and Eph/Ephrin signaling
(Prestoz et al., 2004), are one source of cues. Another, more
local interaction occurs when OPCs interact with the vasculature.
In our section on Vasculature, I examine the role of OPC-
vasculature interactions in directed migration.

Following migration, OPCs begin to differentiate.
Premyelinating oligodendrocytes elaborate processes that
wrap axons and begin to synthesize myelin proteins and lipids
that comprise the myelin sheath. Whether OPCs that do not
differentiate represent an equipotent reserve pool or are a
distinct subset with yet unknown functions is not entirely clear.
OPC numbers are maintained by homeostatic proliferation and
differentiation (Kirby et al., 2006; Hughes et al., 2013) and in
the absence of axonal targets OPC proliferation and survival are
moderately reduced, indicating that the population is responsive
and matched to target availability (Almeida and Lyons, 2016).
However, recent work indicates that multiple OPC subtypes
exist and are separable by transcriptomics, intracellular calcium
signaling, and membrane ion channels and receptors (Marques
et al., 2016; Spitzer et al., 2019; Marisca et al., 2020), raising the
possibility that both a differentiation reserve pool and other
functional pools exist. For the purposes of this review, I will
focus on those cells that do eventually myelinate and point the
reader toward reviews covering OPCs in more detail (Mangin
and Gallo, 2011; Bergles and Richardson, 2016). What controls
the onset of differentiation? Several regulatory factors have been
identified (Elbaz and Popko, 2019), and OPCs appear to divide
a specific number of times prior to differentiation, consistent
with an intrinsic timer mechanism (Temple and Raff, 1986;
Raff, 2007). However, extracellular cues are also critical for
differentiation (Wheeler and Fuss, 2016). For example, the OPC
intrinsic timer depends on PDGF from astrocytes (Raff et al.,
1988). Do other glial-derived factors support differentiation?
Astrocytes, microglia, and endothelial cells, typically absent from
culture, secrete cues that promote differentiation and can guide
processes toward axons.

A major manifestation of differentiation is the production of
myelin. Myelin is a specialized membrane that differs from the
plasma membrane, particularly enriched in lipids, comprising
75% of the dry weight of myelin (Nave and Werner, 2014),
and proteins that organize myelin structure and adhesion to
the axon. Perhaps because there are fewer methods available
to study lipids compared to proteins (Muro et al., 2014), lipid
localization and trafficking in myelin is somewhat a technical
blind spot in myelin biology. Instead, investigations have studied
the genes and proteins that regulate lipid synthesis, with the
caveat that synthesized lipids may localize differently than the
enzymes that synthesize them. This approach revealed that
cholesterol is required for the earliest stages of axon wrapping:
wrapping is almost entirely blocked by global loss of function
mutation of hmgcs1, which encodes the rate-limiting enzyme for
cholesterol synthesis (Mathews et al., 2014). Do oligodendrocytes
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FIGURE 1 | Stages of oligodendrocyte development supported by other glial cells. Oligodendrocyte precursor cells proliferate and migrate, but what determines
precise migratory routes and proliferation rate? How do oligodendrocytes differentiate and turn on myelin gene expression? Circulating lipids are a major component
of myelin, but where do those lipids come from? Finally, how do myelin sheaths grow, shrink, and disappear altogether?

synthesize cholesterol and other lipids autonomously? Mice
with oligodendrocyte-specific deletion of fatty acid synthase
(Fasn) had hypomyelination in various CNS regions, but this
could be partially rescued by increasing dietary lipids (Dimas
et al., 2019). Additionally, in mice with oligodendrocyte-specific
deletion of Fdft1, the gene encoding squalene synthase necessary
for cholesterol synthesis, myelin still contained cholesterol,
consistent with the possibility that oligodendrocytes obtain
cholesterol from another source (Saher et al., 2005). Indeed, lipid
analysis of purified myelin has revealed that oligodendrocytes
incorporate circulating lipids to build myelin (Nave and Werner,
2014; Camargo et al., 2017), consistent with the possibility that
proximal neurons and glia also provide and influence the lipids
available for myelin construction.

The advancement of myelin around the axon and successful
subversion of previous layers requires coordinated adhesion,
both between layers of myelin as well as adhesion between the
myelin and axon. The proteins myelin basic protein (MBP)
and proteolipid protein (PLP), which together account for 68%
of total myelin protein (Jahn et al., 2020) regulate myelin
sheath compaction by adhering internal and external membrane

leaflets, respectively. MBP is also required for actin disassembly
during wrapping to promote membrane spreading (Zuchero
et al., 2015). To promote adhesion to the axon, adhesion
proteins must be corralled into the lateral edges that will
form the paranodal loops that adhere to the axon (Rasband
and Peles, 2016). The most well-studied adhesion protein at
the paranodal interface is neurofascin-155 (NF155), a glial
protein that binds axonal contactin-1 (Cntn1) and contactin-
associated protein (Caspr) (Gollan et al., 2003). Additional
adhesion molecules from the immunoglobulin superfamily,
including Tag-1, Cadm1, and Cadm4, also coordinate axon-
myelin adhesion along the juxtaparanode and internode (Poliak
et al., 2003; Traka et al., 2003; Elazar et al., 2018; Hughes
and Appel, 2019). Manipulation of these adhesion molecules
disrupts myelin sheath number, length, targeting to axons,
and lamellar organization (Djannatian et al., 2019; Elazar
et al., 2019; Garcia and Zuchero, 2019; Hughes and Appel,
2019; Klingseisen et al., 2019). Modification of adhesion
complexes, either autonomously by the axon or myelin,
or potentially by other glial cells, represents one way that
myelination can be changed.
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After initial axon wrapping, myelination is not finalized is
continuously subject to turnover and updates throughout life.
Carbon dating experiments suggest that human myelin and
oligodendrocytes are generated and integrated over the lifespan
(Yeung et al., 2014). Further changes in myelin can be spurred
by experience. Learning how to juggle and play the piano,
activities that engage select populations of neurons, are associated
with white matter additions in relevant brain areas (Scholz
et al., 2009). This activity-dependent myelin growth, or “myelin
plasticity,” includes adaptation of existing myelin and addition
of new myelin sheaths by existing cells (Duncan et al., 2018;
Bacmeister et al., 2020; Yang et al., 2021) as well as proliferation
and subsequent differentiation of new oligodendrocytes (Barres
and Raff, 1993; Gibson et al., 2014). At the cellular level,
optogenetic or chemogenetic stimulation of neurons (Gibson
et al., 2014; Mitew et al., 2018) or expression of neurotoxins to
silence neurons (Hines et al., 2015; Mensch et al., 2015; Wake
et al., 2015; Koudelka et al., 2016) demonstrate that myelin
adapts to neuronal activity. Another side of myelin plasticity
is myelin elimination. Although mechanisms of elimination
are incompletely resolved, elimination is often referred to as
“retraction” (Fields, 2015; Hines et al., 2015; Mensch et al., 2015;
Baraban et al., 2018; Krasnow et al., 2018; Bacmeister et al., 2020),
“contraction” (Yang et al., 2021), or “pruning” (Liu et al., 2013).
Do activity-dependent additions or loss of myelin impact CNS
function? Recent findings are consistent with this possibility.
New oligodendrocytes and new myelin are required for motor
learning and memory preservation (McKenzie et al., 2014; Pan
et al., 2020; Steadman et al., 2020; Wang et al., 2020). These
systems-level adaptations are presumably driven by activity-
dependent oligodendrocyte differentiation and myelin growth
and remodeling on behaviorally relevant neurons. However, all
glial cell types are responsive to neuronal activity (Barres and
Raff, 1993; Demerens et al., 1996; Poskanzer and Yuste, 2011;
Li et al., 2012; Nagy et al., 2017; Liu et al., 2019; Stowell et al.,
2019; Zuend et al., 2020; Nagai et al., 2021), raising the possibility
that other glial cells may promote or solidify adaptive changes
by regulating properties of myelin. Getting the whole picture will
require learning not only how cell types interact with one another
in isolation, but also how these interactions moderate each other
in the context of the whole brain.

ASTROCYTE INTERACTIONS WITH THE
OLIGODENDROCYTE LINEAGE AND
MYELIN

Astrocytes develop before oligodendrocytes, both in vivo and
in culture (Qian et al., 2000), consistent with the possibility
that astrocytes influence the entire course of oligodendrocyte
development. Astrocytes secrete PDGF and FGF, which promote
the proliferation and impede the differentiation of OPCs
(Barnett and Linington, 2013; Lundgaard et al., 2014; Figure 2).
The relationship between OPCs and astrocytes during OPC
differentiation is less well resolved. Several lines of evidence
raise the possibility that astrocytes help control the timing
of myelination. One mechanism that occurs during OPC

differentiation is the translocation of hundreds of mRNAs into
premyelinating processes, presumably to enable local translation
of proteins relevant for sheath maturation (Thakurela et al.,
2016). The archetypal mRNA studied in this process is Mbp
mRNA, which translocates into myelinating processes both
in culture and in vivo (Ainger et al., 1993; Herbert et al.,
2017; Yergert et al., 2021). MBP is classically known for
driving myelin compaction (Readhead et al., 1987) and has
recently been implicated in actin disassembly during myelin
wrapping (Zuchero et al., 2015), raising the possibility that
locally translated MBP is integral to wrapping. In vitro labeling
of Mbp mRNA in oligodendrocyte-astrocyte cocultures revealed
that direct contact with astrocytes inhibited mRNA translocation
into oligodendrocyte processes (Amur-Umarjee et al., 1993), but
the presence of neurons alleviated this inhibition via PDGF-AB
and -BB secretion (Amur-Umarjee et al., 1997). This is consistent
with a role for astrocytic contact in limiting myelinating potential
of processes when neurons are unavailable as substrates for
myelination. Complementing this interpretation, co-cultured
astrocytes guided oligodendrocyte processes to align with retinal
ganglion cell axons (Meyer-Franke et al., 1999), increased the
fraction of axons selected for myelination (Sorensen et al., 2008),
and enhanced myelin growth and thickness (Watkins et al.,
2008). Taken together, these studies raise the intriguing possibility
that astrocytic contact may regulate the timing of myelination,
ensuring that oligodendrocyte processes are aligned with axons
before permitting mRNA translocation and presumably local
synthesis of myelin proteins. Such a timing mechanism is also
supported by astrocytic secretion of factors that both promote
and inhibit myelin wrapping (Table 1 and Figure 3).

At myelination onset, astrocytes play a critical role in
producing lipids for myelin synthesis. Recent evidence showed
that astrocytes provide the majority of required lipids to
oligodendrocytes (Camargo et al., 2017). Astrocyte-specific
deletion of the major lipid biosynthesis regulator SREBP
cleavage activating protein (SCAP) caused more severe and
persistent hypomyelination than oligodendrocyte-specific loss
of SCAP, which resolved after a brief developmental delay
(Camargo et al., 2017). This is consistent with previous findings
from a mouse model of oligodendrocyte-specific deletion of
Fdft1, the gene encoding squalene synthase, also required for
cholesterol synthesis, which exhibited early hypomyelination that
also caught up by adulthood (Saher et al., 2005). Therefore,
in addition to uptake of lipids and cholesterol from the
extracellular environment (Saher et al., 2005; Nave and Werner,
2014; Camargo et al., 2017), oligodendrocytes build myelin
primarily from astrocyte-derived lipids. The transfer mechanism
is incompletely resolved and could involve direct transfer or
uptake of astrocyte-derived lipids and cholesterol from the
extracellular milieu. Intriguingly, lipid availability may vary
with regional astrocyte heterogeneity. Gray matter astrocytes
may secrete more cholesterol than white matter astrocytes,
and inhibiting cholesterol synthesis from white matter-derived
astrocytes improved in vitro myelination (Werkman et al.,
2020), raising the possibility that different populations of
astrocytes provide different support for nearby oligodendrocytes.
Together, these data extend the known role of astrocytes in
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FIGURE 2 | Glial cells promote myelin formation and elimination. Oligodendrocyte precursor cell proliferation is promoted by astrocytic PDGF and FGF signaling and
OPCs migrate along the vasculature. Endothelin secreted by endothelial cells and IGF1 secreted by microglia promote differentiation, and astrocytes guide OPCs to
axons. The generation of myelin membrane (which may be thought of as one feature of differentiation) utilizes lipids and cholesterol produced by astrocytes, BDNF
secreted by neurons and potentially augmented by microglia-secreted BDNF, and endothelin signaling to the receptor EDNRB located on oligodendrocytes.
Astrocytic secretion of PN-1 promotes myelin stability by inhibiting thrombin-mediated paranodal lifting, whereas microglia phagocytose myelin by detecting
phosphatidylserine.

providing cholesterol to neurons to promote synapse formation
(Mauch et al., 2001) to include oligodendrocytes to enable
myelin formation.

Oligodendrocytes and astrocytes maintain contact through
somatic and lamellar gap junctions, which might promote
myelination and serve to ensure ionic balance. These heterotypic
gap junctions can be formed by astrocytic expression of
Cx30 or Cx43 and oligodendroglial expression of Cx32 or
Cx47 (Nagy et al., 2003; Orthmann-Murphy et al., 2007b).
Deletion of different subsets of these connexins has provided
evidence that converges on a role for gap junctions in
myelin formation or maintenance: loss of Cx30 and Cx43
was associated with myelin vacuolization (Lutz et al., 2009),
recessive mutations in the gene encoding Cx47 cause Pelizaeus-
Merzbacher-like disease, a dysmyelinating disease in humans
(Orthmann-Murphy et al., 2007a,b), and loss of Cx32 was
associated with cortical myelin defects and hyperexcitability
(Sutor et al., 2000). Mechanistically, a precise role for O-A
coupling in myelination has been elusive. Deletion of the genes

encoding Cx32 and Cx47 in oligodendrocytes was associated
with dysregulation of lipid synthesis genes and an immune
response (Wasseff and Scherer, 2015) and loss of Cx30 and
Cx43 reduced levels of Mbp in corpus callosum (Lutz et al.,
2009), raising the possibility that O-A coupling supports myelin
gene expression. A potential confound to this interpretation is
that loss of coupling may leave oligodendrocytes susceptible to
excitotoxic damage, and myelin reductions observed in these
models might reflect injury rather than impaired development.
Indeed, O-A junctions allow K+ influx in oligodendrocytes and
astrocytes to diffuse into the syncytium, protecting coupled
cells from high concentrations of K+ and excitotoxic damage
(Nagy and Rash, 2000; Menichella et al., 2006; Battefeld
et al., 2016). Distinguishing the relative contributions of gap
junction coupling to promoting myelination and protecting cells
from excitotoxic damage has the potential to teach us a lot
about oligodendrocyte development and heterogeneity, especially
given the vast regional variation in O-A coupling frequency
(Wasseff and Scherer, 2011).
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TABLE 1 | Glial secreted factors that shape oligodendrocyte development.

Factor Glial cell types that
produce factor

Oligodendrocyte
developmental stage

Effect References

Platelet-derived growth
factor (PDGF)

Astrocytes Proliferation Promotes Noble et al., 1988; Raff et al., 1988;
Richardson et al., 1988; Hart et al.,
1989; Barnett and Linington, 2013;
Lundgaard et al., 2014

Fibroblast growth
factor-2 (FGF2)

Astrocytes, microglia,
OPCs

Proliferation Promotes Liu et al., 1998; Messersmith et al.,
2000; Fortin et al., 2005; Barnett and
Linington, 2013; Kirby et al., 2013;
Birey et al., 2015

Transglutaminase-2
(Tgm2)

Microglia, astrocytes Proliferation Promotes Giera et al., 2018; Espitia Pinzon et al.,
2019

Interleukin 6 (IL-6) Microglia, astrocytes Proliferation Promotes Barres et al., 1993; Lau and Yu, 2001;
Taylor et al., 2010; Shigemoto-Mogami
et al., 2014

Interleukin 1β (IL-1β) Microglia, astrocytes Proliferation Promotes Didier et al., 2004; Shigemoto-Mogami
et al., 2014

Ciliary neurotrophic
factor (CNTF)

Astrocytes Survival, proliferation,
differentiation (?)

Reports of both pro- and
absent effect on differentiation

Barres and Raff, 1993; Barres et al.,
1996; Stankoff et al., 2002; Albrecht
et al., 2003; Nash et al., 2011

Pleiotrophin (Ptn) Astrocytes, pericytes Proliferation,
differentiation

Promotes proliferation,
suppresses differentiation

Yeh et al., 1998; Kuboyama et al.,
2012, 2015, 2016; Mcclain et al.,
2012; Nikolakopoulou et al., 2019

Insulin-like growth
factor-1 (IGF1)

Microglia, astrocytes Proliferation,
differentiation

Promotes Ye et al., 2002; Shigemoto-Mogami
et al., 2014; Pitt et al., 2017;
Wlodarczyk et al., 2017; Chen et al.,
2019

Tumor necrosis
factor-α (TNFα)

Microglia, astrocytes Proliferation (?),
differentiation

Reports of both pro- and
anti-proliferative effects

Arnett et al., 2001; Lau and Yu, 2001;
Nakazawa et al., 2006; Taylor et al.,
2010; Su et al., 2011;
Shigemoto-Mogami et al., 2014

Interferon γ (IFN-γ) Microglia, astrocytes Differentiation Inhibits differentiation, induces
cell stress and death

Baerwald and Popko, 1998; Laferla
et al., 2000; Lau and Yu, 2001; Chew
et al., 2005; Lin et al., 2006;
Shigemoto-Mogami et al., 2014

Endothelin 1 (ET-1) Endothelial cells, radial glia,
astrocytes

Differentiation Promotes Ostrow et al., 2011; Swire et al., 2019;
Adams et al., 2020

Laminin, α2 (LAMA2) Pericytes, astrocytes? Differentiation Promotes De La Fuente et al., 2017; Silva et al.,
2019

Chondroitin sulfate
proteoglycan 4
(CSPG4, NG2)

OPCs, pericytes, microglia Differentiation Favors differentiation of
astrocytes at expense of
oligodendrocytes

Baror et al., 2019; Huang et al., 2020;
Liu et al., 2021

Lipids and Cholesterol Astrocytes, microglia Myelination Promotes; microglia sterols
support remyelination

Saher et al., 2005; Mathews et al.,
2014; Camargo et al., 2017; Dimas
et al., 2019; Werkman et al., 2020;
Berghoff et al., 2021

Brain-derived
neurotrophic factor
(BDNF)

Astrocytes, microglia Myelination Promotes Nakajima et al., 2002; Coull et al.,
2005; Gomes et al., 2013; Parkhurst
et al., 2013; Fulmer et al., 2014

Leukemia inhibitory
factor (LIF)

Astrocytes Myelination Promotes Barres et al., 1993; Butzkueven et al.,
2002; Ishibashi et al., 2006; Moidunny
et al., 2012

C-X-C motif chemokine
ligand 10 (CXCL10)

Astrocytes Myelination Inhibits axon wrapping Nash et al., 2011

Phosphatidylserine (PS) Oligodendrocytes Myelin remodeling Eat-me signal for microglia Djannatian et al., 2021

Protease nexin-1
(PN-1, SERPINE2)

Astrocytes Myelin remodeling Inhibits myelin lifting Dutta et al., 2018

Astrocytes are also emerging as regulators of myelin
remodeling. Over 95% of nodes of Ranvier are contacted
by astrocytes (Serwanski et al., 2017), a position that grants
astrocytes proximity to many neighboring myelin sheaths.
Exocytosis of a thrombin inhibitor, protease nexin-1 (PN-1,

encoded by Serpine2) from astrocytes prevented thrombin-
mediated cleavage of NF155 (Dutta et al., 2018), which anchors
myelin paranodal loops to the axon. Thrombin is expressed by
neurons and can also enter the CNS from the vasculature. At
steady state, some NF155 was cleaved, evidenced by myelin lifting

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 May 2021 | Volume 9 | Article 661486

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-661486 May 10, 2021 Time: 10:54 # 7

Hughes Glial-Glial Interactions in Myelination

FIGURE 3 | Glial secreted factors that influence oligodendrocyte development. Oligodendrocyte proliferation, differentiation, myelination, and myelin remodeling are
shaped by cues secreted by glial cells. Colored dots indicate cell types that secrete each factor and line type denotes direction of effect. References for each factor
are listed in Table 1.

at 20% of observed paranodes. Blocking astrocytic exocytosis
to prevent PN-1 secretion further increased the number of
detached paranodes, consistent with the possibility that PN-
1 promotes sheath stability by preventing thrombin-mediated
NF155 cleavage. Under the model proposed by the authors,
thrombin can increase paranodal lifting to allow for resorption
of the outermost layer of myelin by the oligodendrocyte cell
body. The resorption of myelin should be distinguished from
other ways that astrocytes have been shown to remodel myelin,
such as via phagocytosis. Astrocyte-like radial glia phagocytose
optic nerve myelin in frogs (Mills et al., 2015), raising the
possibility that both paranodal lifting and sheath phagocytosis
contribute to sheath remodeling. Further investigation of these
mechanisms in vivo might better resolve the conditions that
contribute to different mechanisms of remodeling, potentially
including regional astrocyte availability and heterogeneity
(Bayraktar et al., 2015).

MICROGLIAL INTERACTIONS WITH
OLIGODENDROCYTE LINEAGE CELLS
AND MYELIN

Microglia are resident immune cells of the CNS that
differentiate from macrophages. Tools that allow manipulation of

macrophages and microglia have been invaluable for uncovering
how microglia contribute to oligodendrocyte development and
myelination. Microglia development is covered in more depth
elsewhere (Nayak et al., 2014), but here I introduce features
that are relevant to manipulation. Erythromyeloid progenitors
in the yolk sac are specified to become either macrophages
or neutrophils in an interferon regulatory factor 8 (IRF8)
-dependent manner (Holtschke et al., 1996; Scheller et al.,
1999; Shiau et al., 2015). A subset of yolk sac macrophages
will then invade the CNS and differentiate into microglia. The
distribution and survival of microglia within the CNS depends
on the function of the receptor CSF1R, which binds ligands IL-34
and CSF-1 (Ginhoux et al., 2010; Erblich et al., 2011; Oosterhof
et al., 2018). Whereas both IRF8 and CSF1R disruption have
allowed investigators to study how the CNS develops without
microglia, CSF1R inhibition is increasingly popular due to
the development of inhibitors for this receptor (Elmore et al.,
2014). However, CSF1R manipulation also affects peripheral
macrophages (Lei et al., 2020; Green and Hume, 2021), and
the search for more specific tools has continued. By deleting a
super-enhancer in the CSF1R locus, Rojo et al. (2019) generated
a new mouse model that lacks brain microglia and a few other
populations of macrophages but CSF1R1FIRE/1FIRE mice are
healthy and fertile. Additionally, a transmembrane protein,
TMEM119, is expressed in microglia but not macrophages
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(Bennett et al., 2016; Satoh et al., 2016) and recently TMEM119
mouse lines have been generated to label and manipulate
microglia (Kaiser and Feng, 2019). However, TMEM119 is not
expressed by microglia in all model organisms and is notably
absent from zebrafish and chicken microglia (Geirsdottir et al.,
2019), its expression decreases in inflammatory conditions
(Bennett et al., 2016), and it is expressed by a subset of peripheral
macrophages during development (Grassivaro et al., 2020).
P2RY12 is another promising marker that appears restricted
to microglia and dural and choroid plexus macrophages, but
not other macrophages (McKinsey et al., 2020). Although all of
these existing methods of targeting microglia have limitations,
it was recently revealed that microglia-fated macrophages are
transcriptionally distinguishable within the yolk sac (Utz et al.,
2020). Newly identified markers for yolk sac microglia-fated
macrophages may enable the discovery of new targets for earlier
and more specific perturbation of the lineage (Utz et al., 2020).

Microglia secrete cues that promote OPC proliferation,
differentiation, and myelination. By ablating microglia during
early postnatal development (P2-P7) with the CSF1R inhibitor
BLZ945, Hagemeyer et al. (2017) found that microglia maintain
OPC numbers and myelination in corpus callosum and
cerebellum (Hagemeyer et al., 2017). Mice without microglia
had fewer OPCs during development and by early adulthood
had reduced myelin. Some of the phenotypes varied between
brain regions, which could reflect regional heterogeneity in
oligodendrocytes (Marques et al., 2016) or microglia (De Biase
et al., 2017; Hammond et al., 2019; Li et al., 2019). Indeed, a
specific subset of microglia that express Cd11c are present in
developing white matter and ablation or conditional knockout
of Igf1 in these cells also impaired myelination (Wlodarczyk
et al., 2017). Together, these data suggest that a subset of
microglia promote myelination through IGF1 production. Other
signaling pathways between microglia and OPCs may also
modify myelin development. Giera et al. (2018) found that
an adhesion G-protein coupled receptor, GPR56, located on
OPCs, interacts with Transglutaminase-2 (TGM2) secreted by
microglia to promote OPC proliferation in the presence of the
extracellular matrix (ECM) protein laminin-111 (Giera et al.,
2018). Importantly, remyelination following a demyelinating
lesion was impaired in knockout mice lacking TGM2—GPR56
signaling, suggesting that this microglia-OPC-ECM signaling
axis is essential not only for OPC numbers but functional
remyelination (Giera et al., 2018). Astrocytes also express TGM2,
raising the possibility that regions with differential densities of
astrocytes and microglia maintain signaling via this signaling
axis (Espitia Pinzon et al., 2019). Furthermore, microglial
deposition of the ECM molecule CSPG4 in aging shifts the
microenvironment to favor the differentiation of NG2 cells into
astrocytes at the expense of oligodendrocytes (Baror et al., 2019).
Taken together, microglia-ECM interactions may promote OPC
proliferation and differentiation in development but increasingly
inhibit OPC differentiation in later life.

In addition to IGF1 production, microglia are secretory
cells that generate a variety of molecules and cytokines that
have been studied in regulation of neuronal and synaptic
activity (York et al., 2018). However, some of these secreted

molecules have been independently implicated in regulating
myelination. For example, microglia secrete BDNF (Nakajima
et al., 2002; Coull et al., 2005; Gomes et al., 2013; Parkhurst
et al., 2013), which has been found to promote myelination
in numerous contexts (Mctigue et al., 1998; Lundgaard et al.,
2013; Geraghty et al., 2019). The contribution of microglia-
derived BDNF to myelination has not been investigated, but
astrocyte-derived BDNF supports remyelination after cuprizone-
mediated demyelination (Fulmer et al., 2014), consistent with
the possibility that microglial-derived BDNF also promotes
myelination. Microglia also secrete factors including TNFα, IL-
6, FGF2, IL-1β, and IFN-γ that stimulate OPC proliferation and
differentiation (Shigemoto-Mogami et al., 2014; Miron, 2017),
but precise roles for these secreted cues in myelination have yet
to be investigated.

Recent investigations of microglial heterogeneity have
identified a population of white matter-associated microglia
present during early postnatal development in mouse
(Hammond et al., 2019; Li et al., 2019; McNamara and
Miron, 2020). The role of this microglia subset is not yet
known, but microglia in this subset (Clec7a+) contain Mbp
transcripts (Li et al., 2019), raising the possibility that white
matter microglia phagocytose myelin or oligodendrocytes.
Microglia phagocytose myelin in disease models and in culture
(Trotter et al., 1986; van der Laan et al., 1996; Smith and
Hoerner, 2000), but a role for myelin engulfment during normal
development is only beginning to be understood. We recently
used zebrafish to investigate myelin phagocytosis by microglia
during development (Hughes and Appel, 2020). We found that
microglia dynamically engage with sheaths in myelinated tracts
and phagocytose a subset of nascent sheaths. This may imply
selective expression of a cue. Intriguingly, a recent preprint
identified phosphatidylserine (PS), a known eat-me cue at
synapses (Li et al., 2020; Park et al., 2020; Scott-Hewitt et al.,
2020), as a likely cue for developmental myelin phagocytosis
(Djannatian et al., 2021). Similar to synapse elimination, the
cues that direct myelin phagocytosis may vary between brain
regions (Gunner et al., 2019). Furthermore, emerging non-
phagocytic microglial mechanisms of synapse modification,
such as local extracellular matrix modification, may also impact
myelin growth and loss (Cheadle et al., 2020; Nguyen et al.,
2020). Identifying the cues that regulate myelin phagocytosis
and non-phagocytic elimination, and the possibility that those
cues may overlap or be distinct from cues regulating synapse
elimination has the possibility to teach us a great deal about
general principles of brain wiring during development.

VASCULAR INTERACTIONS WITH THE
OLIGODENDROCYTE LINEAGE AND
MYELIN

In addition to astrocytes and microglia, cell types of the
vasculature also interact with myelinating oligodendrocytes. The
vasculature comprises two interacting cell types, endothelial cells
and pericytes. During development, OPCs use the vasculature
as a physical substrate for migration (Tsai et al., 2016) and
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crawl along it to distribute throughout the CNS. To learn
which vascular cell type interacts with OPCs to promote
migration, Tsai et al. (2016) used genetic approaches to ablate
both endothelial cells and pericytes (Gpr124−/−), or pericytes
only (Pdgfrb−/−) and studied OPC migration. They found
that endothelial cells, and specifically endothelial expression
of the adhesion G-protein coupled receptor, GPR124, were
required for OPCs to migrate and distribute throughout the
CNS. Within OPCs, CXCR4 and autocrine signaling of the
Wnt ligands Wnt7a and -7b first promoted attraction to
the vasculature, and were downregulated later, presumably
allowing for detachment and differentiation (Yuen et al., 2014;
Tsai et al., 2016).

Other factors produced by vascular cells may actively promote
OPC differentiation and myelination. Endothelial cells produce
endothelin, which was shown to promote oligodendrocyte
differentiation in the subventricular zone (SVZ) (Adams et al.,
2020). In a demyelination paradigm, pericyte secretion of
the extracellular matrix protein LAMA2 could stimulate OPC

differentiation (De La Fuente et al., 2017), raising the possibility
that pericytes also promote differentiation during development
via matrix deposition. Taken together, these data suggest
a model by which OPCs migrating along vasculature both
downregulate CXCR4 and Wnt ligands and are exposed to
endothelin and possibly ECM factors to promote differentiation
and myelination. In support of this model, Swire et al. (2019)
found that upon oligodendrocyte-specific knockout of EDNRB,
the endothelin receptor, oligodendrocytes formed fewer myelin
sheaths (Swire et al., 2019). These authors also discovered
that social isolation reduced myelination in prefrontal cortex,
replicating a previously published result (Makinodan et al., 2012),
and additionally found that social isolation reduced expression of
endothelin by endothelial cells. An intranasal endothelin receptor
agonist was sufficient to rescue the social deprivation-associated
myelination defect, consistent with the possibility that activity-
dependent myelination requires activation of EDNRB receptors
on oligodendrocytes. Intriguingly, mice with oligodendrocyte-
specific loss of EDNRB were less sociable than wildtype siblings,

FIGURE 4 | Astrocytes and microglia regulate and are regulated by neuronal activity: what are the consequences for activity-dependent myelination? (A) Summary
schematic of interactions between astrocytes, microglia, neurons, and myelination described by Ishibashi et al. (2006), Badimon et al. (2020), Ma et al. (2016), and
Hughes and Appel (2020). (B) Does glial regulation of neuronal activity change activity-dependent myelination? Does microglial suppression of activity (blue neurons)
and astrocytic release of ATP to excite nearby neurons (purple) contribute to activity-dependent myelination?
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raising the possibility that endothelin signaling-dependent
myelination promotes social behavior (Swire et al., 2019).

ON THE HORIZON: GLIAL REGULATION
OF AND BY NEURONAL ACTIVITY
SHAPES DOWNSTREAM
ACTIVITY-DEPENDENT MYELINATION

Each glial cell type that I have discussed thus far regulates
oligodendrocyte development, but are additionally regulated
by and can regulate neuronal activity. How does modulation
by and of neuronal activity impact myelination? Suppression
and stimulation of activity in sparse axons changes the
growth of myelin on those axons, ostensibly in a sheath-
or oligodendrocyte-autonomous manner (Hines et al., 2015;
Mensch et al., 2015; Wake et al., 2015; Koudelka et al., 2016;
Mitew et al., 2018). How, then, does glial manipulation of
axonal activity modulate the potential for activity-dependent
myelination? Additionally, how does neuronal signaling
to glia impact glial interactions with myelin (Figure 4)?
These questions have been difficult to investigate because
they require the inclusion and manipulation of multiple
cell types and additional controls to isolate interactions of
interest. Despite these challenges, such holistic investigations
have begun to teach us how cell-cell interactions that have
been identified by reductionist approaches interact with
and moderate each other in the context of the whole
brain (Liddelow et al., 2017; Geraghty et al., 2019; Gibson
et al., 2019; Forbes et al., 2020). I conclude this review
by raising questions that integrative approaches are now
poised to tackle.

Glial cells can manipulate neuronal activity, both chronically
and acutely. By participating in developmental synapse formation
and refinement, glia broadly limit the range of activity that is
possible within a nervous system. Emerging evidence suggests
that glia can also act on much shorter timescales to flexibly
modify activity. Astrocytes can increase activity, coupling the
activity of populations of non-synaptically connected neurons
via ATP secretion or other processes that occur downstream
of intracellular calcium elevations (Ma et al., 2016; Mu
et al., 2019). Might such synchronization of activity between
disconnected neuronal populations configure similar activity-
dependent myelination? Additionally, microglia can suppress

neuronal activity, presumably via ATP hydrolysis and A1R
signaling at somatic contacts on neurons (Li et al., 2012; Eyo
et al., 2014; Badimon et al., 2020; Cserép et al., 2020). Does
this suppression limit activity-dependent myelin growth in brain
regions where microglia are particularly enriched? Finally, an
emerging body of work implicates oligodendrocytes, astrocytes,
and the vasculature in providing metabolic support for axons
(Nave, 2010; Fünfschilling et al., 2012; Lee et al., 2012; Saab
et al., 2016; Nortley and Attwell, 2017; Meyer et al., 2018;
Philippot et al., 2021; Philips et al., 2021), enabling sustained
neuronal activity and function. Intriguingly, fuel sources and
types vary between brain regions (Meyer et al., 2018) and
astrocytes might be particularly important for providing trophic
support during development (Philips et al., 2021). In addition
to glial control of neuronal activity, glial cells are also altered
by activity and this may change how they interact with myelin.
For example, astrocytes responded to ATP released by active
neurons by secreting leukemia inhibitory factor (LIF) which
could promote myelination (Ishibashi et al., 2006). In our
recent paper, we found that microglia contacted active neuronal
somas more frequently and phagocytosed less myelin from
axons (Hughes and Appel, 2020). Together, the interplay of
individual glial cell types with neurons and with each other
may tune glial function and neuronal activity to optimize neural
circuit function.
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