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Redox stress is a common feature of gut disorders such as colonic inflammation 
(inflammatory bowel disease or IBD) and colorectal cancer (CRC). This leads to increased 
colonic formation of lipid-derived electrophiles (LDEs) such as 4-hydroxynonenal (4-HNE), 
malondialdehyde (MDA), trans, trans-2,4-decadienal (tt-DDE), and epoxyketooctadecenoic 
acid (EKODE). Recent research by us and others support that treatment with LDEs 
increases the severity of colitis and exacerbates the development of colon tumorigenesis 
in vitro and in vivo, supporting a critical role of these compounds in the pathogenesis of 
IBD and CRC. In this review, we will discuss the effects and mechanisms of LDEs on 
development of IBD and CRC and lifestyle factors, which could potentially affect tissue 
levels of LDEs to regulate IBD and CRC development.

Keywords: inflammatory bowel disease, colonic inflammation, colorectal cancer, oxidative stress, lipid 
peroxidation

INTRODUCTION

Colonic inflammation (inflammatory bowel disease or IBD, including Crohn’s disease and 
ulcerative colitis) and colorectal cancer (CRC) are serious health problems in many countries. 
The incidence and prevalence of IBD have dramatically increased in the United  States and 
other countries (Molodecky et  al., 2012). The symptoms of IBD include abdominal pain, 
diarrhea, and rectal bleeding; as a result, IBD can severely impact the life quality of the 
patients. To date, there is no cure of IBD, and the current anti-IBD treatments can lead to 
serious side effects, such as increased infection risk, bone marrow dysfunction, organ dysfunction, 
and increased risk of malignancy, making it difficult to manage IBD. In addition, IBD patients 
have increased risks of developing CRC (Terzić et  al., 2010). CRC is the third most common 
cancer and the second leading cause of cancer-related death worldwide (Bray et  al., 2018). 
There are ~147,950 new cases of CRC in the United  States in 2020. Although the majority 
of these cases occurred in individuals at an age of 50  years and older, ~12% new cases of 
CRC were diagnosed in individuals aged younger than 50  years (Siegel et  al., 2020). It is of 
critical importance to better understand the pathological components involved in the development 
of IBD and CRC, in order to develop novel strategies for prevention and/or treatment.
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A common feature of IBD and CRC is that the oxidative 
stress is increased in the colon tissues. Previous studies showed 
that a variety of reactive oxygen species (ROS), including 
superoxide (O2−), hydroxyl (OH), peroxyl (RO2), and alkoxyl 
(RO) radicals, are increased in the rodent models and human 
patients of IBD and CRC (Biasi et  al., 2013). These ROS 
species can attack polyunsaturated fatty acids (PUFAs), notably 
linoleic acid (LA, the most abundant PUFA in humans diet 
and tissues), that are incorporated in the membrane 
phospholipids of colon tissues, leading to formation of 
endogenous lipid-derived electrophiles (LDEs), such as 
4-hydroxynonenal (4-HNE), malondialdehyde (MDA), trans, 
trans-2,4-decadienal (tt-DDE), and epoxyketooctadecenoic acid 
(EKODE; Van Kuijk et  al., 1990; Lin et  al., 2007; Blair, 2008; 
Ayala et  al., 2014). Substantial studies have shown that the 
levels of LDEs are increased in animal models and human 
patients with IBD or CRC (Skrzydlewska et  al., 2005; Rezaie 
et  al., 2007; Lee et  al., 2010). In addition, previous studies 
have shown that the LDEs have potent effects on inflammation 
and tumorigenesis (Esterbauer et  al., 1991). Therefore, some 
of the LDE compounds are implicated in the pathogenesis 
of IBD and CRC (Colgan and Taylor, 2010; Iborra et  al., 
2011; Bhattacharyya et al., 2014). However, most of the previous 
studies were performed using in vitro cell culture models 
(Esterbauer et  al., 1991), which have several limitations: (1) 
the cell culture models have many limitations to study the 
complicated pathogenesis of IBD and CRC, (2) the LDEs are 
chemically reactive toward biomolecules and are metabolically 
unstable in vivo, the extent to, which these compounds can 
directly interact with intestinal epithelial cells (IECs) or immune 
cells in vivo remain unknown, and (3) some studies treated 
cultured cells with the LDE at high-μM concentrations, which 
may not be  biologically or pathologically relevant.

To address these concerns, recently we  performed a series 
of animal studies to investigate the effects and mechanisms 
of LDEs, including 4-HNE, tt-DDE, and EKODE, on 
development of IBD and CRC in mouse models (Wang et  al., 
2019a, 2020; Lei et al., 2021). Our results showed that systematic, 
short-time, treatment with low doses of these compounds 
increased the severity of dextran sodium sulfate (DSS)-induced 
colitis and exacerbated the development of azoxymethane 
(AOM)/DSS-induced colon tumorigenesis in mice, supporting 
a critical role of these compounds in the development of 
IBD and CRC in vivo (Wang et  al., 2019a, 2020; Lei et  al., 
2021). In this review, we  will discuss the roles of the LDEs 
in the pathogenesis of IBD and CRC, and the implications 
of LDEs in designing strategies to reduce the risks of IBD 
and CRC (Figure  1).

LEVELS OF LDEs IN ANIMAL MODELS 
AND HUMAN PATIENTS OF IBD AND 
CRC

Previous studies have shown that the concentrations of LDEs 
are increased in animal models of IBD (Table  1). In both 
DSS-and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced 

colitic models, the concentration of 4-HNE is significantly 
increased in the colon tissues of colitic mice (Lee et  al., 2010). 
Indeed, the colonic concentrations of free-form 4-HNE in 
normal C3H/HeN mice (not stimulated with DSS) vs. 
DSS-exposed C3H/HeN mice were 0.86  ±  0.85  ng/ml vs. 
11.92  ±  7.01  ng/ml, demonstrating a dramatic increase of 
colonic 4-HNE in colitis (Lee et  al., 2010). The concentration 
of MDA, another LDE compound, was also increased in the 
colon tissues of TNBS-induced colitic rats (Liu and Wang, 
2011). These effects seemed to be  mouse strain-dependent: 
DSS exposure significantly increased colonic concentration of 
4-HNE in both C3H/HeN and C3H/HeJ mice, but the effect 
was much more dramatic in C3H/HeN mice compared with 
C3H/HeJ mice (Lee et  al., 2010). Overall, these results support 
that the colonic concentrations of LDEs are increased in animal 
models of IBD.

Previous studies also showed that the concentrations of 
LDEs are increased in animal models of CRC (Table  1). Our 
recent research showed that EKODE, an aldehyde compound 
derived from oxidative degradation of ω-6 PUFAs (Lin et al., 2007), 
was increased in the colon tissues of AOM/DSS-induced CRC 
mice (Lei et  al., 2021). In our research, we  used a liquid 
chromatography-tandem mass spectrometry (LC-MS/MS)-based 
metabolomics, which can measure >100 fatty acid metabolites 
derived from both enzymatic metabolism and non-enzymatic 
oxidation of PUFAs (Wang et  al., 2019b), to systematically 
profile how fatty acid metabolites are deregulated in the colon 
of AOM/DSS-induced CRC mice. We  found that EKODE was 
significantly increased in the colon of the AOM/DSS-induced 
C57BL/6 mice compared with that of the healthy control 
mice. In addition, EKODE was also among the most dramatically 
increased fatty acid metabolites in the colon of the mice (Lei 
et al., 2021). The concentration of EKODE was not significantly 
increased in the plasma of AOM/DSS-induced CRC mice 
compared with the healthy control mice (Wang et  al., 2019b), 
and this could be  due to the low chemical and/or metabolic 
stability of EKODE in circulation. Besides the chemically 
induced CRC models, the levels of LDEs are also increased 
in the CRC model of the Il-10−/− mice. Compared with 
Il-10−/− mice colonized with a superoxide-deficient strain 
WY84SS or administered sham, the Il-10−/− mice colonized 
with a superoxide-producing Enterococcus faecalis strain 
OG1RFSS developed more severe colon tumorigenesis. 
Immunohistochemical analyses showed that the levels of 
4-HNE-protein adducts are increased in the colonic macrophages 
and myofibroblasts of Il-10−/− mice colonized with OG1RFSS 
(Wang et  al., 2012). These results are consistent with other 
studies, which showed that LDE compounds, such as 4-HNE 
and MDA, are increased in animal models of CRC 
(Amerizadeh et  al., 2018; Cid-Gallegos et  al., 2020).

Human studies also showed that the concentrations of LDEs 
are increased in IBD and CRC patients (Table  2). Previous 
studies showed that the circulating concentration of MDA was 
increased in Crohn’s disease patients compared with control 
subjects (Alzoghaibi et  al., 2007; Boehm et  al., 2012; Achitei 
et al., 2013). The concentrations of 4-HNE and MDA are increased 
in human primary CRC tissues (Skrzydlewska et  al., 2005). 
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In addition, previous studies showed that CRC patients, as 
well as patients with unresectable colorectal liver metastasis, 
have higher concentrations of MDA in the urine and/or plasma 
(Saygili et al., 2003; Leung et al., 2008; Chandramathi et al., 2009). 
After surgical treatments, the serum concentration of MDA 
was reduced in CRC patients compared to presurgical status 
(Surinėnaitė et  al., 2009). Clinical studies also showed a strong 
association between LDEs and transforming growth factor β1 
(TGF-β1) levels, related to the tumor malignancy (Tüzün et al., 2012). 
4-HNE may make an important contribution toward upregulating 
TGF-β1 expression (Leonarduzzi et al., 1997). Overall, these results 
support the clinical importance of LDEs in IBD and CRC.

The increased colonic concentration of LDEs in IBD and 
CRC could be  due to the more severe redox stress in these 
diseases. Substantial studies have shown that a series of oxidative 
markers, such as ROS species, nitric oxide, 8-oxo-2'-
deoxyguanosine (8-oxodG), and antioxidant or pro-oxidative 
proteins (e.g., catalase and myeloperoxidase), are altered in 
IBD and CRC, demonstrating a more severe oxidative 
microenvironment in IBD and CRC (Perse, 2013; Sies et al., 2017). 

In agreement with these studies, we  showed that compared 
with control healthy mice, the AOM/DSS-induced CRC mice 
had a lower colonic expression of a series of anti-oxidative 
genes, such as Sod1 (encoding superoxide dismutase 1), Cat 
(encoding catalase), Gsr (encoding glutathione-disulfide 
reductase), Gsta1 (encoding glutathione S-transferase A1), Gstm1 
(encoding glutathione S-transferase M1), and Hmox1 (encoding 
heme oxygenase-1), and had higher colonic expression of a 
pro-oxidative gene Mpo (encoding myeloperoxidase), 
demonstrating more severe redox stress in the colon tissues 
of AOM/DSS-induced CRC mice. Consistent with these findings 
in animal models, we  found that, in the Cancer Genome Atlas 
(TCGA) database, the expressions of the anti-oxidant genes 
(CAT, GSR, GSTA1, GSTM1, and HMOX1) are reduced, while 
the expression of pro-oxidant gene MPO is increased, in the 
tumor samples of human CRC patients (Lei et  al., 2021).

The more severe redox stress in the colon tissues of IBD 
and CRC could contribute to the high concentrations of 
LDEs through several mechanisms. First, the colon tissues 
of IBD and CRC usually have higher levels of ROS species, 

FIGURE 1 | Roles of ROS-produced lipid-derived electrophiles (LDE) compounds in pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer 
(CRC).

TABLE 1 | Concentrations of LDE compounds in animal models of IBD and CRC.

Model Species Tissue Results References

DSS/TNBS-induced colitis C3H/HeN or C3H/HeJ mouse Colon ↑ MDA, ↑ 4-HNE in colon Lee et al., 2010
TNBS-induced colitis Sprague-Dawley rat Colon ↑ MDA in colon Liu and Wang, 2011
Colitis-CRC model Il-10−/− mouse colonized with Enterococcus faecalis 

OG1RFSS
Colon ↑ 4-HNE-protein adducts in 

colon
Wang et al., 2012

AOM/DSS-induced CRC model C57BL/6 mouse Colon ↑ EKODE in colon Lei et al., 2021
AOM/DSS-induced CRC model C57BL/6 mouse Colon ↑ MDA in colon Amerizadeh et al., 2018
AOM/DSS-induced CRC model BALB/c mouse Colon ↑ MDA, ↑ 4-HNE protein in 

colon
Cid-Gallegos et al., 2020

AOM, azoxymethane; DSS, dextran sodium sulfate; TNBS, 2,4,6-trinitrobenzenesulfonic acid.
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which can directly attack membrane phospholipids and lead 
to increased production of LDEs such as 4-HNE and EKODE 
(Lin et al., 2007). Second, the colon tumors or inflamed colons 
usually have lower expression of glutathione S-transferases 
(GST), as well as glutathione, and this could lead to decreased 
metabolism of LDEs and thus contribute to their high abundance 
in colon tissues. Indeed, previous studies showed that the 
colonic concentration of glutathione, as well as the colonic 
activity of GST enzymes, was reduced in DSS-induced colitic 
model (Oz et  al., 2005; Arafa et  al., 2009). The GST activity 
in the distal colon was significantly lower in the carcinoma 
patients compared with the adenoma patients and healthy 
controls (Grubben et  al., 2006). The GST enzymes are the 
major enzymes involved in metabolism of lipid peroxidation-
derived α,β-unsaturated carbonyl compounds, such as 4-HNE 
and acrolein, catalyzing the conjugation reaction of these 
compounds with glutathione to form the corresponding 
glutathione conjugates (Allocati et al., 2018). Therefore, reduced 
expression of GST and lower levels of intracellular glutathione 
in IBD and CRC could lead to attenuated metabolic degradation 
of the LDEs. Overall, due to the oxidative stress in the colon 
tissues of IBD and CRC, there could be  enhanced production 
and/or reduced degradation of LDEs in the colon, leading to 
higher colonic levels of LDEs.

EFFECTS OF LDEs ON DEVELOPMENT 
OF IBD AND CRC

In vitro Studies of LDEs on Inflammation 
and Tumorigenesis
Previous studies by us and others showed that treatment with 
low-concentration LDE increases inflammatory responses. In our 
recent study, we  treated human CRC (HCT-116) and mouse 
macrophage (RAW 264.7) cells with EKODE, at a concentration 
of 300  nM (a dose determined from LC-MS/MS analysis of 
the concentration of endogenous EKODE in the colon tissues 
of AOM/DSS-induced CRC mice, see our publication Lei et  al., 
2021). We  found that EKODE treatment induces the expression 
of pro-inflammatory genes and activates JNK and NF-κB pathways 
in both CRC and macrophage cells, illustrating a potent 
pro-inflammatory effect of EKODE in vitro (Lei et  al., 2021). 

Besides EKODE, previous studies by us and others also showed 
that other LDE compound, such as tt-DDE, induces inflammatory 
responses in vitro (Chang et  al., 2005; Wang et  al., 2020).

Previous studies also support that LDEs can cause detrimental 
effects on tumorigenesis in vitro. Many LDE compounds, such 
as 4-HNE, MDA, and acrolein, are chemically reactive and 
can form covalently-linked conjugates with biomolecules such 
as DNA, leading to mutagenesis and tumorigenesis. Acrolein, 
a major component in cigarette smoke, has been shown to 
be  able to directly react guanine residues in DNA to produce 
DNA adducts (Comes and Eggleton, 2002). It could be a major 
etiological agent for cigarette smoke-related lung cancer and 
contributes to lung carcinogenesis through the induction of 
DNA damage and the inhibition of DNA repair (Feng et  al., 
2006a). MDA has also been shown to react with nucleosides, 
such as deoxyguanosine and deoxyadenosine, to form adducts 
such as pyrimido[1,2-a]purin-10(3H)-one (M1G; Niedernhofer 
et al., 2003). M1G has been demonstrated to be highly mutagenic 
in human cells and has been detected in tissues under oxidative 
stress (Marnett, 1999a,b). MDA treatment inhibits nucleotide 
excision repair for both UV light-and BPDE-induced DNA 
damage in CRC cells (Feng et al., 2006b). These results suggest 
that MDA could play a critical role in oxidative stress-induced 
mutagenesis and carcinogenesis through two detrimental 
mechanisms: the induction of DNA damage and the inhibition 
of DNA repair. Besides MDA, other LDE compound, such as 
4-HNE, has been shown to a potential mutagen and could 
contribute to oxidative stress-induced carcinogenesis (Hu et al., 
2002; Nair et  al., 2006; Wang et  al., 2012, 2015). The effects 
of LDEs on inflammation and tumorigenesis have been 
summarized and discussed in several reviews (Poli et al., 2008; 
Ayala et al., 2014; Zhong and Yin, 2015) and will not be discussed 
in detail here.

Previous studies showed that LDEs can cause different, or 
even opposite, effects at different concentrations in vitro. For 
example, EKODE at a concentration of 10  μM can activate 
nuclear factor erythroid 2-related factor 2 (Nrf2) signaling (Wang 
et al., 2009), which is an important pathway involved in cellular 
defense against oxidative stress (Guina et  al., 2015). While at 
lower concentrations, EKODE did not have such an effect and 
instead induced inflammatory responses (Wang et  al., 2009; 
Lei et  al., 2021). This could be, at least in part, due to the 

TABLE 2 | Concentrations of LDE compounds in human patients of IBD and CRC.

Disease Human subjects Tissue Results References

IBD IBD patients (n = 42) and normal adults (n = 32) Plasma ↑ MDA in plasma Alzoghaibi et al., 2007
IBD IBD patients (n = 41) and normal adults (n = 18) Serum ↑ MDA in serum Achitei et al., 2013
IBD (CD) CD patients (n = 52) and healthy adults (n = 99) Plasma ↑ MDA in plasma Boehm et al., 2012
CRC CRC patients (n = 81) and most distant location as control 

(n = 81)
Colon mucosae ↑ MDA, ↑ 4-HNE in colon mucosae Skrzydlewska et al., 2005

CRC CRC patients (n = 49) and healthy individuals control (n = 95) Urine ↑ MDA in urine Chandramathi et al., 2009
CRC CRC patients (n = 20) and healthy individuals control (n = 20) Plasma ↑ MDA in plasma Saygili et al., 2003
CRC Primary operable patients (n = 53) and advanced inoperable 

patients (n = 53)
Plasma ↑ MDA in plasma Leung et al., 2008

CRC CRC patients (n = 65; comparing the change between 
presurgical and postsurgical periods)

Serum ↓ MDA in serum compared to presurgical Surinėnaitė et al., 2009

CD, Crohn’s disease; TBARS, thiobarbituric acid-reactive substances; UC, ulcerative colitis.
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mode of actions of these compounds. LDEs are chemically 
reactive and can covalently modify cellular proteins, it is feasible 
that at different concentrations, the LDE compound can interact 
with different cellular proteins: at low concentrations, the LDE 
compound could selectively interact with the cellular proteins, 
which have the most reactive amino acid residues; while at 
high concentrations, the LDE compound could interact with 
more proteins in a less selective manner, resulting in varied 
or even opposite biological responses. This notion is supported 
by previous studies of click chemistry-based imaging of LDE 
compounds such as 4-HNE and tt-DDE (Vila et  al., 2008; 
Wang et  al., 2020). To better understand the biological effect 
of LDE compound, it is important to perform cell culture 
studies using a dose that is biologically or pathologically relevant. 
As we  discussed in “Levels of LDEs in Animal Models and 
Human Patients of IBD and CRC” section above, substantial 
studies have reported the concentrations of endogenous LDEs 
in animal models and human patients of IBD and CRC: for 
example, previous studies showed that the colonic concentrations 
of 4-HNE are ~11.9  ng/ml (~76  nM) in DSS-exposed C3H/
HeN mice and ~15.9 ng/ml (~102 nM) in TNBS-exposed C3H/
HeN mice (Lee et  al., 2010). These reported concentrations 
can help us to perform in vitro studies to study the actions 
of these compounds under biologically relevant conditions.

In vivo Studies of LDEs on IBD and CRC
Our recent research showed that systematic, short-time, treatment 
with low doses of the LDEs, such as 4-HNE, tt-DDE, or 
EKODE, increased the severity of DSS-induced colitis and 
exacerbated the development of AOM/DSS-induced CRC in 
mouse models, supporting critical roles of these compounds 
in the development of IBD and CRC (Wang et  al., 2019a, 
2020; Lei et  al., 2021). In our experiment, we  treated C57BL/6 
mice with 2% DSS in drinking water, with or without 
administration of 4-HNE, tt-DDE, or EKODE (via intraperitoneal 
injection, dose = 1–5 mg/kg/day), for 6–7 days, then sacrificed 
the mice for analysis. We  found that LDE treatment increased 
the severity of DSS-induced colitis in mice, with increased 
infiltration of immune cells, expression of pro-inflammatory 
genes, and enhanced crypt damage, in the colon tissues. 
Furthermore, we  showed that LDE treatment exacerbated 
intestinal barrier dysfunction, leading to enhanced translocation 
of bacteria or toxic bacterial products from the gut into the 
systemic circulation and distant organs. Overall, these results 
support that LDEs have a pro-colitic activity in vivo (Wang 
et  al., 2019a, 2020; Lei et  al., 2021). In addition, we also found 
that LDE treatment exacerbated the development of AOM/
DSS-induced colon tumorigenesis in mice. In this experiment, 
we  stimulated AOM and DSS to initiate colon tumorigenesis, 
then treated the mice with an intraperitoneal injection of 
EKODE (dose  =  1  mg/kg/day). EKODE treatment increased 
tumor number and tumor size, and increased expression of 
pro-inflammatory and pro-tumorigenic markers in the colon, 
demonstrating its CRC-enhancing effects in vivo (Lei et al., 2021).

TLR4 plays a critical role in gut bacteria-host interactions 
by recognizing LPS, which is expressed by Gram-negative 

bacteria and certain Gram-positive bacteria (Abreu, 2010). 
Activation of TLR4 contributes to the development and 
maintenance of inflammatory responses (O’Shea and Murray, 
2008), and the expression of TLR4 is significantly upregulated 
in the colon of DSS-induced colitic mice (Hou et  al., 2013). 
TLR4 is generally expressed at the basolateral surface of intestinal 
epithelial cells; as a result, TLR4 signaling will only be activated 
when the gut bacteria penetrate the intestinal epithelium layer 
(Kubinak and Round, 2012). We found that in the DSS-induced 
colitic model, treatment with 4-HNE suppressed expression of 
tight-junction proteins in colon tissues, leading to increased 
translocation of bacteria or bacterial product (e.g., LPS) from 
the gut into the systemic circulation, resulting in increased 
activation of TLR4 signaling in vivo (Wang et  al., 2019a). 
Furthermore, we  showed that 4-HNE failed to promote 
DSS-induced colitis in Tlr4−/− mice, supporting that TLR4 
signaling is required for the pro-colitic activity of 4-HNE (Wang 
et  al., 2019a). Our finding is consistent with previous studies, 
which showed that 4-HNE induces the production of 
pro-inflammatory cytokines (IL-8, IL-1β, and TNFα) and 
upregulates matrix metalloproteinase-9 by TLR4/NF-κB-
dependent mechanisms in vitro (Gargiulo et  al., 2015). Besides 
4-HNE, we also found that EKODE treatment impaired intestinal 
barrier function and enhanced bacterial translocation in vivo, 
which could lead to activation of TLR4 signaling and contribute 
to its pro-colitic activity (Lei et  al., 2021).

The potential roles of TLR4  in mediating the pro-colitic 
actions of LDEs suggest that gut microbiota could be  involved 
in the actions of LDEs. The LDE compounds, which are 
increased in the colon tissues under IBD or CRC status, could 
directly interact with bacterial cells that reside in the colon, 
leading to alteration of gut microbiota and contributing to 
increased development of IBD or CRC (Sekirov et  al., 2010). 
A healthy gut is a mostly oxygen-free environment and is 
mainly inhabited by obligate anaerobes (Sekirov et  al., 2010). 
Previous studies have supported the notion that many beneficial 
gut bacteria are sensitive to oxygen or redox stress, while the 
pathologic bacteria are more resistant to redox stress (Sekirov 
et  al., 2010). Therefore, increased formation of LDEs, which 
are chemically and redox-active, could perturb gut microbiota 
through suppressing the growth of beneficial anaerobic bacteria 
and enhancing the growth of redox-resistant pathological bacteria, 
resulting in microbiota dysbiosis. To date, few studies have 
characterized the roles of LDEs on gut microbiota, and the 
functional roles of the altered microbiota in promoting IBD 
or CRC. Further studies are needed to better understand how 
IBD or CRC-associated redox microenvironment interacts with 
the gut microbiota to affect the development of gut diseases.

Overall, our results support a model that during the 
development of colitis and CRC, there is enhanced production 
of ROS species in the colon, leading to increased production 
of LDEs such as 4-HNE and EKODE in the colon tissues. 
These compounds could interact with the cells that reside in 
the gut, such as IECs, inflammatory cells, or even gut bacteria 
cells, leading to increased inflammatory responses and 
tumorigenesis, and resulting in increased development of IBD 
and CRC. In support of this notion, the results by us and 
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others showed that treatment with LDEs, at pathologically 
relevant concentrations, induced inflammatory responses in 
IECs and macrophages (Wang et  al., 2019a, 2020; Lei et  al., 
2021). Therefore, these compounds could be  important 
pathological components in the development of IBD and CRC. 
Future studies are needed to determine whether we  could 
develop strategies to selectively target LDEs to reduce the risks 
of IBD and CRC.

We want to point out that our animal studies have limitations. 
The purpose of our research is to study the extent to, which 
LDE compounds modulate the development of colitis and CRC 
in mouse models. Since, the LDEs are produced by non-enzymatic 
oxidation of tissue PUFAs, it is difficult for us to use genetically 
engineered mouse models to alter colonic concentrations of 
LDEs and study their biological actions. In our experiments, 
we  treated mice with these compounds, such as 4-HNE and 
EKODE (dose  =  1–5  mg/kg/day), via intraperitoneal injection 
(Wang et  al., 2019a, 2020; Lei et  al., 2021). We  used this dose 
range, since a previous study has shown to intraperitoneal 
injection of 5  mg/kg/day 4-HNE caused no toxic effects in 
mice (Nishikawa et al., 2000). However, intraperitoneal injection 
of LDEs leads to systematic delivery of LDEs and could also 
increase the concentrations of LDEs in other tissues. In addition, 
it remains to determine whether the colonic concentrations 
of LDEs in the LDEs-treated mice are relevant with those in 
IBD and CRC patients.

FACTORS THAT AFFECT THE 
FORMATION OF LDEs IN TISSUES

Since, LDEs are produced from tissue PUFAs (notably LA) 
by the actions of ROS, factors that can affect the formation 
of LDEs in tissues, such as dietary intake of LA, heme irons, 
and antioxidants, could modulate the risks of IBD and CRC. 
The details are discussed below.

Dietary Intake of LA
LA is abundant in vegetable oils, such as corn, soybean, and 
canola oils, as well as fried food, salad dressing, and mayonnaise 
(Blasbalg et  al., 2011). Since the last century, there has been a 
dramatic increase of dietary consumption of LA in the United States 
and other countries: the consumption of soybean oil, which is 
a major vegetable oil on the market, has risen more than 47% 
since 1980 and more than 1,000-fold since 1909 (Blasbalg et  al., 
2011). It is feasible that a high intake of dietary LA would increase 
the abundance of LA in membrane phospholipids and leads to 
increased formation of LDEs under redox stress, which could 
result in increased development of IBD and CRC. In consistent 
with this notion, animal experiments showed that a high intake 
of LA increased both AOM-and Apc mutation-induced CRC, 
suggesting its potential adverse effect on CRC (Reddy et al., 1985; 
Wu et  al., 2004; Fujise et  al., 2007; Enos et  al., 2016; Liu et  al., 
2020). Human studies also support that a high intake of LA 
increases the risks of CRC (Pot et  al., 2008; Daniel et  al., 2009) 
and colitis (Shoda et  al., 1996; Tjonneland et  al., 2009; 
Strassburg et al., 2014; Rashvand et al., 2015). Notably, the European 

Prospective Investigation into Cancer and Nutrition (EPIC) study 
showed that high intake of LA more than doubled the risks of 
IBD and could be  responsible for ~30% of ulcerative colitis cases 
(Tjonneland et  al., 2009), though we  need to point out there are 
also inconsistent studies, which showed that a high dietary intake 
of LA did not increase risks of CRC in human populations (Zock 
and Katan, 1998; Bartsch et  al., 1999; Azrad et  al., 2013). Further 
studies are needed to better characterize the molecular mechanisms 
for the potential CRC-enhancing effects of dietary LA, in order 
to clarify its health effects and make dietary recommendations 
or guidelines for the optimal intake of LA.

Dietary Intake of Heme Iron
Overall meat consumption has continued to rise in the 
United  States and the rest of the developed world. Red 
meat represents the largest proportion of meat consumed 
in the United  States (58%; Daniel et  al., 2011). Heme has 
been proposed as the key molecule contributing to 
tumorigenesis upon red and processed meat intake (Fiorito 
et  al., 2020). Heme iron plays important role in lipid 
peroxidation. Previous studies support that a high dietary 
intake of heme iron increases tissue levels of LDEs, leading 
to increased risks of CRC. Heme iron can increase lipid 
peroxidation in food products: Gasc et  al. (2007) showed 
that heme iron can interact with dietary LA, leading to 
increased levels of 4-HNE in food products. In addition, 
Pierre et  al. showed that administration of a diet rich in 
heme iron increased the urinal concentration of 
1,4-dihydroxynonane mercapturic acid (DHN-MA), which 
is a major urinary metabolite of 4-HNE, in both animal 
models and human subjects, suggesting that dietary intake 
of heme iron increases lipid peroxidation in vivo (Pierre 
et  al., 2006). Animal and human studies also support that 
heme iron increases risks of CRC. Feeding of a diet rich 
in heme iron increased the number of preneoplastic lesions 
in an AOM-induced CRC model in rats and increased tumor 
load in a spontaneous CRC model in ApcMin mice (Bastide 
et  al., 2015). A meta-analysis of cohort studies showed that 
high heme iron intake was associated with increased risks 
of CRC, supporting that heme iron increases risks of CRC 
in humans (Bastide et  al., 2011).

Dietary Intake of Antioxidants
Radical scavenging antioxidants, which counteract the 
detrimental actions of ROS species and are used to inhibit 
lipid peroxidation in food products, are widely regarded to 
be  beneficial. Previous studies support that some naturally 
occurring antioxidants, such as lycopene, flavonoids, phenolic, 
and polyphenolic compounds, have anti-tumor effects (Khurana 
et  al., 2018) and could attenuate the risks of IBD and CRC 
(Murtaugh et  al., 2004; Moura et  al., 2015). Administration 
of antioxidant has been shown to reduce tissue levels of LDE 
compounds, such as MDA or its DHA adduct M1G, supporting 
a link of antioxidant intake with LDE compounds (Sharma 
et  al., 2001; Vezza et  al., 2016). However, there are recent 
studies that suggest that antioxidants can increase the risks 
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of cancers in animal models and human subjects. Gallic acid, 
which is a phenolic acid widely found in plants, has been 
shown to increase the risks of CRC in ApcMin/+p53R172H mice 
(ApcMin/+ mice with p53 mutation), while it had no effects 
on ApcMin/+ mice that express wild-type p53 (Kadosh et  al., 
2020). In other types of cancers, Sayin et  al. showed that 
dietary administration with the antioxidants, N-acetylcysteine 
(NAC) and vitamin E, markedly increased tumor progression 
and reduced survival in mouse models of B-RAF‐  and 
K-RAS-induced lung cancer (Sayin et  al., 2014). Tumor 
metastasis, which is a process of the cancer cells to migrate 
from primary tumors to other distant organs, is the cause 
for ~90% of human cancer death (Chaffer and Weinberg, 
2011). Piskounova et al. showed that metastasizing melanoma 
cells experience severe oxidative stress in the blood and 
visceral organs, resulting in poor metastases, while 
supplementations with antioxidants increase tumor metastasis 
(Piskounova et  al., 2015). Le Gal et  al. (2015) also showed 
that the dietary administration of antioxidant NAC increases 
lymph node metastases in an endogenous mouse model of 
malignant melanoma. Some human studies also support that 
intake of antioxidants may cause detrimental effects on cancer 
development in human subjects (Albanes et al., 1996). Overall, 
these results support a potential detrimental effect of the 
antioxidant supplement on tumorigenesis.

There could be  many reasons for the inconsistent results: 
e.g., different antioxidants could have different biological actions 
and varied effects on IBD and CRC. In addition, some 
antioxidants can reduce transition metals to a more active 
state, which can then decompose hydroperoxides into high-
energy free radicals. Since, phenolics can act as both antioxidants 
and prooxidants, it can be  difficult to predict their net effects 
in biological systems (Decker, 1997). Further studies are urgently 
needed in this area, since many dietary antioxidants are widely 

consumed by the general public, a better understanding of 
their effects could lead to a major impact on public health.

CONCLUSION

Research by us and others support that the LDEs are increased 
in the colon tissues of IBD and CRC and play critical roles 
in promoting the disease development of these two types of 
diseases. A better understanding of the mode of actions of 
these compounds could help us to identify novel therapeutic 
targets of IBD and CRC, helping us to design mechanism-
based strategies to reduce the risks of these diseases. In addition, 
dietary factors, such as LA, heme iron, and antioxidants, could 
have important implications in regulating the development of 
IBD and CRC, at least in part, through modulating colonic 
levels of LDEs. Since these dietary compounds are commonly 
consumed by the general public, a better understanding of 
their effects on IBD and CRC could lead to a significant impact 
on public health.
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