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Purpose: ROR2, a member of the ROR family, is essential for skeletal development as
a receptor of Wntba. The present study aims to investigate the mutational spectrum of
ROR2 in children with short stature and to identify the underlying molecular mechanisms.

Methods: We retrospectively analyzed clinical phenotype and whole-exome
sequencing (WES) data of 426 patients with short stature through mutation screening of
ROR2. We subsequently examined the changes in protein expression and subcellular
location in ROR2 caused by the mutations. The mRNA expression of downstream
signaling molecules of the Wnt5a-ROR2 pathway was also examined.

Results: We identified 12 mutations in ROR2 in 21 patients, including 10
missense, one nonsense, and one frameshift. Among all missense variants, four
recurrent missense variants [c.1675G > A(p.Gly559Ser), ¢.2212C > T(p.Arg738Cys),
€.1930G > A(p.Asp644Asn), c.2117G > A(p.Arg706GIn)] were analyzed by experiments
in vitro. The ¢.1675G > A mutation significantly altered the expression and the cellular
localization of the ROR2 protein. The ¢.1675G > A mutation also caused a significantly
decreased expression of c-Jun. In contrast, other missense variants did not confer any
disruptive effect on the biological functions of ROR2.
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Conclusion: We expanded the mutational spectrum of ROR2 in patients with short
stature. Functional experiments potentially revealed a novel molecular mechanism

that the c¢.1675G > A mutation

in ROR2 might affect the expression of

downstream Wnt5a—-ROR2 pathway gene by disturbing the subcellular localization and

expression of the protein.

Keywords: short stature, ROR2 gene, recurrent mutations, dysfunction, skeletal development

INTRODUCTION

As a member of ROR family receptor tyrosine kinase, receptor
tyrosine kinase like orphan receptor 2 (ROR2) is a 943-amino
acid transmembrane protein tyrosine kinase encoded by the
ROR2 gene (van Bokhoven et al, 2000). The extracellular
domains of ROR2 mainly include an immunoglobulin-like
functional domain, a cysteine enrichment domain (CRD), and
a kringle domain, while the intracellular domains include a
tyrosine kinase domain (TKD), a proline-rich domain, two
serine/threonine-rich domains, and a short C-terminal tail (Endo
and Minami, 2018; Kamizaki et al., 2020). ROR2 is widely
expressed in a variety of tissues, including the heart, brain,
and lung and is also involved in the development of the
nervous system and the skeletal system (Huang et al, 2015).
Recently, it has been reported that ROR2 and RORI interact
with Wnt9a to regulate the growth of the humerus in vivo
(Weissenbock et al., 2019).

Pathogenic mutations in ROR2 are involved in two diseases:
autosomal recessive Robinow syndrome (RRS, MIM:268310)
and autosomal dominant brachydactyly type Bl (BDBI,
MIM:113000) (Afzal et al, 2000; Yang et al, 2020; Zhang
et al., 2020). Variants of ROR2 that cause RRS are generally
nonsense, missense, and frameshift and are located in all of the
domains (Kirat et al., 2020). BDB1-related variants are often
nonsense or frameshift variants that reside in the N-terminal
region of the protein (Stricker et al., 2017). Truncating variants
associated with BDB1 cause a gain-of-function effect, whereas
RRS-related variants result in the loss of function of ROR2
(Bacino, 1993). Accumulating evidence from Ror2-knockout
mice and RRS patients suggests a significant role of ROR2 in
the early formation of chondrocytes as well as the development
and formation of bone (DeChiara et al., 2000; Takeuchi
et al,, 2000; Patton and Afzal, 2002; Schwabe et al., 2004;
Weissenbock et al., 2019).

Recent findings indicate that mutations in a single gene, such
as SHOX, NPR2, ACAN, or FGFR3, could cause either severe
skeletal dysplasia or isolated short stature. Hauer et al. (2018)
performed whole-exome sequencing (WES) on 200 patients with
idiopathic short stature and found a proportion of patients
with pathogenic mutation in genes known to be associated
with skeletal dysplasia. We previously revealed distinct genetic
architecture and pathophysiological processes in 561 patients
with isolated and syndromic short stature using WES and
yielded a diagnostic rate of 24.1% (Fan et al.,, 2021). The milder
phenotype (that is, isolated short stature) tends to occur when the
mutation only partially disrupts protein function and/or when
the mutation occurs in the heterozygous state (Baron et al., 2015).

Although mutations in ROR2 have been implicated in
certain congenital skeletal defects, including BDB1 and RRS,
the molecular mechanisms underlying isolated short stature still
remain elusive. This study aimed to explore the contributions
of heterozygous ROR2 variants in short stature patients that
remained undiagnosed after WES analysis. We subsequently
performed in vitro functional analyses for variants that were
recurrent in our cohort.

MATERIALS AND METHODS

Cohort Recruitment and Whole-Exome
Sequencing

From July 2014 to August 2018, we screened 426 WES-
undiagnosed patients from three centers in China [Maternal and
Child Health Hospital of Guangxi, The Second Affiliated Hospital
of Guangxi Medical University, and Beijing Children’s Hospital,
as parts of the Deciphering Disorders Involving Scoliosis and
COmorbidities (DISCO)] study.

DNA was extracted from peripheral blood collected from all
of the probands and available familial members. In total, 374
patients underwent proband-only WES, while 50 underwent trio-
based WES, and two underwent quad-based WES (altogether
532 subjects). The sequencing data were analyzed and annotated
using an in-house developed analytical pipeline, Peking Union
Medical College Hospital Pipeline (PUMP), as previously
described (Wang et al., 2018; Chen et al., 2021; Zhao et al., 2021;
Supplementary Methods).

Mutation Analysis

Mutation screening of ROR2 was performed in 426 undiagnosed
patients. All mutations in coding exons of ROR2 from our
cohort were manually reviewed using Integrative Genomics
Viewer (IGV) (Thorvaldsdoéttir et al., 2013). Current study
use followed criteria to ensure that mutations in ROR2 were
highly credible: (1) read depth of mutation > 10; (2) variant
allele frequency > 0.2; (3) Combined Annotation Dependent
Depletion (CADD) predicted score > 15; (4) frequency in
Gnomad database < 0.01 (Figure 1). Sanger sequencing was
performed on available subjects and parental samples to validate
the variants by an orthogonal sequencing method and to
investigate segregation according to Mendelian expectations for
the identified variant allele(s).

'http://www.discostudy.org/
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426 undiagnosed cases with
short stature

l

Whole-exome sequencing
and mutation analysis

l

37 cases with ROR2 variants
(24 variants involved)

Filter:
Read depth = 10
VAF 2 20%
CADD score = 15
GnomAD Frequency < 1%

21 cases with ROR2 variants
(12 variants involved)

| |

2 heterozygous truncating
variants

10 heterozygous missense
variants

FIGURE 1 | Flowchart of patient enrollment and mutation screening. VAF,
variant allele frequency; CADD, combined annotation dependent depletion
database.

Plasmid Construction

The wild-type (WT) ROR2 plasmid was constructed through
Seamless Cloning reaction. The resulting PCR amplimers were
digested with Xhol and BamHI and ligated into the Xhol
and BamHI sites of plasmid pEGFP-N1 (Beijing Hitrobio
Biotechnology Co., Ltd., Sigma-Aldrich, St. Louis). The
resulting plasmid was identified by Sanger sequencing (Forward
primer: 5-CGCTTTGTCCTTCAGCGTTT-3'; Reverse primer:
5'-AATGCCCCTCATTAACCAGC-3'). All ROR2 mutated
plasmids were constructed using the strategy of homologous
recombination (Primers used for mutated plasmid construction
were listed in Supplementary Materials). The resulting
plasmid was transformed into Escherichia coli and validated by
Sanger sequencing.

Cell Culture and Transfection

The HeLa cells were cultured in Dulbecco’s modified Eagle
media/High Glucose (Hyclone), supplemented with 5% fetal
bovine serum (FBS; 10099141C, Gibco), 100 U/ml penicillin-
streptomycin (15140122, Gibco) at 37°C with 5% CO,. Cells were
seeded in six-well plates or confocal dishes and transfected with
Lipofectamine 3000 Transfection Reagent (2264840, Invitrogen)
according to the manufacturers’ instructions. Six hours after
transfection for Western blotting (WB) analysis, the HelLa
cells were treated with 100 ng/ml Wnt5a (645-WN-010, R&D
Systems) for 48 h.

Immunofluorescence

The HeLa cells were implanted on confocal dishes and transfected
with plasmids using Lipofectamine 3000 Transfection Reagent
(2264840, Invitrogen) for 48 h. The confocal dishes were rinsed
three times with phosphate-buffered saline (PBS; SH0021, Beijing
Haicheng Yuanhong Technology Co., Ltd.). The cells were fixed
in 4% fixative solution (P1110, Solarbio, China) and blocked
with bovine serum albumin buffer (ZLI-9022, ZSGB-bio, China).
The first antibody (rabbit polyclonal calnexin antibody, ab22595,
Abcam) was incubated with PBS containing 0.1% Triton X-
100 (T8200, Solarbio, China) at room temperature (RT; 25°C)
for 1 h. Goat anti-rabbit IgG H&L (Alexa Fluor 647) was
adopted as secondary antibody (ab150079, Abcam). The dyed
dishes were mounted in fluorescent mounting medium with 4’,6-
diamidino-2-phenylindole (DAPI; ZLI-9557, ZSGB-BIO, China)
and observed using confocal microscopy. All experiments were
replicated three times.

Western Blotting Analysis

Cells were lysed with radioimmunoprecipitation assay (RIPA)
lysis buffer (C1053, Beijing Applygen Technologies Inc.), and
protein concentrations were determined using the bicinchoninic
acid (BCA) Protein Assay Kit (PC0020, Solarbio, China). Total
protein of 20 jLg was separated on a 10% NuPAGE™ Bis-Tris
Welcome Pack (NP030B, Invitrogen), and the electrophoresed
products were transferred to iBlot™ 2 NC Regular Stacks
(IB23001, Life Technologies). Membranes were blocked for
30 min at RT using 5% powdered milk, and primary antibodies
mouse anti-eGFP mAb (TA-06, ZSGB-BIO, China) and mouse
anti-GAPDH mAb (TA-08, ZSGB-BIO, China) were incubated
overnight at 4°C. After washing the membranes, the secondary
antibody Goat anti-Mouse IgG (H + L) (ZB-2305, ZSGB-BIO,
China) was incubated for 2 h at RT. Bands were visualized
with Pro-light HRP substrate chemiluminescent system (PA112,
Tiangen Biotech Co., Ltd.). Chemiluminescent signals were
quantified using Image] software.

Quantitative Real-Time Polymerase

Chain Reaction

The levels of c-Jun and Axin2 mRNA in HeLa cells after
Wnt5a treatment were analyzed via qRT-PCR. Total RNA was
extracted using FastPure cell/tissue total RNA isolation kit V2
(RC112-01, Nanjing Vazyme Biotech Co., Ltd.), according to the
manufacturer’s instructions. The RNA was subsequently reverse
transcribed to yield single-stranded cDNAs using PrimeScript™
RT reagent kit with gDNA eraser (perfect real time, RR047A,
TaKaRa) based on the manufacturer’s instructions. The qRT-
PCR reaction was performed using TB Green Premix Ex Tag™
IT (Tli RNaseH Plus, RR820A, TaKaRa) and the 7500 Fast Dx
Real-Time PCR Instrument (Applied Biosystems, United States)
based on the manufacturer’s instructions. The primer sequences
used for PCR amplification in our study were designed based
on the sequences of the cDNA clones as follows: the primers
of c-Jun were as previously described (Davoulou et al., 2020)
and the primers of Axin2 (137 bp: NM_011359): Forward
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primer: 5'-CGATGAGTTTGCCTGTGGAG-3'; Reverse primer:
5'-TCAATCGATCCGCTCCACTT-3".

Statistical Analysis

Comparison among groups was performed by the analysis of
Student’s T-test. P-value less than 0.05 was statistically significant
as calculated by SPSS 21.0.

RESULTS

Cohort Demographic Characteristics

We found that 21 patients carried variants in ROR2 from 426
patients with short stature. Among these patients, there were 12
males (57%) and 9 females (43%). The mean age, bone age, and
height SDs of all cases with ROR2 variants were 6.38 = 3.99 years,
4.67 £ 2.19 years, and —2.92 £ 1.31, respectively. Ten cases
presented other systemic symptoms besides short stature. Six
cases presented symptoms of developmental delay, and only one
case had a symptom of gonadal dysplasia (Table 1).

Mutational Screening of ROR2 in the
Cohort

Through mutation screening analysis, we identified 12 mutations
in ROR2, including two truncating mutations and 10 missense
mutations (Table 1). The heterozygous stop-gain mutation
[c.613C > T (p.Arg205Ter)] was found in the patient DISCO-
S0120 who manifested dwarfism with mild motor retardation
and mental retardation, which were partly consistent with
the phenotype of RRS. The other patient DISCO-S0186
carried a heterozygous ROR2 frameshift mutation [c.2625dupC
(p-Thr876fsTer20)], which was absent from pubic databases
and 942 in-house control from the DISCO study. However,
no variant in ROR2 was identified in trans in either patient.
Furthermore, four recurrent missense mutations in ROR2 were
identified, including c.1675G > A (p.Gly559Ser) in five patients,
c2212C > T (p.Arg738Cys) in four patients, c.1930G > A
(p.Asp644Asn) in two patients, and ¢.2117G > A (p.Arg706Gln)
in two patients (Table 1). All recurrent missense mutations were
located at the TKD of the intracellular region of the ROR2
protein (Figure 2).

Expression of the ROR2 Protein and
Wnt5a-ROR2 Pathway-Related Protein

We further conducted in vitro protein expression experiments
to examine functional defects caused by recurrent missense
mutations in ROR2. WB showed that ¢.1675G > A mutation
could lead to a significant decrease in the expression of ROR2
protein with Wnt5a treatment (P<0.05; Figures 3A,B). In
contrast, the remaining three missense variants did not impact
the expression of ROR2 (data not shown). The influence of
mutated and WT ROR2 protein on B-catenin and P-Jnk/JNK
pathways showed no significant difference with or without Wnt5a
treatment (Figures 3A,C,D). To further explore the effect on the
Wnt5a pathway conferred by the ¢.1675G > A variant, we tested
the expression of c-Jun, a molecule downstream of the Wnt5a

pathway in precursors of osteoclast (Maeda etal., 2012), and
Axin2, a regulator of the Wnt pathway, with Wnt5a stimulation
(Lammi et al., 2004). As a result, mRNA expression of c-Jun
in the cells transfected with mutated ROR2 c.1675G > A
was significantly lower than that transfected with WT ROR2
(P<0.05; Figure 4A). In contrast, there was no significant
difference in the expression of Axin2 mRNA after treatment with
Wnt5a (Figure 4B).

Immunofluorescence Colocalization of
ROR2

We further performed immunofluorescence experiments to
explore the effects of these missense mutations on the subcellular
localization of the ROR2 protein. The results showed that the
mutated ROR2 c.1675G > A was enriched in the endoplasmic
reticulum, and the mutated ROR2 ¢.613C > T was not detected
(Figure 4C). The subcellular localization of other missense
mutations in ROR2 was similar to that of WT (data not
shown). These in vitro results suggested that the c.1675G > A
mutation might affect the expression of downstream genes in the
Wnt5a-ROR2 pathway and alter the subcellular localization of
the ROR2 protein.

DISCUSSION

With the application of the next-generation sequencing (NGS)
in exploring the genetic etiology of disease, complex genetic
patterns may explain the genetic causes of many common
diseases and relatively rare diseases (Posey et al., 2017). Through
mutation screening of ROR2, we found two patients with
heterozygous truncating mutations in ROR2 mainly presenting
short stature. Genotype-phenotype evaluation confirmed that
these two patients were lacking other characteristic features of
the RRS, indicating that heterozygous loss-of-function mutation
in ROR2 might be associated with isolated short stature.

In addition, we identified six missense mutations in ROR2
including four recurrent missense mutations located within the
TKD (Figure 2 and Table 1). Results from functional experiments
in vitro demonstrated that the missense mutation in ROR2
[c.1675G > A (p.Gly559Ser)] could perturb the subcellular
localization of the ROR2 protein and lead to a decreased
expression of downstream molecule of the Wnt5a pathway.
Based on these results, we inferred that this heterozygous
missense mutation in ROR2 might have a hypomorphic effect,
which meant a variant caused partial loss of the gene function
(Hrabé de Angelis and Balling, 1998).

In vertebrates, ROR2 and ROR1 bind to non-classical Wnt5a
protein through their CRD and act as receptors or co-receptors
for Wnt5a to activate non-classical Wnt pathways (B-catenin-
independent pathways), including planar cellular polarization
pathways and Wnt-Ca?* pathways (Oishi et al., 2003; Yamamoto
et al.,, 2007; Gao et al., 2011; Kamizaki et al., 2020). Recently,
studies showed that the Wnt5a-ROR2 pathway was not only
involved in the development of cartilage but also associated
with the function of osteoblasts and osteoclasts (Chen et al,
2019; Uehara et al., 2019). Weissenbock et al. (2019) found that
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TABLE 1 | Phenotype and genotype of patients carrying mutations in ROR2.

ID Gender CA,
years

BA,
years

Height,
SDs

Phenotypes

HGVS
nomen-
clature

Genomic
position*

Mutational Zygosity
type

Exon Domain

ExAC

Gnomad

CADD

frequency* frequency** score

DISCO-S0061 M 12.00

DISCO-S0097 M 6.00

DISCO-S0024 F 6.50

DISCO-S0064 F 4.42
DISCO-S0303 2.92
DISCO-S0098 M 7.42

-

DISCO-S0180 F 9.08
DISCO-S0189 14.00
DISCO-S0126 M 0.67

<

DISCO-S0874 M 4.58

DISCO-S0891 M 3.92
DISCO-S0158 M 5.83

9.00

NA

5.00

2.50
1.50
5.00

8.00
NA
NA

3.00

3.00
3.50

—4.00

NA

—4.00

—4.00
—3.00
—2.50

—2.50
-3.20
NA

—-2.13

—-2.74
-3.80

Intellectual disability
HP:0001249; Webbed
penis HP:0030264;
Abnormality of the
testis size HP:0045058
Short stature
HP:0004322; Delayed
speech and language
development
HP:0000750;
Intellectual disability
HP:0001249; Motor
delay HP:0001270;
Wide nasal ridge
HP:0012811; Visual
impairment
HP:0000505

Global developmental
delay HP:0001263;
Microcephaly
HP:0000252

NA

NA

NA

NA
NA

Short stature
HP:0004322; Ectopic
kidney HP:0000086
NA

NA
NA

c.1675G >
A(p.Glys559Ser)

94487101

c.2212C >
T(p.Arg738Cys)

94486564

¢.1930G >
A(p.Asp644Asn)

94486846

c.2117G >
A(p.Arg706Gin)

94486659

Missense Het

Missense Het

Missense Het

Missense Het

Protein
kinase-
Tyrosine

exon9

Protein
kinase-
Tyrosine

exon9

Protein
kinase-
Tyrosine

exon9

Protein
kinase-
Tyrosine

exon9

0.0032

0.0024

0.0017

0.0041

0.0037

0.0024

0.0019

0.0045

15.35

16.08

22.8

18.45

(Continued)
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TABLE 1 | Continued

ID Gender CA, BA, Height, Phenotypes HGVS Genomic  Mutational Zygosity Exon Domain ExAC Gnomad CADD
years years SDs nomenclature position* type frequency* frequency** score
DISCO-S0060 M 9.50 NA —2.00 Abnormality of the
pituitary gland
HP:0012503
DISCO-S0098 F 0.17 NA —3.00 Motor delay €.935G > 94495406 Missense Het exon6 Kringle- 0.0064 0.0035 15.75
HP:0001270; Muscular A(p.Arg312His) like
hypotonia fold
HP:0001252;

Blepharophimosis
HP:0000581; Feeding
difficulties HP:0011968
DISCO-S0134 F 0.29 NA —2.00 Motor delay c.553T > 94499742  Missense Het exon5 Frizzled 0 0 15.21
HP:0001270; Increased C(p.Phe185Leu)
lactate dehydrogenase
activity HP:0025435

DISCO-S0023 F 7.50 5.00 —3.80 Global developmental ¢.302C > 94519715  Missense Het exon3 Immuno- 0.0032 0.0037 156.35
delay HP:0001263; T(p.Pro101Leu)
Microcephaly globulin
HP:0000252
DISCO-S0204 M 6.75 5.50 —4.00 NA C.769G > 94495572  Missense Het exoné Frizzled 0.00024 0.0002 36
A(p.Glu257Lys)
DISCO-S0292 F 3.50 NA —5.00 NA €.2236C > 94486540 Missense Het exon9 Protein 0 0 156.29
T(p.Leu746Phe) kinase-
Tyrosine
DISCO-S0120 F 7.00 NA 1.10 Motor delay c.613C > 94499682 Stop Het exon5 Frizzled 0 0 40
HP:0001270; T(p.Arg205Ter) gain
Intellectual disability
HP:0001249
DISCO-S0042 M 14.30 NA —2.00 Abnormality of the c.2014G > 94486762 Missense Het exon9 Protein 0 0 17.72
hypothalamus—pituitary A(p.Asp672Asn) kinase-
axis HP:0000864 Tyrosine
DISCO-S0186 M 8.70 5.00 -2.80 NA €.2625dupC 94486150  Frameshift Het exon9 Ser/Thr- 0 0 NA
(p.Thr876fsTer20) rich
region

#Genomic position was based on GRCh37 Chromesome 9. *Frequency was derived from the East-Asian frequency of Exome Aggregation Consortium (EXAC) database. **Frequency was derived from the East-Asian
frequency of Genome Aggregation Database (Gnomad).

HGVS, Human Genome Variation Society; CADD, Combined Annotation Dependent Depletion; Het, heterozygous; NA, not available; CA, chronological age; BA, bone age; SD, standard deviation,; F, female; M, male;
HR, Human Phenotype Ontology (HPO) term identifier.
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FIGURE 2 | Schematic representation of ROR2 with its domain structure. Mutations identified in this study (green and black) are marked.
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knockout of Ror2 also influenced the formation of the trunk progenitor cells by affecting the dimer of Jun and Sp-1 binding
bone in vivo. Maeda et al. (2012) found that the Wnt5a-ROR2  to the transcriptional initiation region of Tnfrsflla, which is
pathway could further regulate the differentiation of osteoblast consistent with our findings. According to our in vitro assays,
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mutated ROR2 protein.

¢.1675G > A mutation in ROR2 leads to a decrease in the
expression of c-Jun under Wnt5a treatment, which indicated
that this missense mutation in ROR2 might disrupt the normal
function of the Wnt5a-ROR?2 pathway.

The TKD is the key domain in the cytoplasmic region of
the ROR2 protein. The biological function of the TKD was
controversial in previous studies (Alfaro et al., 2015; Debebe and
Rathmell, 2015). In terms of evolutionary biology, mammalian
ROR?2 exhibits alterations within the highly conserved amino
acids in the kinase domains that possibly indicates that
the kinase activity may have been evolutionarily degenerated
(Forrester, 2002). Also, several studies suggested that both
ROR1 and ROR2 might be pseudokinases (Gentile et al.,
2011; Debebe and Rathmell, 2015). However, recent studies by
Nevenzal et al. (2019) and Sheetz et al. (2020) had found the
autophosphorylation activity and autoinhibitory interactions of
the TKD in the ROR2 protein from the perspective of high-
throughput phosphorylation detection and protein structure.
Consistent with results from experiments in vitro, five of our
patients carrying the ¢.1675G > A heterozygous mutation mainly
displayed short stature. As shown by both in vitro assays and
data from patient cohorts, we confirmed that missense mutation
c.1675G > A in the TKD region might be associated with linear
growth attenuation among children. However, the function of

the TKD needs to be confirmed by further molecular biological
experiments. Also, our findings from cohort and in vitro results
both highlighted a possiblely novel mechanism through which
hypomorphic mutation in ROR2 leads to short stature.

CONCLUSION

We expanded the mutational spectrum of ROR2 in patients with
short stature. The c.1675G > A in ROR2 was recurrently seen in
five patients and was revealed to confer a hypomorphic effect on
the function and expression of the protein and the normal activity
of the Wnt5a pathway.
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