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Gastric cancer (GC), characterized by uncontrolled growth, is a common malignant
tumor of the digestive system. The Wnt signaling pathway plays an important role in
the tumorigenesis and proliferation of GC. Many studies on this signaling pathway have
focused on its intracellular regulatory mechanism, whereas little attention has been given
to extracellular regulatory factors. Dickkopf-1 (Dkk1) is a secretory glycoprotein, and it
can bind inhibit activation of the Wnt pathway. However, the regulation and mechanism
of DKK1 in the proliferation of GC remain unclear. FOXC1 plays an important role
in organ development and tumor growth, but its role in GC tumor growth remains
unknown. In this study, we found that the FOXC1 is highly expressed in patients with
GC and high expression of FOXC1 correlates to poor prognosis. In addition, we found
that the Wnt signaling pathway in GC cells with high FOXC1 expression was strongly
activated. FOXC1 negatively regulates DKK1 expression by binding to its promoter
region, thereby promoting the activation of Wnt pathway. FOXC1 can also form a
complex with unphosphorylated g-catenin protein in the cytoplasm and then dissociates
from B-catenin in the nucleus, thereby promoting the entry of g-catenin into the nucleus
and regulating expression of c-MYC, which promotes the proliferation of GC cells. Our
study not only reveals the function and mechanism of FOXC1 in GC, but also provides
a potential target for clinic GC treatment.

Keywords: gastric cancer, FOXC1, DKK1, c-MYC, proliferation

INTRODUCTION

Gastric cancer (GC) is one of the most common malignant tumors in the digestive system,
especially in East Asia. In 2013, approximately 984,000 people were diagnosed with GC, and nearly
841,000 died of GC (Fitzmaurice et al., 2015). Due to the lack of specific tumor biomarkers, many
tumors were at an advanced stage when diagnosed and patients have lost the opportunity for
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radical surgical treatment, for those patients, their 5-year survival
rate is less than 10% (Shimada et al., 2014). Thus, identifying
the underlying mechanisms and specific biomarkers is a pivotal
project to treat GC.

Forkhead box (FOX) proteins are characterized by a winged
helix DNA-binding domain (Erickson, 2001). These proteins
have been shown to regulate diverse biological processes,
including development, differentiation, proliferation, apoptosis,
migration, invasion, and tumorigenesis (Jin et al, 2014).
Forkhead box C1 (FOXC1), a member of the FOX protein family,
is a key regulator of the development of the anterior chamber
angle, and its abnormal expression correlates highly with the
incidence of congenital glaucoma (Chen et al., 2016; Golson and
Kaestner, 2016; Deng et al., 2017; Ramezani et al., 2019). Recent
studies have shown that FOXC1 dysregulation is strongly related
to the occurrence and development of breast cancer, colon cancer,
cervical cancer, Hodgkin’s lymphoma, and prostate cancer (Ito
et al.,, 2014; Jin et al, 2014; Hopkins et al., 2016; Gilding and
Somervaille, 2019; Hsu et al., 2019). In 2014, Yuan et al. reported
that FOXC1 was associated with tumor size, the number of lymph
node metastases, and prognosis, which indicated that FOXC1
might play an important role in GC growth and metastasis (Xu
et al,, 2014). Zhong et al. reported that LINC00242 interacts
with miR-141 and positively regulates FOXC1 to contribute to
HGC27 cell viability, migration, and invasion (Zhong et al.,
2020). Moreover, previous studies have indicated that FOXC1
promotes tumor proliferation through the PI3K-AKT, NF-KB
and Wnt signaling pathways (Huang et al., 2017; Liu et al., 2018;
Yu et al., 2018). However, its specific role in proliferation of GC
remains to be studied.

Wnt signaling pathway play an important role in embryonic
development, cell migration, and organogenesis (Chae and
Bothwell, 2018). Its aberrant activation could contribute GC
growth and metastasis (Zhan et al., 2017). In the classical Wnt
signaling pathway, Wnt protein binds to cell surface receptors,
including Frizzled (Fz) and low-density lipoprotein receptor-
related protein 5/6 (LRP5/6), thereby transducing extracellular
signal stimuli into cells (Reya and Clevers, 2005). Wnt proteins
formed a complex with Fzd and LRP5/6, Which led to the level of
phosphorylation p-catenin reduced and excessive accumulation
of B-catenin in the cytoplasm; it then enters into the nucleus
and forms a transcriptional complex with TCF or LEEF, activating
expression of target genes, such as c-MYC and cyclin D1 (Clevers
and Nusse, 2012). Among them, the transcription factor c-Myc is
one of the most widely investigated cancer-causing genes, being
implicated in the formation, maintenance, and progression of
several different cancer types (Dufly et al., 2021). Previous study
has indicated that c-Myc is well-characterized B-catenin/TCF
target gene (Sansom et al., 2007). And overexpression of MYC
can rescue the growth-suppressive effects of FZD7 knockdown
in gastric cancer cells (Flanagan et al., 2019). Previous study
reported that FOXC1 knockdown could inhibit the expression of
MYC, however, the precise role and underlying signaling cascades
in GC proliferation remain unclear.

Dickkopf-1 (Dkk1) is a secretory antagonist, which binds to
the Wnt coreceptor LRP5/6 to desensitize cells to canonical Wnt
ligands (Chae and Bothwell, 2018). DKK-1 is reported to be

over expressed in GC patients and recently, it was reported to
play different roles in the tumor growth due to different tumor
environment (Gomeeli et al., 2012; Zhu et al., 2021). In 2018,
Hong et al. reported that high DKKI1 expression is a crucial
prognostic factor for predicting tumor recurrence and survival
in patients with resected advanced GC, which indicated DKK1
contributed GC recurrence (Hong et al., 2018). Meanwhile, in
terms of tumor growth, DKK-1 inhibits the activation of Wnt
signaling to influence GC growth by suppressing cancer stem
cells (Wang et al., 2013). Therefore, it is particularly important
to clearly explain the specific mechanism of DKK1 in the
proliferation of GC. However, there are few studies to explore
transcription factors that regulate DKK1 in GC.

In this study, we will explore the specific mechanisms
that FOXC1 promoted proliferation GC by inhibiting
DKKT1 expression.

MATERIALS AND METHODS

Patients and Human Tissue Information
Tumor tissue samples were obtained from Ruijin Hospital,
Shanghai Jiao Tong University. Patients underwent curative
GC resection between 2018 and 2019, and samples from
these patients were used for immunohistochemistry (IHC).
The Ethics Committee of Ruijin Hospital, Shanghai Jiao
Tong University approved this project. All samples were
anonymously coded in accordance with local ethical guidelines
(as stipulated by the Declaration of Helsinki), and written
informed consent was obtained.

Cell Culture and Reagents

Normal gastric cell (GES-1) and GC cell lines (AGS, SGC-7901,
MGC-803, MKN-45, HGC-27) were stored at Shanghai Institute
of Digestive Surgery, Ruijin Hospital. Cell lines were cultured
in RPMI-1640 medium or Dulbecco’s modified Eagle’s medium
(DMEM) with 10% fetal bovine serum (Gibco, United States)
and 5 pg/ml penicillin-streptomycin in a humidified incubator
at 37°C with 5% CO,.

Quantitative Real-Time PCR

Total cellular RNA was isolated from GC cells according to the
EZB RNA reagent kit protocol, and 200 ng of total RNA was
reverse transcribed to cDNA using a PrimeScript RT Master Mix
Kit (Takara Bio). mRNA levels were measured by quantitative
real-time PCR using SYBR Premix Ex Taq, and human GAPDH
was used as an internal control.

Western Blot Analysis of Gene

Expression

Western blotting was performed as described previously (Jiang
et al., 2018). Antibodies against FOXC1, DKK1, ¢c-MYC, and
B-catenin were purchased from Abcam, and the secondary
antibody (anti-rabbit IgG or anti-mouse IgG) was purchased
from Proteintech. An anti-GAPDH antibody was used as an
internal control. Detail information could be obtained in the
Supplementary Material 2.
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Expression Vectors and Gene

Transfection

Plasmid transfection process was performed using Lipofectamine
2000 Reagent (Life Technology, Thermo Fisher Scientific, DE,
United States). Full-length FOXC1 c¢DNAs were cloned into
the pLVXyu-2Flag-3C-2 vector for FOXC1 expression. The
¢-MYC plasmid and DKK plasmid were gifts from Professor
Guohong Hu at The Key Laboratory of Stem Cell Biology,
Institute of Health Sciences, Shanghai Institutes for Biological
Sciences. Stably transfected GC cells were established using
puromycin selection after transfection with the expression
vector or control plasmid. CRISPR/Cas9 vector plasmid was
obtained from the Molecular and Cell Biology Laboratory,
Fudan University. The sgRNA target sequence for FOXC1 was
5'-GGGTGCGAGTACACGCTCAT-3’, and CRISPR/Cas9 vector
plasmid was used as a control. Stably transfected GC cells for
24 h were established using puromycin selection for 2 weeks after
transfection. Knockout effiency were validated by Western blot
with FOXC1 antibody.

Luciferase Assay

The pGL3-Basic Luciferase Reporter vector was a gift from
Fudan University Shanghai Cancer Center. The 2.1-kb DKK1
and c-MYC promoter was cloned into the pGL3-Basic Luciferase
Reporter vector. Activity of the DKK1 and ¢-MYC promoters
was normalized by co-transfection with the Renilla luciferase
reporter plasmid, which was a gift from Fudan University.
Firefly and Renilla luciferase activities were measured at
48 h after transfection using a Dual-Luciferase Reporter Assay
System (Promega).

TOP-Flash/FOP-Flash Reporter Assay

A TOP-flash/FOP-flash-dependent luciferase reporter assay was
used to evaluate Wnt/LEF/TCEF- activity. TOP-flash/FOP flash
and Renilla plasmids to demonstrate transfection efficiency were
incubated for 24 h. Relative luciferase activity was determined
using a dual-luciferase assay (Promega). Transfection efficiency
was normalized according to Renilla luciferase activity. The cells
were lysed at 16 h after transfection, and luciferase activities
were determined.

Chromatin Immunoprecipitation Assay

GC cells (2*10"7) were used for chromatin immunoprecipitation
assays, and an anti-FOXC1 antibody was used to pull down
DKK1 and ¢-MYC promoter-protein complexes. This assay
was performed using CST Chromatin Immunoprecipitation Kit
(CST9002) according to the manufacturer’s instructions. The
DNA samples were analyzed by PCR for potential binding sites.
The PCR products were separated and visualized on a 2.5%
agarose gel. The primers used for PCR are listed in Table 1.

Immunofluorescence (IF) Staining and

Confocal Microscopy

AGS and MKN-45 cells were seeded onto coverslips before
they reached 80% confluence. The cells were fixed with 4%
paraformaldehyde for 15 min, and the samples were kept in

phosphate-buffered saline (PBS) containing 0.1% Triton X-100
(PBS-T), quenched with 50 mM NH4Cl in PBS-T, and blocked
with 1% BSA in PBS-T. Immunostaining was performed using
the appropriate primary and secondary antibodies, and images
were acquired using a confocal microscope (Zeiss, LSM510).

Apoptosis Analysis and Cell Cycle
Analysis by Flow Cytometry

Apoptosis was evaluated by flow cytometry. Briefly, cells were
stained with Annexin V-FITC conjugate and propidium iodide
solution. A FACSCalibur system (BD Biosciences, United States)
was used to analyze apoptosis.

The cells were fixed in 75% ethanol and stained with
PI/RNase Staining Buffer (BD Biosciences). The cell cycle was
analyzed by flow cytometry using the FACSCalibur system (BD
Biosciences, United States).

Cell Proliferation and Colony Formation

Assay
GC cell proliferation was evaluated by the CCK-8 assay. For the
colony formation assay, cells were seeded into six-well culture

TABLE 1 | Quantitative real time polymerase chain reaction assay (Q-PCR) primer.

Gene name Sequence detail information
GAPDH-Forward GCACCGTCAAGGCTGAGAAC
GAPDH-Reverse TGGTGAAGACGCCAGTGGA
FOXC1 -Forward AACAGCATCCGCCACAACCTC
FOXC1-Reverse TCCTTCTCCTCCTTGTCCTTCAC
YAP-Forward TGTCCCAGATGA ACGTCACAGC
YAP-Reverse TGGTGGCTGTTT CACTGGAGCA
TAZ -Forward CACCGTGTCCAATCACCAGTC
TAZ -Reverse TCCAACGCATCAACTTCAGGT
B-catenin -Forward CATCTACACAGTTTGATGCTGCT
B-catenin - Reverse GCAGTTTTGTCAGTTCAGGGA
AXINT -Forward GGTTTCCCCTTGGACCTCG
AXINT -Reverse CCGTCGAAGTCTCACCTTTAATG
NOTCH1 -Forward GAGGCGTGGCAGACTATGC
NOTCH1 -Reverse CTTGTACTCCGTCAGCGTGA
BIRC5 -Forward AGGACCACCGCATCTCTACAT
BIRC5 -Reverse AAGTCTGGCTCGTTCTCAGTG
CCND1-Forward GCTGCGAAGTGGAAACCATC
CCND1-Reverse CCTCCTTCTGCACACATTTGAA
c-MYC -Forward GTCAAGAGGCGAACACACAAC
c-MYC -Reverse TTGGACGGACAGGATGTATGC
SPP1 -Forward GAAGTTTCGCAGACCTGACAT
SPP1 -Reverse GTATGCACCATTCAACTCCTCG
GPC3 -Forward ATTGGCAAGTTATGTGCCCAT
GPC3 -Reverse TTCGGCTGGATAAGGTTTCTTC
BAX -Forward CCCGAGAGGTCTTTTTCCGAG
BAX -Reverse CCAGCCCATGATGGTTCTGAT
PUMA-Forward GCCAGATTTGTGAGACAAGAGG
PUMA-Reverse CAGGCACCTAATTGGGCTC
DKK1 -Forward CTCGGTTCTCAATTCCAACG
DKK1 -Reverse GCACTCCTCGTCCTCTG
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plates at a density of 1,000-2,000 cells/well and grown for 10-
14 days. The cells were fixed with methanol and stained with
0.1% crystal violet.

Mouse Models of GC Tumorigenesis

Ten nude mice were sorted into two groups, and GC cells
(5 x 10° per mouse) were subcutaneously injected. The mice
were sacrificed 5 weeks later. The tumors were removed and
weighed, processed and embedded in paraffin for further study.

Statistical Analysis

All experiments that were presented in this work were repeated
more than three times. Data was presented as mean =+ standard
error of the mean. For statistical analysis, two-tailed independent
Student’s t-test was applied to a demonstration of homogeneity of
variance with the F test or one-way or two-way ANOVA for more
than two groups. Statistical significance was set as P < 0.05.

RESULTS

FOXC1 Expression Is Upregulated in
Human Gastric Cancer Tissues and Cell

Lines

To investigate the role of FOXC1 in human gastric cancer,
the mRNA level data of FOXCI in GC and adjacent normal
tissues were obtained from GEPIA and analyzed. And the result
indicated that the expression level of FOXC1 was increased in GC
tissues compared with normal tissues (Figure 1A). To confirm
the expression level of FOXC1 in GC, IHC staining was applied
to detect the protein level of FOXCI. As shown in Figure 1B,
compared to normal tissues, the protein level of FOXC1 was
higher in 85.7% (18/21) of the GC tissues. qPCR and western blot
were applied to evaluate mRNA and protein levels of FOXC1 in
non-malignant (GES-1) and gastric cancer cell lines (AGS, SGC-
7901, MGC-803, MKN-45, HGC-27). The results demonstrated
that both mRNA and protein levels were significantly upregulated
in GC cell lines (Figures 1C,D). The data was obtained from
Kaplan-Meier Plotter and affy ID of FOXC1(213260_at) dataset
used for the analysis'. A total of 422 patients were concluded in
our analysis and cut-off value for the high and low expression is
141. And number of patients in high and low expression groups
are 300 and 122, respectively. The median survival time for high
and low expression groups are 89.43 and 34.3 months respectively
(p = 0.0038). In general, high expression of FOXCI indicated a
poor prognosis in GC (Figure 1E). These results indicate that
FOXC1 might be an important oncogene in GC.

FOXC1 Contributes to Gastric Cancer

Growth in vitro and in vivo

To investigate the role of FOXCI in the tumorigenesis and
progression of GC, we applied CRISPR-Cas9-mediated gene-
editing system to knock out FOXC1 expression in AGS and
MKN-45 cells. Meanwhile, FOXC1 sequence was cloned into

Thttp://kmplot.com/analysis/index.php?p=service

PCDNA plasmids overexpressed FOXCI in AGS and MKN-45
cells. The efficiencies were confirmed by western blot and qPCR
assays (Figure 2A). We observed that FOXC1 knockout (KO)
significantly suppressed colony formation and cell proliferation,
while FOXCI overexpression dramatically enhanced cell viability
and proliferation (p < 0.05) (Figures 2B,C). To study the
oncogenic functions of FOXC1 in GC, we checked the effect
of FOXC1 knockout on tumor growth and found that FOXC1
KO significantly decreased the tumor growth of MKN-45 cells
(p <0.05) (Figures 2D-G). FOXCI expression level in xenografts
was determined by IHC (Figure 2H).

Altered Expression of FOXC1 Affects the
Cell Cycle in GC

Apoptosis and cell cycle are two main factors that affect
tumor growth. To investigate the role of FOXC1, we applied
flow cytometry for verification. The results demonstrated that
FOXC1 KO in GC cells didn’t affect apoptosis (Figure 3A),
but decreased cell cycle progression (p < 0.05) (Figure 3B),
indicating FOXCI1 regulates the proliferation of GC cells through
cell cycle. To search for downstream effectors of FOXCI-
induced GC proliferation, we examined the expression levels
of several signaling molecules (e.g., Wnt/B-catenin, Notch, and
Hippo) implicated in the regulation of cell proliferation during
gastric carcinogenesis. qPCR and western blotting analyses
revealed unchanged expression of the core components of those
signaling pathways with FOXC1 KO (Figures 3C,D). To better
understand the role of FOXC1 in the cell cycle of GC, we
further measured mRNA levels of other target genes, such as
baculoviral IAP repeat-containing protein 5 (BIRC5), cyclin
D1 (CCND1), ¢-MYGC, secreted phosphoprotein 1 (SPP1), and
glypican 3 (GPC3) BAX and PUMA and found that CCND1 and
c-MYC gene expression was downregulated in FOXC1 KO AGS
cells (Figure 3C), demonstrating that FOXC1 promotes cell cycle
via regulation of cyclin D1 and ¢-MYC.

FOXC1 Expression Enhances c-MYC
Expression to Promote Gastric Cancer

Cell Proliferation

Due to ¢-MYC is a critical transcription factor in regulating
cell proliferation and development, we focused on c-Myc
in regulating GC proliferation. To investigate the role of
¢-MYC in FOXC1-mediated GC proliferation, we next analyzed
whether ¢-MYC expression is changed in AGS and MKN-
45 cells with KO and overexpression of FOXCI, respectively.
The results of qPCR and western blotting indicated that
FOXC1 KO in AGS and MKN-45 cells decreased c-MYC
expression, and consistently, FOXC1 overexpression dramatically
enhanced c-MYC expression (Figures 4A,B). Furthermore, direct
overexpression of c-MYC restore the FOXCI-deficient phenotype
on cell proliferation in AGS and MKN-45 cells (Figures 4C,D).
The results of luciferase activity assays indicated that FOXC1
could regulate c-MYC expression at the transcriptional level
(Figures 4E,F). Given that FOXCI is an important transcription
factor, we next examined whether FOXC1 acts as a transcription
factor to activate c-Myc expression in AGS and MKN-45 cells. We

Frontiers in Cell and Developmental Biology | www.frontiersin.org

April 2021 | Volume 9 | Article 662624


http://kmplot.com/analysis/index.php?p=service
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Jiang et al.

FOXC1 Negatively Regulates DKK1 Expression

determine statistical significance (P < 0.05).
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employed ChIP assay to confirmed whether there was a potential
binding site in the c-MYC promoter. However, the results showed
no direct binding of FOXC1 to the c-MYC promoter (Figure 4G).

FOXC1 Expression Enhances c-MYC
Expression to Promote Gastric Cancer
Cell Proliferation Through Activation of
the Wnt Signaling Pathway

Considering ¢-MYC is an important target gene of the Wnt
pathway, we hypothesized that FOXCl may activate Wnt

signaling to enhance c-MYC expression. Given that AGS
and MKN-45 cells expressed higher levels of FOXC1 than
SGC-7901, MGC-803, HGC-27 cells. Further, Wnt activity
was aberrant higher in AGS and MKN-45 cells than in SGC-
7901, MGC-803, HGC-27 cells, as determined by TOP-Flash
reporter assay (Figure 1A), indicating that Wnt activity is
regulated and correlated with the FOXCI levels in the cells
(Figure 5A). B-Catenin aberrant cumulation in the cytoplasm
is an important part for Wnt activation. We conducted
qPCR and WB assay to explore the potential correlation of
FOXC1 and B-Catenin, and the results indicated that FOXC1
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did not have a significant influence on B-catenin expression
at transcription or translation level (Figures 5B,C). At the
same time, we learned that the activity of the wnt signaling
pathway is related to B-Catenin in the nucleus (Zhang et al.,
2011). Thus, we further explore the distribution of B-catenin
in cytoplasm and nucleus. Interestingly, the results showed

that B-catenin distribution in the nucleus increased with
upregulation of FOXC1, while decreased with FOXC1 knockout,
supporting the role of FOXCI in activation of classic Wnt
pathway (Figures 5D,E). In addition, B-Catenin will be labeled
with E3 ubiquitin ligase after B-Catenin phosphorylation at
Ser33/37/Thr4l in the cytoplasm (Reyaand Clevers, 2005;
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Clevers and Nusse, 2012; Zhanetal.,, 2017). We also found
B-Catenin phosphorylation at Ser33/37/Thr41l increased
with FOXC1 KO and decreased with FOXC1 overexpression
(Figure 5F), supporting the conclusion that WNT signaling
pathway is activated under the condition of high FOXC1
expression. Previous studies indicated FOXM1 could directly

bound to B-catenin in vivo and in vitro and Promoted B-catenin
nuclear localization and controls Wnt target-gene expression
(Zhang et al., 2011). Considering FOXC1 and FOXM1 belong
to forkhead box family, thus we further explore the potential
role of FOXClin nuclear localization of B-catenin. Our results
showed that FOXClbound to f-catenin to form a complex
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were performed three times and showed the same trend and representative results were shown inpanel (F). “P < 0.05, **P < 0.001.

in AGS and MKN-45 cells (Figures 5G,H). However, we
also found a contradiction, that is, in Figure 4G, the ChIP
experiment showed that there was no potential FOXCI1
binding site in ¢-MYC promoter. Thus, we conducted COIP
assays in the cytoplasm and nucleus, and the results showed
FOXC1 bound to B-catenin in cytoplasm, but not in nucleus
(Figures 5I-K). These results were consistent with previous
result demonstrating that FOXC1 does not directly bind to the
¢-MYC promoter.

FOXC1 Promotes GC Cell Proliferation

via Downregulation of DKK1

To find out the mechanism by which FOXCI activates the
Whnt signaling pathway, we first applied the TopFlash/FopFlash
assay to determine the activity of Wnt pathway in FOXCl1
KO GC cells. The results indicated that the activity of the
Wnt signaling pathway was decreased in FOXC1 KO and
increased in FOXC1 overexpression AGS and MKN-45 cells
(Figure 6A). Considering the role of DKKI1 in classic Wnt
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FIGURE 7 | DKK1 is downstream of FOXC1 in GC. (A) Considering the specific DNA sequence for FOX transcription factor (AAAYA), A total of 12 putative FOXC1
binding sites in the 5” untranslated region of DKK1promoter. (B) Double luciferase activity assay in AGS and MKN-45 cells to confirm the influence of FOXC1 on the
transcription of DKK1. The results of Luciferase activity were dose-dependently decreased after co-transfection with FOXC1 (P < 0.05), which is also indicated that
FOXC1 negatively regulated DKK1 expression at transcriptional level. (C) Chromatin immunoprecipitation assay (ChlP) results demonstrated that FOXC1 binds
directly to the DKK1 promoter at ChiP S2 and ChiP S5 in the (A), which were consisted by three putative binding sites (site3#, site4# and site 11#). (D,E) Schematic
diagram of mutation strategies in the DKK1 promoter. The results indicated that FOXC1 decreased the luciferase activity of the WT DKK1 promoter to approximately
75% of the corresponding control but did not affect the activity of MT123 or MT1 (*P < 0.05, **P > 0.05, ***P < 0.0001).

signaling, We next examined the level of DKK1 expression,
which is the antagonist of Wnt signaling, and found that
the DKK1 mRNA level increased in FOXC1 KO GC cells
and decreased in FOXCl-overexpressing GC cells (Figure 6B;
Zhu et al, 2021). At the same time, we applied western

blot and EILSA assays were to confirm the correlation
of DKK1 protein and FOXCI, and results indicated that
FOXCI1 negatively regulated DKK1 expression at translational
level (Figures 6C,D). In addition, siDKK1 restored the cell
proliferation repressed by FOXC1 KO in AGS and MKN-45 cells
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(Figures 6E,F). Those results indicated FOXC1 regulated GC
cells proliferation through DKK1.

DKK1 Is a Downstream Target of FOXC1

in GC

A previous study indicated that AAAYA-rich sequences are
the main DNA-binding sequence of FOX transcription factors
(Berry et al, 2002), and we found 12 potential binding sites
(AAAYAs) in the DKKI1 promoter (Figure 7A). To evaluate
possible interaction between DKKI1 and FOXCI, the sequence
from + 100bp to —2000bp of the human DKK1 promoter was
cloned into a luciferase reporter plasmid (pGL3-DKK1-Luc),
and pGL3-DKK1-Luc plasmids with FOXC1 plasmids or control
vectors were transiently transfected into AGS and MKN-45 cells.
Luciferase assays indicated that FOXC1 significantly decreased
the luciferase activity of DKK1 in both cell lines (Figure 7B).
According to ChIP analysis, FOXC1 directly binds to the DKK1
promoter (sites #2 and #5) (Figure 7C). To further validate
whether DKKI1 is regulated directly by FOXC1, we used the
wildtype (WT) or mutant (MT) promoter of DKK1 in the
luciferase assay (Figure 7D). We found that FOXC1 reduced the
luciferase activity of the WT DKKI1 promoter to approximately
75% of the corresponding control but did not affect the activity
of MT1 or MT123, suggesting that FOXC1 binds to the site #1
(-1514-1518 bp) in the DKK1 promoter (Figure 7E).

DISCUSSION

Wnht signaling pathway is highly activated in gastric cancer (GC)
and can contribute growth and metastasis of GC (Zhao et al,,
2014). Many studies explored the function of Wnt signaling
pathway in tumor progression, however, the reason why it is
highly activated in GC remains to be studied. Research to date on
this pathway has mostly focused on positive regulatory factors,
whereas its antagonist proteins have attracted little attention
(Santos et al., 2016; Gao et al., 2018; Nanki et al., 2018; Yang
et al,, 2018). In this study, we found that FOXCI was elevated
in GC tissue and its level was associated with patients, poor

prognosis. Furthermore, the results showed that FOXC1 can
promote growth of GC by modulating the tumor cell cycle, as
mediated by ¢-MYC and cyclin D1, further supporting the role
of FOXCI in GC progression (Wang et al., 2018, 2020).

c-Myc is a critical transcription factor, and its aberrant
expression of c¢-Myc can promote tumorigenesis and
development (Sansom et al., 2007). For many years, c-Myc
has been considered as a potential drug target for suppressing
tumors, however, drug development for the c-Myc target
itself has always been a difficult point due to the absence of
a suitable pocket for high-affinity binding by low molecular
weight inhibitors (Duffy et al, 2021). Recent studies have
also shown that c-Myc is an important target gene of the
wnt signaling pathway, and pharmacologic targeting of Fzd
could effectively inhibited the growth of gastric adenomas
by influence the expression of c¢-Myc (Flanagan et al., 2019;
Ashrafizadeh et al., 2020). Therefore, inhibiting the activity of the
Wnt pathway can significantly reduce the expression of c-Myc
and inhibit the proliferation of tumor cells. In this study, we
focused on c-Myc in regulating GC proliferation. While restore
c-Myc expression could reverse the inhibition effect of FOXC1
knockout. And the results in this study indicated that, c-Myc
is positively correlated with FOXCI expression. Due to FOXC1
is a transcription factor, we explore whether c-Myc is a direct
target gene of FOXC1. However, the result of ChIP assay showed
that there were no potential binding sites in c-Myc promoter.
Thus, we turned to focus on the activity of Wnt pathway in GC
cells. Interestingly, the activity of Wnt pathway increased with
FOXC1 overexpression and increased with FOXC1 knockout.
Besides, the transcription of c-Myc also changes with Wnt signal
pathway, which is consistent with the results of previous studies
(Ramezani et al., 2019).

In further research, we interfere the expression of FOXC1
in AGS and MKN-45 cells. Expression of DKK1 was changed
with knockout and overexpression of FOXCI1 at transcriptional
and translational level. These results indicate that FOXC1 might
negatively regulate expression of DKK1. Considering the role of
DKK1 in classic Wnt signaling, we sought to clarify the function
of FOXC1 in GC proliferation by regulating DKK1 expression
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(Zhu et al, 2021). Our study indicated that DKK1 expression
negatively correlated with proliferative ability in GC cells, which
is consistent with the results of a previous study of DKKI in
GC proliferation (Wang et al., 2013; Hong et al., 2018). These
results suggested that FOXC1 regulated GC cell proliferation
by regulating the expression of DKKI1. Considering the role
of FOXC1 and DKKI1 expression in GC cells proliferation, we
want to classify the specific mechanisms of FOXC1 and DKK1
expression in GC cells. Due to FOXC1 is a transcription factor,
we further investigated whether DKKI1 is a direct transcription
target of FOXCI. Through a dual luciferase reporter assay and
ChIP assay, we found that FOXCI act as a transcription factor
and directly bound to the DKK1 promoter region (-1518-1514)
to negatively regulate transcription of this gene. Although there
were three direct binding sites in the result of ChIP assay, the
result of luciferase verified that there was only one site that were
confirmed had a significant influence on DKKI1 transcription due
to the help of specific transcription cofactors, which is crucial
to perform transcription activation functions. As for which
transcriptional cofactors are, it remains to be further explored.
At the same time, knockdown DKKI1 expression in FOXC1
knockout cells could restore the effect of FOXCI in promoting
proliferation, which indicated the importance of FOXC1/DKK1
axis in GC proliferation.

p-Catenin aberrant cumulation in the cytoplasm is an
important part for Wnt activation. In gastric cancer cells,
the level expression of FOXCI is associated with aberrant
activation of Wnt pathway due to FOXC1 binding to DKK1
promoter to negatively regulated its transcription, which could
affect the level of phosphate-pB-Catenin at Ser33/37/Thr4l in
the cytoplasm and contributed p-catenin aberrant cumulation
in the cytoplasm. It is reported that FOXM1 could directly
bound to B-catenin and Promoted p-catenin nuclear localization
and controls Wnt target-gene expression (Zhang et al., 2011).
Considering FOXC1 and FOXM1 belong to forkhead box family,
thus we further explore the potential role of FOXClin nuclear
localization of f-catenin. Our results showed that FOXC1 did
not have a significant influence on B-Catenin at transcriptional
level or translational level, it affected the level of phosphate-
B-Catenin at Ser33/37/Thr4l in the cytoplasm and nuclear
entrance process of B-Catenin. In addition, FOXClbound to
unphosphorylated B-catenin to form a complex in the cytoplasm,
and FOXC1 did not bind to B-catenin after the complex enters
the nucleus (Figure 8). However, we did not clarify the specific
mechanism of FOXC1 promotes B-catenin translocation into
the nucleus. Therefore, we will further study the underlying
mechanism by which FOXC1 regulates the function of p-catenin
in future research.
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