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Asthma is a chronic inflammation of lower airway disease, characterized by bronchial
hyperresponsiveness. Type I hypersensitivity underlies all atopic diseases including
allergic asthma. However, the role of neurotransmitters (NT) and neuropeptides
(NP) in this disease has been less explored in comparison with inflammatory
mechanisms. Indeed, the airway epithelium contains pulmonary neuroendocrine cells
filled with neurotransmitters (serotonin and GABA) and neuropeptides (substance P[SP],
neurokinin A [NKA], vasoactive intestinal peptide [VIP], Calcitonin-gene related peptide
[CGRP], and orphanins-[N/OFQ]), which are released after allergen exposure. Likewise,
the autonomic airway fibers produce acetylcholine (ACh) and the neuropeptide Y(NPY).
These NT/NP differ in their effects; SP, NKA, and serotonin exert pro-inflammatory
effects, whereas VIP, N/OFQ, and GABA show anti-inflammatory activity. However,
CGPR and ACh have dual effects. For example, the ACh-M3 axis induces goblet cell
metaplasia, extracellular matrix deposition, and bronchoconstriction; the CGRP-RAMP1
axis enhances Th2 and Th9 responses; and the SP-NK1R axis promotes the synthesis
of chemokines in eosinophils, mast cells, and neutrophils. In contrast, the ACh-
α7nAChR axis in ILC2 diminishes the synthesis of TNF-α, IL-1, and IL-6, attenuating lung
inflammation whereas, VIP-VPAC1, N/OFQ-NOP axes cause bronchodilation and anti-
inflammatory effects. Some NT/NP as 5-HT and NKA could be used as biomarkers to
monitor asthma patients. In fact, the asthma treatment based on inhaled corticosteroids
and anticholinergics blocks M3 and TRPV1 receptors. Moreover, the administration of
experimental agents such as NK1R/NK2R antagonists and exogenous VIP decrease
inflammatory mediators, suggesting that regulating the effects of NT/NP represents a
potential novel approach for the treatment of asthma.
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INTRODUCTION

Asthma is a disease characterized by chronic airway inflammation, leading to intermittent
symptoms including wheezing, dyspnea, cough, and chest tightness, in combination with variable
expiratory airway obstruction. It is estimated that 334 million people suffer from this disease
worldwide (Enilari and Sinha, 2019). Asthma is caused by complex interactions between the
environment and genetic factors, resulting in heterogeneity in clinical presentation, inflammation,
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and a possible remodeling of the airways (Tyler and Bunyavanich,
2019). Type I hypersensitivity (TIHS) is responsible for the
greatest part of its pathophysiology (Kubo, 2017). However, the
role of neurotransmitters (NT) and/or neuropeptides (NP) in this
disease has been less explored than its inflammatory mechanisms.

Recently, anticholinergic drugs prescribed in chronic
obstructive pulmonary disease (COPD) (Global Initiative for
Asthma, 2020) have shown clinical efficacy in asthma when
they are used as adjuvants (Novelli et al., 2012). Likewise, some
experimental drugs that modulate the NT and NP response
(Milara et al., 2013) have been proposed as therapeutic targets
due to their physio-pathological actions in asthma. In this general
review, we explain the interaction of both NT and NP with the
immune system and bronchial environment in asthma, and their
potential use as biomarkers and diagnostic tools, as well as their
therapeutic use in patients with this disease in the future.

ASTHMA PATHOPHYSIOLOGY

A strategy used to classify asthma pathophysiology, taking into
account its immunological heterogeneity, is the identification
of inflammatory cellularity in fluids extracted from the airway
(sputum or Bronchoalveolar lavage fluid -BALF-). There are
four different groups according to the evidence provided
by the cytology of the local samples: (Enilari and Sinha,
2019) eosinophilic, (Tyler and Bunyavanich, 2019) neutrophilic,
(Kubo, 2017) mixed, and (Global Initiative for Asthma, 2020)
paucigranulocytic. Eosinophilic inflammation is the main type of
cellularity identified and is a consequence of allergic and non-
allergic processes (Simpson et al., 2006). Allergy is associated with
almost 60% of childhood and adult asthma, but is not the only
condition that causes eosinophilic inflammation (Pearce et al.,
1999; Simpson et al., 2006).

In allergic eosinophilic asthma, atopic subjects are predisposed
to develop IgE-mediated allergic sensitization (atopy). Dendritic
cells (DCs) take up the allergens (pollens, dust, and mold, among
others), which are processed by endosomes and presented to T
helper (Th) 2 lymphocytes (Th2), inducing the synthesis of a
Th2 profile of interleukins (IL), such as IL-5, IL-4, and IL-13.
IL-5 induces the maturation and survival of eosinophils. These
cells migrate to the bronchial epithelium via chemoattractant
factors, such as eotaxins (CCL11, CCL24, CCL26, and CCL5)
(Teran, 2000; Rojas-Ramos et al., 2003) coupled to the CCR3
receptor, while IL-4 and IL-3 favor the change of immunoglobulin
(Ig) isotype in B cells, with the subsequent production of
IgE (Figure 1).

This immunoglobulin recognizes two types of receptors: high-
affinity receptors (FcεRI) and low-affinity receptors (FcεRII or
CD23). FcεRI receptors are expressed in mast cells (MCs),
basophils, DCs, and eosinophils, but are also present in other
cells, such as airway smooth muscle cells (ASM), epithelial, and
endothelial cells. The coupling between IgE and FCεRI receptors
in DCs amplifies their ability to present antigens, and in turn,
the activation of allergen-specific Th2 cells is associated with
the amplification of allergen-specific IgE production in a vicious
cycle of the pathogenic mechanisms of allergic asthma. IgE acts

in airway epithelial cells through the CD23 receptor, which is
involved in the transport of IgE-allergen complexes across the
polarized airway mucosal barrier (Matucci et al., 2018).

Activated eosinophils release mediators, such as major basic
protein (MBP), reactive oxygen species (ROS), granulocyte-
macrophage colony-stimulating factor (GM-CSF), IL-8, lipid
mediators (cystenil leukotrienes -LTs), and histamine. MBP
can mediate epithelial cell damage, while cysLTs contribute to
airway remodeling. Neutrophil recruitment is induced by IL-
8, whose expression is upregulated in the airways of patients
with severe asthma and mixed cellularity (Nakagome and Nagata,
2018). Histamine is also released by basophils and MCs, and
is associated with the induction of bronchial smooth muscle
contraction, epithelial barrier dysfunction, and the increased
secretion of mucus via the H1 receptor, while its coupling with
the H2 receptor increases the capillary permeability (Yamauchi
and Ogasawara, 2019). Eosinophils and MCs also play a
relevant role, producing cysLTS and prostaglandin D2 (PGD2).
This last mediator induces eosinophil chemotaxis through a
chemoattractant receptor-homologous molecule expressed on
TH2 cells (CRTH2), expressed in eosinophils, basophils, Th2
cells, and innate lymphoid cell type 2 (ILC2) (Yamauchi and
Ogasawara, 2019). In non-allergic eosinophilic asthma, when
the epithelium is injured by any factor, it synthesizes alarmines
(IL-25, IL-33, and thymic stromal lymphopoietin-TSLP), which
stimulate ILC2, leading to the synthesis of a Th2 profile without
allergen-specific IgE involvement, which does not require antigen
processing (Figure 1) (Kaur and Chupp, 2019).

The pathophysiology of non-eosinophilic asthma is not
yet understood. Neutrophil cellularity is associated with both
Th1 and Th17 interleukin profiles, as well as with the
subsequent activation of macrophages and the release of
neutrophil chemokines, such as IL-8 (Figure 1; Paplińska-
Goryca et al., 2018). Evidence shows that the interaction between
specific allergens and IgE/FcεRI on the neutrophil surface
enhances functional responses by increasing the secretion of
neutrophil products, such as matrix metalloproteinase 9 (MMP-
9), neutrophil elastase (NE), myeloperoxidase, IL-8, and ROS
(Radermecker et al., 2018).

Asthma treatment is based on corticosteroids (inhaled or oral),
leukotriene antagonists and/or β-adrenergic agonists. Recently,
the use of anticholinergics and biological antibodies (anti-
IgE/anti-IL5) was approved depending on the severity of this
disease; the use of any combination reduces inflammatory
biomarkers and improves the symptoms (Global Initiative for
Asthma, 2020).

BRONCHIAL AIRWAY

Airway Epithelium and PNEC
The bronchial epithelium is a pseudostratified ciliated columnar
epithelium with goblet cells (Rock et al., 2010). However,
there are other cells, such as pulmonary neuroendocrine cells
(PNECs) that constitute approximately 1% of the airway
mucosa. PNECs are short pyramid cells with cytoplasmic
projections to the lumen grouped in mini-clusters (five
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FIGURE 1 | Asthma pathophysiology. Asthma is a complex interaction between cells, cytokines and chemokines. There are two effector cell responses, neutrophilic,
and eosinophilic. The eosinophilic response is the most frequent, mediated by the synthesis of a Th2 cytokine profile (IL-5, IL-4, and IL-13) and histamine released
when there is an IgE-mediated allergic response; or by alarmins (TSLP, IL-25, and IL-33) in the case of a non-allergic one. Neutrophilic response is less understood
and maybe a transition from early Th2 or be a consequence of early Th1/Th17 secondary to macrophage activation and IL-8 release.

cells) or neuroepithelial bodies (NEB) (>20 cells), located
at branch junctions (Kuo and Krasnow, 2015). These cells
contain NP, NT, and amines stored in dense-core vesicles
(DCV) (Branchfield et al., 2016). The vagal fibers of the
autonomic nervous system (ANS) comprise the majority
of bronchial airway innervation (Kistemaker and Prakash,
2019). However, the mechanism underlying the interaction
between PNEC and ANS has yet to be well described.
Indeed, some studies have reported that only the NEB are
innervated, and not the PNEC (Figure 2; Brouns et al., 2006;
Kuo and Krasnow, 2015).

Innervation
Two types of nerve fibers (A and C) provide afferent innervation.
Type A fibers are myelinated axons classified according to their
diameter and conduction impulse. For example, Aδ fibers have

a smaller diameter and a slower conduction than Aα fibers.
They are considered as mechanoreceptors, and their activation
depends on the deep and breathing rate (Nassenstein et al.,
2018). In contrast, type C fibers are thin unmyelinic axons
with slower conduction velocities than A fibers (Feldman et al.,
2017), located in the glands, microvasculature, ASM, and NEB
(Drake et al., 2018), and are classified as chemoreceptors and
nociceptors (Feldman et al., 2017), transmitting afferent impulses
when reacting with stimuli, such as changes in temperature,
pH, and mediators released by tissue damage and inflammation
(Narula et al., 2014), inducing reflex responses that include
mucus discharge, bronchoconstriction, and cough (Undem and
Carr, 2002). C fibers have specific receptors for NP, such as
Substance P (SP), Neurokinin A (NKA), and Calcitonin Gene-
Related Peptide (CGRP), which are involved in ASM contraction
(Nassenstein et al., 2018).
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FIGURE 2 | Normal (A) and asthma-induced epithelial damage (B). Neurotrophins (NGF- Nerve Growth Factor and BDNF-Brain-Derived Neurotrophic Factor) are
synthesized by eosinophils (E0) and lymphocytes, the union to their receptor (TrkA/B), localized in nerves induce a greater length of nerves, increasing branch points
(BP), and exposition of nerve endings to the lumen. NT and NP (SP, CGRP, NKA, ACh, 5-HT) are stored and released from these TRPV1 + fibers, increasing mucus
secretion, collagenous deposition, and ASM hyperplasia, characteristic findings associated to asthma. Likewise, 5-HT and NPY increase the bronchoconstriction
induced by ACh. ASM, airway smooth muscle; DVC, dense core vesicles; GC, Goblet cell; NANC, non-adrenergic/non-cholinergic; NEB, neuroepithelial bodies;
PNEC, pulmonary neuroendocrine cell; TRPV1, transient receptor potential vanilloid 1.

Afferent vagus fibers transmit impulses from the airway to
the jugular ganglia (branch of the superior laryngeal nerve)
and nodose ganglia (branch of the recurrent laryngeal nerve)
(Undem et al., 2004), subsequently traveling to the caudal
nucleus of the solitary tract (Freeman et al., 2017). By contrast,
efferent innervation is comprised by ANS and non-adrenergic
non-cholinergic nerves (NANC). The NANC system shares
the parasympathetic nerves derived from the dorsal motor
nucleus of the vagus (Kistemaker and Prakash, 2019). On the
other hand, sympathetic fibers come from the intermediolateral
nucleus (T2 to T7 segments). Acetylcholine (ACh) mediates
the physiological actions of the parasympathetic system, which
induces bronchoconstriction. However, NANC modulates these
actions using diverse NP. For example, vasoactive intestinal
peptide (VIP) induces bronchodilation. Likewise, sympathetic
fibers interact with the airway through epinephrine, exerting
the same effect.

Neuronal Remodeling in the Epithelium
Biopsies from moderate-intermittent asthma patients have a
greater length, nerve branching, and more branch points than
patients with mild asthma and controls (Drake et al., 2018),
exposing the nerve endings to the bronchial lumen, leading to
neuronal remodeling (Ollerenshaw et al., 1991). This process

has two phases: a regenerative phase, during which axons
undergo regrowth and dendrites become new connections, and
a degenerative phase, characterized by the incorporation of
neurites and synapses (Figure 2; Alyagor et al., 2018).

Neurotrophins, such as nerve growth factor (NGF) and brain-
derived neurotrophic factor (BDNF), are synthesized by neurons
of the central nervous system (CNS) and ANS as small active
peptides that, upon coupling with their receptors (tropomyosin
receptor kinase A and B), play a substantial role in neuronal
remodeling (Keefe et al., 2017). However, bronchial epithelial
cells, ASM (Ricci et al., 2004), immune cells, such as lymphocytes
(Ehrhard et al., 1993), or eosinophils (Kobayashi et al., 2002), and
PNEC can synthesize them. In fact, early life allergen exposure
appears to elevate the level of neurotrophins and cause PNEC
hyper-innervation and nodose neuron hyperactivity, inducing
mucin secretion (Barrios et al., 2017).

With regards to airway remodeling, TNF-α increases the
synthesis of BDNF from ASM and enhances the production and
deposition of collagen-1, collagen-3, and fibronectin, as well as
the activity of MMP-2 and MMP-9 (Freeman et al., 2017), and is
involved in muscle cell proliferation (Aravamudan et al., 2012). It
has been described that collagen-I favors the expression of CCL5,
GM-CSF, and exotoxin (Peng et al., 2005; Chan et al., 2006),
contributing to persistent inflammation (Burgess, 2009). NGF has
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been found to exert similar actions on the components of the
extracellular matrix (Huang et al., 2015).

Chronic inflammation caused by allergen sensitization
induces the synthesis of new receptors at the nerve fibers. For
example, type A fibers can express another receptor as transient
receptor potential vanilloid 1 (TRPV1) (Bron et al., 2003), an
ionic channel of transient release potential mainly localized in C
fibers (Nassenstein et al., 2018), whose expression is modulated
by NGF and BDNF (Bron et al., 2003; Figure 2).

TRPV1 is activated by a wide range of stimuli, such as
high temperature, protons, voltage (Banner et al., 2011), or
endogenous inflammatory factors, such as arachidonic acid
metabolites (Hwang et al., 2000). The activation of TRPV1
induces a reflex response, such as cough and bronchoconstriction
(Bhattacharya et al., 2007). This receptor is increased in patients
with asthma compared to controls and patients with mild asthma
(McGarvey et al., 2014).

Capsaicin, a molecule with pungent properties contained in
some foods, such as chili, has been used to evaluate the functions
of TRPV1 (Groneberg et al., 2004). It is a simple, safe, and
reproducible cough provocation test. This challenge is applied in
the algorithm of idiopathic chronic cough (Morice et al., 2007)
and is a useful tool to evaluate the efficacy of asthma treatment.
For example, the use of inhaled corticosteroids (ICS) for at least
3 months reduces cough induced by capsaicin (Di Franco et al.,
2001; Ekstrand et al., 2011). Besides, in cough variant asthma,
the capsaicin challenge predicts the ICS treatment response better
than the methacholine challenge (Park et al., 2007).

Some reports have indicated that the use of anticholinergic
agents, such as tiotropium, improves refractory cough in asthma
patients and augments the threshold to this substance during the
challenge. This suggests that tiotropium suppresses the neuronal
activity of TRPV1, a mechanism independent of the muscarinic
type 3 (M3) receptor blockade (Fukumitsu et al., 2018).

ACETYLCHOLINE

Acetylcholine (ACh) is one of the main neurotransmitters both
in CNS and peripheral nervous system (PNS) (Vogt, 2018). Its
release via exocytosis from the parasympathetic nerve endings to
the intercellular space. In 1963, ACh was found to be produced
in non-nerve cells (Wessler and Kirkpatrick, 2001) including
immune cells (Kawashima et al., 1998; Fujii et al., 2012) giving
rise to different responses depending on the stimulated receptor
(Pedersen et al., 2018). One of the principal receptors where it
exerts its function is the muscarinic ACh receptors (mAChRs),
belonging to the family of G protein-coupled receptors (GPCRs),
with which they share a high degree of homology. Five types
have been described (M1–M5) (Caulfield and Birdsall, 1998),
three of which exert physiological effects in the airways, namely
M1, M2, and M3. M1 is localized over the alveolar walls, M2 in
ASM, and M3 in airway epithelium, ASM, and submucosal glands
(Mak et al., 1992).

In murine models of allergic asthma (MMAA), ACh
contributes to allergen-induced remodeling mainly through
the M3 receptor, but not through the M1 or M2 receptors,

increasing the mass of ASM (Kistemaker et al., 2014). Likewise,
mAChRs are involved in IL-8 synthesis by these cells, enhancing
inflammation (Oenema et al., 2010). The agonists of ACh are
related to the modulation of a specific type of mucin known
as MUC5AC (Kistemaker and Gosens, 2015), the main mucin
glycoprotein responsible for mucus viscoelasticity in asthma
(Kirkham et al., 2002; Morcillo and Cortijo, 2006). Additionally,
ACh induces collagen synthesis (Haag et al., 2008) via M2
and M3 localized in fibroblasts (Matthiesen et al., 2006) and
increases its thickness upon stimulation with TGF-β (Grainge
et al., 2011). This mechanism plays a role in the process of pro-
fibrotic airway remodeling (Haag et al., 2008). However, the use
of anticholinergic drugs, such as tiotropium bromide in chronic
models of asthma, reduces M3 expression in bronchia, the Th2
profile, and airway hyperresponsiveness (AHR) (Kang et al., 2012;
Kurai et al., 2018).

There is evidence that ACh induces a range of effects on
immune cells. For example, lung macrophages express all the
components from ACh synthesis, including M1-M5 receptors.
The ACh agonist stimulates the production of de novo mediators,
such as leukotriene B4 (LTB4) via M2 and M3, where the
antagonist for the latter receptor inhibits this process (Koarai
et al., 2012). Likewise, the content of eosinophilic granules, such
as eosinophil peroxidase (EPO), increases the expression of ChAT
and VAChT genes (necessary for the synthesis and storage of
ACh) in fibroblasts. However, other eosinophilic mediators, such
as MBP or eosinophil-derived neurotoxin (EDN), do not have
this effect (Akasheh et al., 2014). In DCs treated with ACh, this
NT stimulates the expression of the Th2−promoter OX40L, the
production of the Th2−chemokines, such as CCL22 or CCL17,
and a Th2 profile with reduced IFN-γ synthesis, suggesting that
ACh can further promote a Th2 response even in the presence of
a strong Th2 inducer, such as TSLP (Gori et al., 2017).

Inflammation mediated by lipopolysaccharide (LPS) and IFN-
γ induces M3 expression and fibroblast proliferation (Español
et al., 2014). COPD treatment based on anticholinergic drugs,
such as Aclidinium, blocks the transduction of M1, M2, and
M3 receptors (Milara et al., 2013), inhibiting the development
of these cells and collagenous deposition (Milara et al., 2012),
similar to the effect that occurs in asthma.

Other receptors stimulated by ACh include nicotinic receptors
(nAChR), which are proteins that are ligand-gated ion channels
and localized near to the parasympathetic ganglia, where they
facilitate neurotransmission (Racké et al., 2006). Specifically, the
alpha 7 nicotinic acetylcholine receptor (α7nAChR) is expressed
on macrophages and neutrophils, playing an essential role in
attenuating the inflammatory response by stimulating the vagus
nerve during systemic inflammation (Wang et al., 2003). Its
activation induces the suppression of NF-kB with the subsequent
inhibition of pro-inflammatory cytokines (TNF-α, IL-1, and
IL-6) and chemokines from inflammatory cells in alveolar
macrophages, resulting in the attenuation of lung inflammation
and injury (Wang et al., 2003; Li J. et al., 2011). ILC2 express
α7nAChR, which attenuates the expression of NF-kB and GATA-
3, reducing the cytokine production of IL-5 and IL-13. Likewise,
it modulates IL-33, which is necessary for activating this kind
of lymphocyte (Galle-Treger et al., 2016). Additionally, the high
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FIGURE 3 | Acetylcholine-ACh. Nerve endings release ACh after depolarization or 5-HT stimuli, causing goblet cell metaplasia, MUC5AC secretion, and
bronchoconstriction. It induces Mast cells (MC) degranulation via the M3 receptor and collagen deposition in fibroblast (Fb) via the M2 receptor. Anti-inflammatory
effects as decreasing of IL-5 synthesis are due to the α7nAChR activation in ICL2.

expression of α7nAChR in the adrenal medulla is associated with
the release of endogenous epinephrine in MMAA, helping to
resolve AHR (Figure 3; Chen et al., 2017).

The ACh agonist, methacholine, has been used for the
diagnosis of asthma (methacholine challenge). Among the main
indications are staging the degree of severity AHR and evaluating
the effectiveness of the medication in acute and chronic states, or
any change in the therapeutic modality (Crapo et al., 2000; Global
Initiative for Asthma, 2020). Among all the possible therapies
involving both NT and NP, the use of an ACh antagonist is the
only therapy approved for the control of asthma (Global Initiative
for Asthma, 2020). The effects of muscarinic antagonists include
the prevention of both mucous gland hypertrophy and allergen-
induced goblet cell hyperplasia, an effect similar to ICS, and
partially, the reduction of eosinophilia in the submucosal
compartments of cartilaginous and non-cartilaginous airway
areas in animals challenged with ovalbumin (OVA) (Bos et al.,
2007). Moreover, in a chronic model murine of asthma (MMA)
(Kistemaker et al., 2016), muscarinic antagonists were found to
decrease smooth muscle mass in addition to ICS, low cell counts
(macrophages, eosinophils, and lymphocytes), and decreased IL-
5 levels in BALF than other Th2-profile cytokines. Likewise,
mice treated with tiotropium had a smaller area of expression
of collagen type I and III and significantly reduced M3 receptor
expression (Kang et al., 2012). The addition of tiotropium and

other antagonizes of M2 and M3 used in COPD as Aclidinium
or Glycopyrronium, improves the lung function, reduced the
need of oral steroids, and provides beneficial effects on symptom
control in patients of all ages with severe asthma, not controlled
with convectional therapies (Matera et al., 2020).

SUBSTANCE P

Substance P (SP) is a member of the Tachykinins (TAC) family.
This NP is present in both the CNS and PNS (Lai et al., 2008), and
in conjunction with CGRP and VIP, mediates the NANC system.
Voedisch et al. (2012) TRPV1 + sensory nerves produce and store
SP in the large-DCV. This NP is not only released from these
neurons upon allergen stimulus (He et al., 2019; Perner et al.,
2020), it can also be synthesized by non-neuronal cells, such as
lymphocytes (Morelli et al., 2020), DC, eosinophils (Lambrecht
et al., 1999), and macrophages (Ho et al., 1997). Once exocytosed
from the neuronal soma or axonal terminals, it couples to its
specific receptor (Neurokinin receptors -NKRs-), belongs to the
GPCR family (Badri and Smith, 2019), expressed either on the
same cell or on the neighboring cells (epithelial, endothelial, ASM
cells, fibroblasts, and immune cells). NK1R and its isoforms,
namely NK1R-F and NK1R-T (Blum et al., 2008), have a higher
affinity than NK2R and NK3R (Schelfhout et al., 2006). Some
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immune cells, such as Th1, Th17, DC, and neutrophils, express
NK1R (Serra et al., 1988; Marriott and Bost, 2001; Morelli
et al., 2020). However, eosinophils have NK2R (Raap et al.,
2015). Specifically, NK1R-F is expressed in the human brain,
while NK1R-T is expressed in the CNS and peripheral tissues,
such as bronchial vessels, epithelium, submucosal glands, or
endothelium, and is related to inflammation (Mapp et al., 2000;
Caberlotto et al., 2003). Both NK1Rs and NK2Rs are found in
bronchial ASM cells (Nederpelt et al., 2016) and may mediate
bronchoconstriction (Maghni et al., 2003).

SP is present in the serum and BALF of allergic asthma
patients (Nieber et al., 1993). In fact, the bronchial branch
points are associated with greater SP expression in patients with
moderate persistent asthma (Drake et al., 2018). SP induces
chemokine synthesis, such as CCL4, CCL5, and IL-8 (Spitsin
et al., 2017) specifically, and modulates the chemotaxis of
neutrophils, inducing the expression of CXCL2 and CCL3 (Sun
et al., 2007). It is also involved in the migration of basophils
and eosinophils, an effect comparable to other chemotactic
agents, such as LPS (Cima et al., 2010) or C5a, respectively,
in an IL-3 microenvironment (Raap et al., 2015). The use
of a selective NK1R antagonist (L733,060) interferes with this
mechanism (Morelli et al., 2020). In immune cells, SP induces
T-lymphocyte proliferation in vitro by IL-2/IL-2Ra synthesis
(Kulka et al., 2008), while in MC, it releases IL-1, GM-CSF,
chemokines, oxygen radicals, and LTB4 (Kulka et al., 2008; Li
et al., 2018). In addition to IL-33, SP secretes IL-31, TNF-
α, and vascular endothelial-derived growth factor (Figure 4;
Taracanova et al., 2017; Petra et al., 2018). Likewise, SP activates
neutrophils through the expression of adhesion molecules,
such as CD11b integrin (Sun et al., 2007), in DC, enhancing
their survival, which is indispensable for maintaining the
eosinophilic airway inflammation perpetuating the Th2 response
characteristic of asthma (Voedisch et al., 2012). On the other
hand, it downregulates the FcεRI expression in MC (McCary
et al., 2010). In turn, interleukins modulate the effects of this
NP. For example, IL-12 and IL-18 induce NK1R expression in T
cells (Weinstock et al., 2003), but IL-12 and IL-23 enhance TAC1
expression in macrophages (Blum et al., 2008). However, IL-10
and TGF-β play a relevant role in downregulating these effects
(Blum et al., 2008).

SP it has been identified in asthma patients, even is more
frequent than in patients with gastroesophageal reflux (GER)
(Emilsson et al., 2016). During the bronchoconstriction process,
SP increases intracellular Ca2+ in ASM cells by decreasing
the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)
and Na+/Ca2+ exchanger (NCX) proteins, augmenting the
availability of calcium for contraction (Mahn et al., 2009; Li
and Shang, 2019). The administration of NK1R antagonists,
such as WIN62577 or GR304050, increases SERCA protein
with a subsequent decrease in Ca2+ concentration, a similar
effect of KB-R7943, an NCX-specific inhibitor (Li M. et al.,
2011; Li and Shang, 2019). In a similar context, the use of
an experimental antagonist of NK1R (CP96345) (Yaraee and
Ghazanfari, 2009) was found to reduce the TGF-β levels, favor
ASM relaxation, and reduce the impact of fibrosis on airway
remodeling (Li and Shang, 2019).

Additionally, experimental antagonists for this NP
(Aprepitant) have shown to improve cough, a cardinal symptom
of asthma, in cancer patients, so they can be considered to treat
conditions such as asthma (Noronha et al., 2021). However,
the drugs designed to block SP in asthma have had limited
efficacy in clinical trials, possibly due to unanticipated changes
in SP signaling occurred in asthma or changes in its metabolism
(Drake et al., 2018).

TACHYKININS

The TAC family comprises NKA, neurokinin B (NKB),
Hemokinins (HKs) 1–4, Endokinins (EKs) A-D (Helyes et al.,
2010), Neuropeptide K, and Neuropeptide γ, in addition to
SP. TACs receptors (NK1R, NK2R, and NKR3) belong to the
GPCR family. NKA and NKB bind specifically to NK2R and
NK3R, respectively (Nederpelt et al., 2016), whereas HK-1, EKs,
and SP bind to NK1R (Kurtz et al., 2002; Grassin-Delyle et al.,
2010). However, SP, NKA, and NKB are able to couple to
all receptors (Schelfhout et al., 2006; Nederpelt et al., 2016).
The modulation of TAC is mediated by NEP (Neprilysin or
Enkephalinase). Its deficiency is related to mucus hypersecretion,
vascular hyperpermeability, and inflammation in human lung
biopsies (Baraniuk et al., 1995).

In OVA-sensitized mice, sensory nerve endings release NKA
and SP, followed by an increased temperature, enhancing the
percentage and diameter of TAC-immunoreactive neurons,
identified as TRPV1 + sensory neurons (Hsu et al., 2013; Le et al.,
2014). A positive correlation between reflux and SP/NKA sputum
levels was observed in asthma patients with gastroesophageal
reflux disease (GERD), suggesting that the thermal or chemical
mechanisms involved in GERD allows for the release these NPs
(Patterson et al., 2007).

NKA and SP mainly modulate NANC excitatory responses in
the airway (Kajekar and Myers, 2008). In human lung biopsies,
the three receptors are localized in ASM (Mizuta et al., 2008a),
suggesting their role in ASM contraction. In OVA-sensitized
guinea pig models, bronchoconstriction induced by NKA, NKB,
and SP in this order, are likely to be induced by ACh (Daoui et al.,
2000). In the same context, HK-1, EKA, EKB, and the agonist of
NKB ([MePhe7]-NKB) also induce bronchoconstriction in vitro
in human lung biopsies, in contrast to EKC and EKD (Grassin-
Delyle et al., 2010; Corboz et al., 2012).

On the other hand, in MMA mediated by the Th1 response,
IFN-γ increases NK2R expression in ASM and the NKA levels
in BALF, as well as inducing AHR in a dose-dependent manner.
In deficient-STAT1 mice, these responses were absent (Kobayashi
et al., 2012). These effects have been described in human DCs
localized in lung and macrophages from asthma patients (Ohtake
et al., 2015). The NKA-NK2R axis stimulates the synthesis of
IFN-α and IFN-β in human DCs (Kitamura et al., 2012).

There is scarce evidence of asthma about other TAC. Exists
recent reports about the activation of HK-1 by Mas-related
G-protein coupled receptor member X2 (MRGPRX2) (Manorak
et al., 2018; Thapaliya et al., 2021). SP (Gaudenzio et al., 2016)
and other ligands as β-defensins, a type of antimicrobial peptides
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FIGURE 4 | Substance P-SP. C-fibers, NEBs, T cells, and macrophages (M0) synthesize SP. SP induces the synthesis of IL-1, GM-CSF, ROS, and LTB4 synthesis in
Mast cells (MC); CCL4, CCL5, IL-8, and CCL3 production in neutrophils (N0); degranulation of eosinophils (E0), dendritic cells (DCs) survival and the promotion of
Th2 differentiation. Besides, it causes bronchoconstriction by decreasing SERCA/NCX expression. Its NK1R receptor is localized in many cells and is upregulated in
an IL-12/IL-8 microenvironment.

(Guaní-Guerra et al., 2011) released after epithelial injuries
(Subramanian et al., 2013), also activate this receptor. This fact
was confirmed after a selective NK1R antagonist did not inhibit
these effects (Manorak et al., 2018). MRGPRX2 could be also a
promising serum biomarker in allergic asthma for monitoring
treatment outcomes and determining personalized ICS dose.
However, more studies are needed to establish this role (An
et al., 2020). HK-1 is also involved in mouse pre-B cell survival
and proliferation by increasing IL-7 levels, whereas the NK1R
antagonist (L732138) increases apoptosis in these cells (Zhang
et al., 2000; Figure 5).

Many antagonists of TAC receptors have been evaluated
for their potential as biomarkers or pharmacological targets in
asthma (Ramalho et al., 2011). In the first case, NKA levels in
sputum were found to be correlated with asthma exacerbations in
children, showing high levels of both NKA and eosinophil count
even after remission, compared to the control group (Mostafa
et al., 2008). On the other hand, the use of CS-003, a triple
NKRs antagonist, administered by inhalation in patients with
mild-to-moderate asthma, showed less bronchoconstriction in
methacholine challenge. This effect had a duration of ∼8 h
without any adverse effects (Schelfhout et al., 2006). Likewise,
it was found to inhibit NKA/NKB-induced bronchoconstriction
and SP-induced vascular hyperpermeability in guinea pigs (Nishi

et al., 2000). The use of NK2R antagonists, such as MEN-
10376 and SR48968, reduced the lung insufflation pressure
and abolished the effect of HK-1-induced bronchoconstriction,
respectively (Krishnakumar et al., 2002), while the antagonists
for NK3R (SB223412 and SR 142801) reduced NKB-induced
AHR and pulmonary inflation pressure (Corboz et al., 2012). The
blockage of these effects by experimental drugs and others as
concludes the role of TAC (NKA) as a necessary mediator in the
bronchospasm (Joos et al., 2004).

CALCITONIN GENE-RELATED PEPTIDE

Calcitonin-gene related peptide is a NP present in two isoforms
both in humans (I/II) and rats (α/β), which have similar
homology (>90%) and biological activity (Russell et al., 2014).
αCGRP is localized in both the CNS and PNS, whereas βCGRP is
present in the enteric nervous system (Muddhrry et al., 1988) and
immune cells (Xing et al., 2000), and is specifically synthesized
in airways by PNEC (Sui et al., 2018). CGRP is co-stored with
SP at the nerve ending of sensory neuron C fibers into the
airways (Kajekar and Myers, 2008). Its receptor is a heterodimeric
complex called Receptor Activity–Modifying Protein 1 (RAMP1)
(McLatchie et al., 1998), which is expressed by airway epithelial
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FIGURE 5 | Tachykinins. Neurokinin A (NKA) and Neurokinin B (NKB) bind to NK2R and NK3R receptors, respectively, whereas Hemokinins (HK-1), Endokinins
(EKA/B), and SP bind to NK1R. However, SP, NKA, and NKB can couple to all receptors, localized mainly in airway smooth muscle inducing airway
bronchoconstriction. Additionally, HK-1 and other ligand as β-defensins, can join a novel receptor implicated in allergic asthma (MRGPRX2) of mast cells, favoring
their degranulation.

cells (Li et al., 2014) and immune cells, such as Th9 cells (Mikami
et al., 2013). In MMAA, DCs are localized next to vagal sensory
neurons, where there is a CGRP neuron proliferation (Figure 6;
Le et al., 2014).

The association between TRPV1 in lung tissues and an
increase of CGRP in the BALF of OVA-sensitized mice has
been described (Kim et al., 2020). The induction of the
internalization of its receptor in airway epithelium and the
subsequent expression of inflammatory interleukins, including
IL-6, are among the effects of CGRP. Interestingly, biopsies from
asthma patients support this observation, with reduced levels of
RAMP1 compared to the controls (Bonner et al., 2010).

Calcitonin-gene related peptide modulates the Th9 response
(response related to TIHS), inducing the expression of GATA3
and PU.1 (transcription factor of Th9 cells) and IL-9 production,
enhancing airway inflammation (Mikami et al., 2013). Higher
concentrations of CGRP could be released by CCL17 more than
other inflammatory interleukins (IL-1, TNF-α, and IL-13) by
a CCR4-dependent mechanism, which plays a role in the late
asthmatic reaction. CCL17 may amplify the vascular component
of the inflammatory response by stimulating epithelial cells to
release CGRP (Bonner et al., 2013). This mechanism represents

a possible therapeutic target for vascular events in patients with
asthma and allergic inflammation (Bonner et al., 2013).

On the other hand, ILC2 express RAMP1. When the
axis CGRP/RAMP1 interacts, it induces an increase in
IL-5 production from these cells in an IL-25 and IL-33
microenvironment, inducing the maturation and activation
of ILC2, but does not affect their proliferation. Similarly,
CGRP is recruited to eosinophils and promotes the synthesis
of leukotriene C4 triggering the Th2 response (Figure 6;
Sui et al., 2018).

In allergen-induced late reactions, CGRP increases in
both BALF and biopsies from allergic asthma patients after
the inhalation of allergen-derived T-cell peptide epitopes, in
comparison to SP and NKA levels, causing vasodilatation and
edema (Kay et al., 2007). There is also evidence that this NP
enhances the edema induced by histamine and SP (Brain and
Williams, 1985). In addition, CGRP could exert other effects
involved in asthma, such as AHR. In a rabbit model of ozone-
induced AHR, CGRP stimulates an early inflammatory response
that contributes to cleaning up of irritants (Ren et al., 2004).

Depending on the context, this NP has anti-inflammatory
effects. For example, CGRP activates adenylate cyclase, which
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FIGURE 6 | Calcitonin gene-related peptide-CGRP. CGRP is synthesized and stored in C-fibers, neuroepithelial bodies (NEBs), and the epithelium. CGRP promotes
a Th9 profile after allergen exposure by RAMP1 activation; IL-6 secretion by the bronchial epithelium; and IL-5 synthesis by ILC2 cells. Additionally, epithelial damage
provokes NEBs depletion with the subsequent decrease in CGRP levels. Depending on the context, it also causes bronchodilation and promotes Treg differentiation,
reducing Th2 activation.

results in increased cellular levels of cyclic AMP, a pathway
usually associated with bronchodilation (Dakhama et al., 2002).
On the other hand, AHR induced by allergen exposure
results in the depletion of NEB and submucosa plexus,
followed by a decrease in CGRP. Interestingly, the exogenous
administration of α-CGRP reduced both AHR and inflammation
induced by eosinophils, comparable to anti-IL-5 antibody
(Dakhama et al., 2002).

Calcitonin-gene related peptide inhibited DC maturation
in mice lungs, followed by the decrease in antigen-specific T
cell activation (specifically Th2) and the increase in Treg cells
(Rochlitzer et al., 2011; Peng et al., 2018). Likewise, reduces
the eosinophil counts and increases the levels of IL-10 in BALF
(Rochlitzer et al., 2011). These mechanisms suggest that CGRP
could also represent a new therapeutic target in asthma therapy,
as an anti-inflammatory mediator.

SEROTONIN

Serotonin (5-HT) is an NT and vasoactive amine that participates
in numerous physiological processes. Intestinal enterochromaffin
cells synthesize ∼90% of this NT (Arreola et al., 2015). However,
is stored in dense granules of platelets 5-HT has seven receptor

families (5-HT1-7), with their subtypes mainly associated with G
proteins, except for 5-HT3, which is a ligand-controlled cation
channel. Owing to the great variety of receptors and their
extensive distribution, they are involved in a wide range of
functions (Andrade et al., 2019).

Platelets are the main source of 5-HT in the lungs (Dürk
et al., 2013). These cells are capable of active extravasation in this
organ (Pitchford et al., 2008), where they release this NT (Dürk
et al., 2013). Both processes promote platelet recruitment via
the expression of P-selectin and its respective ligand (integrins),
localized in eosinophils and lymphocytes, as observed in MMAA
(Pitchford et al., 2005).

However, PNEC (Fu et al., 2002) and MCs are able to
synthetize it (Kushnir-Sukhov et al., 2007). This effect increases
in the presence of hypoxia and IL-33, respectively (Sjöberg et al.,
2015). In mature DCs, 5-HT modulates the production of IL-
1β and IL-8 through 5-HTR3/4/7 receptors (Idzko et al., 2004).
A similar effect has been reported in peripheral mononuclear
blood cells (PMBC) (Cloëz-Tayarani et al., 2003). In addition,
NT increases the migration of pulmonary DCs to draining lymph
nodes and induces the expression of a Th2 profile in these cells
(Müller et al., 2009).

Additionally, ASM cells express 5-HT2A/3/4/7 (Fernandez-
Rodriguez et al., 2010; Segura et al., 2010) in MMAA, which
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mediates bronchoconstriction (Arreola-Ramírez et al., 2013),
activating its receptors on parasympathetic ACh-containing
neurons, resulting in the release of ACh (Figure 4; Fernandez-
Rodriguez et al., 2010). Interestingly, TNF-α up-regulates the
contraction mediated by 5-HT via the 5-HT2A receptor (Adner
et al., 2002). On the other hand, some reports have shown
that patients with asthma showed increased levels of 5-HT in
BALF compared to healthy control subjects (Dürk et al., 2013).
Likewise, lung function was negatively correlated with an increase
in 5-HT (Lechin et al., 1996). Consequently, the reduction of
the plasma concentration of free 5-HT could be useful in the
treatment of asthma patients. For example, there is an anecdotic
report that evaluated the use of Tianeptine (an antidepressant),
a drug that decreases plasma 5-HT by enhancing its reuptake.
In a double-blind placebo control developed in patients with a
weak response to conventional asthma treatment, this therapeutic
approach was found to improve lung function and diminish
symptoms in asthma patients (Lechin et al., 1998).

GAMMA-AMINO BUTYRIC ACID

Traditionally, Gamma-aminobutyric acid (GABA) exerts
inhibitory neuronal functions (Xu et al., 2017). GABA is
stored in vesicles and then released by exocytosis into the
synaptic space. Its coupling to GABA receptors-GABARs (α/A,
β/B, γ/C) and their subunits induces the opening of K+ ion
channels to allow for the efflux of K+ and the influx of Cl−,
resulting in hyperpolarization and a decrease in neuronal
excitability (Sarasa et al., 2020). By contrast, GABABR are GPCRs
(Lu and Inman, 2009).

Epithelial cells express all the components for local GABA
synthesis, release, and coupling with GABAA and GABAB
receptors, creating an autocrine and/or paracrine system on
airway epithelium and ASM (Mizuta et al., 2008b; Zaidi et al.,
2011). In the epithelium, GABA exerts effects associated with
bronchial remodeling. Biopsies of MMAA have found the
aberrant innervation in airways induced by Neurotrophin 4
(NT4), inducing the hypersecretion of GABA by PNEC, mainly
in mice later in life. This GABA effect is reversed when NT4 is
blocked (Barrios et al., 2017). Likewise, allergen exposure results
in an increase in the expression of GABAA receptor subunits
in airway epithelium cells from patients with asthma, but not
in ASM (Xiang et al., 2007). This NT is associated with an
increase in MUC5AC secretion by goblet cells (Barrios et al.,
2019). Similar effects were observed in airway epithelium exposed
to cigarette smoke (Fu et al., 2011), apparently promoted by the
IL-13 microenvironment (Barrios et al., 2017).

T cells also have a complete GABAergic intrinsic system
that includes GAD and other proteins identified in neurons,
and express GABAARs. Activated lymphocytes showed a greater
uptake of GABA than resting ones. This NT inhibits T cell
proliferation in vitro, an effect that may contribute to the
modulation of T cell activation (Dionisio et al., 2011). Likewise,
macrophages express the α1 subunit receptor, and the presence of
GABA is associated with a reduction in IL-6 and IL-12 production
by these cells (Reyes-García et al., 2007).

ASM express GABAARs (α4, α5, β3, γ2, γ3, δ, π, and θ)
(Mizuta et al., 2008c). Specifically, the stimulation of α4 and α5
subunits induces a membrane potential change that promotes
the relaxation of ASM (Gallos et al., 2012). In a similar context,
GABA agonists are capable of reducing AHR induced by SP
and histamine in mice (Mizuta et al., 2008c). Muscimol, a
GABAAR agonist, blocks the bronchoconstriction induced by
ACh and NKA in guinea pigs, and potentiated isoproterenol-
mediated relaxation. By another hand, α5β3γ2, other GABA
agonist, caused relaxation in ASM ex vivo and attenuated AHR
in MMAA. In addition to phenolic α4β3γ2, GABA agonists
reduced eosinophil counts in BALF, but did not increase mucus
production in the bronchial epithelium (Forkuo et al., 2017).
Other candidates with similar effects on ASM are MIDD0301,
an agonist of the A receptor. However, it has the advantage of
being almost undetectable in the CNS, without causing sedation
(Figure 7; Yocum et al., 2019).

VASOACTIVE INTESTINAL POLYPEPTIDE

Vasoactive intestinal peptide is a neuropeptide of NANC system;
which it has been proposed as an anti-inflammatory agent
(Misaka et al., 2010) with theoretical therapeutic potential due
to its bronchodilator effects (Lindén et al., 2003). In murine
lungs, the epithelium and arteriolar smooth muscle are the sites
with the highest VIP production (Samarasinghe et al., 2010).
However, other immune cells, such as Th2 lymphocytes (Delgado
and Ganea, 2001) and eosinophils (Metwali et al., 1994), are also
able to synthesize VIP. In allergen challenge, the levels of VIP and
NEP (the enzyme responsible for degrading VIP) decrease in the
first days. However, in later phases, VIP increases, but not NEP
(Delgado and Ganea, 2001).

VIP and PACAP have ∼70% homology and an equal affinity
for the same receptors (Rangon et al., 2005), namely VIP
receptor 1/2 (VPAC1/VPAC2), members of the GPCR family
(Yadav et al., 2011). The expression and affinity of VIP receptors
depends on the cell type and the activation stage. For example,
resting T CD4 + cells and monocytes in humans express higher
VPAC1 levels constitutively, while VPAC2 can be induced after T
CD4 + stimulation by downregulating VPAC1 expression (Lara-
Marquez et al., 2001). At VIP binding sites, plenty of VPAC1
and VPAC2 localize in the submucosal glands, airway epithelium,
ASM, and alveolar walls (Groneberg et al., 2001; Ren et al., 2004).
However, immune cells, such as MC, express VPAC receptors
(Kulka et al., 2008).

Among the anti-inflammatory effects of VIP are the
attenuation of IL-1β-induced neutrophil recruitment (Sergejeva
et al., 2004). The increase of mRNA E-cadherin expression
in airway epithelium is necessary to accelerate the repair of
bronchial injuries (Guan et al., 2006) and the inhibition of
IL-8 synthesis in vitro through NF-κB modulation (Delgado
and Ganea, 2003a) with the subsequent decrease in monocyte
chemotaxis via VPAC1 (Delgado and Ganea, 2003b). As
mentioned above, the effects of CGRP related to inflammation by
irritants are also described with VIP (Ren et al., 2004). In MMA,
mice treated with VIP showed less bronchial wall thickening,
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FIGURE 7 | Gamma-Aminobutyric acid-GABA. GABA is synthesized in nerve endings and also by PNEC, epithelium, and ASM. The aberrant production of GABA
induced by Neurotrophin 4 (NT4) causes MUC5AC hypersecretion. However, GABA modulates T-cell activation and decreases the synthesis of IL-6 and IL-12 in
macrophages (M0). This neurotransmitter and its agonist induce bronchodilatation.

cilia detachment, inflammatory cell infiltration, and a reduction
in IL-13-induced ASM proliferation, while the use of a VPAC1
antagonist blocked these effects (Wang et al., 2018). In a similar
context, the addition of alpha-alumina nanoparticles to VIP
(α-AN/VIP) prevented its enzymatic degradation; α-AN/VIP
induced a marked decrease in AHR, BALF-eosinophilia, mucus
hypersecretion, goblet cell hyperplasia, IgE, and low levels of the
cytokines IL-1, IL-5, IL-6, and IL-13, in comparison with ICS,
such as beclomethasone (Figure 8; Athari et al., 2016).

Vasoactive intestinal peptide is one of the most potent
endogenous bronchodilators and is more potent than adrenergic
substances, such as isoproterenol (Palmer et al., 1986). NP
and its agonists attenuate the bronchoconstriction induced
by histamine through VPAC2 (Schmidt et al., 2001). The
VPAC2 agonist (Ro 25-1553) induces bronchodilatation in
patients with moderate asthma (Figure 8) (Lindén et al.,
2003). Although, in comparison with formoterol, it is less
potent, the combination of these two agents doubles the
relaxant action (Källström and Waldeck, 2001). Despite these
beneficial actions on ASM, the limitation of VIP as a
bronchodilator drug is due to its immediate degradation
and its cardiovascular effects, including high blood pressure,
tachycardia, prolonged QT segment, or alterations in serum
potassium (Lindén et al., 2003).

NOCICEPTIN/ORPHANIN FQ

Nociceptin/orphanin FQ (N/OFQ) is peptide (IUPHAR/BPS,
2020), classified as a “non-classical or non-opioid member (Singh
et al., 2016). This NP has∼60% homology with other opioids and,
its receptor, the N/OFQ receptor (NOP), is structurally similar
to other opioid receptors (Corboz et al., 2000). The N/OFQ-
NOP axis has several biological functions, including nociception,
stress, and anxiety, among others (Basso et al., 2005). In the
airways, N/OFQ blocks NANC excitatory responses mediated by
SP and NKA (Shah et al., 1998).

T and B lymphocytes and monocytes express the NOP
receptor (Peluso et al., 1998; Thomas et al., 2014). Patients with
severe asthma show an increase in the NOP mRNA in ASM,
bronchial epithelium, eosinophils, and MC. In this group of
patients, an increase of N/OFQ in the sputum, sub-epithelium,
and extracellular matrix have been observed compared to the
control group or patients with mild asthma (Singh et al., 2016).
The lymphocyte synthesizes N/OFQ (Arjomand et al., 2002).
This NP reduces IL-4 + CD4 + T cells and IL-13 in the
lungs of MMAA, modulating the physiopathology of asthma
(Borges et al., 2016).

The exogenous administration of N/OFQ in human lung
tissue reduced the activation, recruitment, and eosinophil counts,
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FIGURE 8 | Vasoactive intestinal polypeptide (VIP). VIP is synthesized by the epithelium, glands, ASM, arteriolar muscle, Th2 cells, and eosinophils; exerts its actions
by VPAC1. Improves the bronchodilatation and repair of epithelium by E-cadherin expression; also decreases ASM proliferation, IgE, IL-1, IL-5, IL-13, diminishes the
neutrophil recruitment.

as well as the peribronchial inflammatory infiltrate, with a
decrease in IL-8, CCL11, and CCL26 (Singh et al., 2016). In
a similar way, in an MMAA, the NOP receptor agonist UFP-
112, administered in OVA-sensitized mice, reduced eosinophilic
infiltration and T cell proliferation, with a decrease in the Th2
profile and increased IFN-γ levels, effects that were blocked by
the antagonist UFP-101 (Sullo et al., 2013). This NP had beneficial
structural effects, including a reduction in ASM proliferation
and bronchial wall thickness in OVA-sensitized mice (Figure 9;
Tartaglione et al., 2018).

In relation to bronchoconstriction, N/OFQ and its agonist
decrease ACh-induced AHR in human lung tissue (Sullo et al.,
2013; Singh et al., 2016). In guinea pig lungs, the administration
of N/OFQ inhibited capsaicin-induced bronchoconstriction in a
dose-dependent manner, but it has no effect on the NKA-induced
AHR. The use of the NOP receptor antagonists J11397 (Corboz
et al., 2000) and UFP-101 inhibits this phenomenon. However,
naloxone, an opioid antagonist, has no effect (Basso et al., 2005).

NEUROPEPTIDE Y

Neuropeptide Y (NPY) is found mainly in the CNS and
sympathetic nerves (Chen et al., 2020), where it is co-stored
in DVC and co-released with norepinephrine (Ekblad

et al., 1984). Its receptors (Y1R-Y6R) (Beck-Sickinger
et al., 2019) belong to the CGRP protein family, with
the YIR being the most studied, which is expressed on
immune cells (leukocytes, lymphocytes, DC, and MC), but
is not detectable in airway epithelium and ASM under
basal conditions (Wheway et al., 2005; Makinde et al.,
2013).

This NP has pleiotropic effects depending on the cells where it
exerts its functions. For example, macrophages favor its adhesion
and oxidative burst (De la Fuente et al., 2001). In immature
DCs, it helps migration in addition to CCL3, inhibits IL-12
and INF-γ production, and promotes the release of the Th2
profile (MacIa et al., 2011; Buttari et al., 2014; Oda et al.,
2019). Additionally, in MMAA, NPY increases the eosinophil
counts, CD11c +, and cytokines, such as IL-4, IL-5, and IL-
13. Its Y1R antagonist (BIBO-3304) suppresses these effects,
suggesting that this receptor mediates all these mechanisms
(Oda et al., 2019).

However, its effects on asthma are not yet fully understood
(Oda et al., 2019). There is evidence that patients with the NPY-
399C/T polymorphism and obesity have a higher probability
of suffering from asthma (Jaakkola et al., 2012). Some reports
have shown that the expression of NPY and the NPY/Y1 axis
is elevated in allergic asthmatic airways (MacIa et al., 2011;
Makinde et al., 2013), an effect that is modulated by NGF
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FIGURE 9 | Nociceptin/orphanin FQ-N/OFQ. Neurons and lymphocytes produces this NP. The coupling with its receptor (NOP) decreases TCD4 + population, Th2
profile synthesis, the eosinophil chemotaxis as well as its activation, and the airway hyperresponsiveness (AHR) induced by ACh.

(Wu et al., 2012). Likewise, chronic allergen exposure and
stress in MMAA increases NPY, eosinophils, and leukocyte
counts in BALF (Lu and Ho, 2016), suggesting a positive
correlation between NPY levels during a stress episode in
an asthmatic exacerbation and AHR. Interestingly, the loss
of FOXP1 and FOXP4 in the epithelium of patients with a
non-Th2 asthma phenotype induces ectopic NPY production
and other proteins associated with airway remodeling, such
as MUC5AC. NPY acts in a paracrine manner between the
epithelium and ASM. In fact, there is evidence that it enhances
the bronchoconstriction induced by methacholine (Figure 2;
Li et al., 2016).

CONCLUSION

NP and NT are usually associated with mental diseases and
mood disorders (Lietzén et al., 2011). However, both molecules
contribute to enhancing and/or modulating the inflammatory
response to asthma. For example, the association between
stress and asthma symptoms is well documented (Rietveld
et al., 1999; Sandberg et al., 2000). Negative psychological
stress has been found to increase the risk of asthma attacks
in children (Liu et al., 2002), characterized by a high number
of eosinophils in the sputum, EDN, IL-5 (Ritz and Steptoe,

2000), as well as decreased lung function during period of
stress (Von Leupoldt et al., 2006). Although the molecular
immunological mechanisms involved in the pathophysiology
of asthma are well studied, the role of NT/NP has yet to be
fully elucidated.

This general review presents the relevant mechanisms of
NT/NP in the pathophysiology of asthma at different levels.
NT/NP and their receptors are not synthesized exclusively in
the nervous system (Ehrhard et al., 1993; Kobayashi et al.,
2002). They can also be expressed in immune cells, the airway
epithelium (PNEC) (Branchfield et al., 2016), and ASM (Ricci
et al., 2004). Bronchial remodeling is closely linked to neuronal
remodeling in the airway, generating longer nerves, branch
points (Drake et al., 2018), and higher expression levels of TRPV1
receptors, mainly in C fibers (Nassenstein et al., 2018), which can
be activated by several stimuli, causing coughing via the vagus
nerve (Narula et al., 2014). These fibers store NT/NP, which,
when released, participate in a range of functions at the local level
(Voedisch et al., 2012).

Substantial knowledge on NT/NP comes from murine models
of both allergic and non-allergic asthma. For example, some
TACs as NKA and its receptor increased by stimulus of IFN-
γ concomitantly with AHR in murine models of severe asthma
(asthma resistant to classical treatment) (Kobayashi et al., 2012),
even this bronchonconstrictor effect is similar to the induced by
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ACh in guinea pigs (Daoui et al., 2000); this effect is reproducible
with other TACs (HK-1, EKA, EKB, and NKB agonist) in both
animal and human models (Grassin-Delyle et al., 2010). Probably,
this effect is due to the increase in cytoplasmic Ca2+ as well as
the ASM proliferation reported with SP, contributing to airway
remodeling (Li M. et al., 2011). The use of NKR antagonists favors
ASM relaxation, relieving this symptom (Nishi et al., 2000). In
contrast, VIP has anti-inflammatory effects, such as reducing the
AHR and diminish of airway mucus secretion by the inhibition of
ERK1/2 signaling pathway in murine models (Wang et al., 2018).
Exogenous VIP administered, decreases airway inflammation
in an allergic asthma murine model, effect comparable ICS
(Athari et al., 2016). Likewise, N/OFQ reduce the bronchial
wall thickness in its hyperplastic phase (Tartaglione et al., 2018)
and GABA with its agonists block bronchoconstriction induced
by ACh/NKA in guinea pigs (Gleason et al., 2009). However,
there are NT/NP with dual effects in asthma. For example,
in both human and murine with allergic asthma, the axis
ACh/M1-M3 receptor is involved in the increasing of ASM
mass (Kistemaker et al., 2014), enhances IL-8 synthesis (Oenema
et al., 2010), mucin expression (Kistemaker and Gosens, 2015),
and collagen synthesis by fibroblasts (Matthiesen et al., 2006).
But, the ACh/α7nAChR axis exerts anti-inflammatory effects,
suppressing NF-κB in macrophages (Wang et al., 2003) and
ILC2 with the subsequent reduction of a similar Th2 profile
attenuating bronchial inflammation (Galle-Treger et al., 2016).
Other NP with same dual effects in MMAA CGRP induces to
Th9, that mimics a type I hypersensitivity response (Mikami
et al., 2013) and stimulate ILC2 (Sui et al., 2018). But equally
to ACh, the exogenous CGRP reduce the airway inflammation
induced by eosinophils (Dakhama et al., 2002). Thus, in a didactic
way, the NT/NP could be classified based on their effect on the
immunological mechanisms in asthma (Supplementary Table 1).

Some NT/NPs, such as 5-HT (Lechin et al., 1998) and
NKA (Mostafa et al., 2008), can be used as biomarkers, since
they are correlated with low lung function and associated with
asthmatic exacerbation. Likewise, the use of exogenous NP or
the blockade/activation of NT/NP receptors has shown beneficial

effects, attenuating the inflammatory mechanisms and decreasing
AHR (Dakhama et al., 2002; Krishnakumar et al., 2002; Lindén
et al., 2003; Mahn et al., 2009; Li and Shang, 2019). Although there
are some studies evaluated experimental drugs that block NP/NT
receptors, their limited efficacy in these clinical trials is possibly
due to unanticipated changes in signaling, its metabolism as short
half-life (Ho et al., 1997; Cattaruzza et al., 2009) or the presence
of adverse reactions inherent to the CNS and other organs where
these receptors are expressed (e.g., sedation or arrhythmias)
(Lindén et al., 2003; Drake et al., 2018) (Supplementary Table 1).

An exception is the group of drugs that block M2 and
M3 receptors. The inclusion of anticholinergics drugs, such as
tiotropium, in the treatment of asthma has been supported by
medical consensus since 2016. This is an example of how NT/NP
and their receptors are involved in asthma physiopathology,
but they can also serve as therapeutic targets for the benefit of
asthma patients.
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