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The apical papilla is a stem cell rich tissue located at the base of the developing dental
root and is responsible for the progressive elongation and maturation of the root. The
multipotent stem cells of the apical papilla (SCAP) are extensively studied in cell culture
since they demonstrate a high capacity for osteogenic, adipogenic, and chondrogenic
differentiation and are thus an attractive stem cell source for stem cell-based therapies.
Currently, only few studies are dedicated to determining the role of the apical papilla in
dental root development. In this review, we will focus on the architecture of the apical
papilla and describe the specific SCAP signaling pathways involved in root maturation.
Furthermore, we will explore the heterogeneity of the SCAP phenotype within the tissue
and determine their micro-environmental interaction. Understanding the mechanism of
postnatal dental root growth could further aid in developing novel strategies in dental
root regeneration.
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INTRODUCTION

Dental tooth development can be subdivided into different steps and starts with the formation
of the crown during the bud, cap and bell stages. Once the crown has taken shape, the dental
root starts to grow under coordination of the Hertwig’s epithelial root sheath (HERS) (Luan et al.,
2006). This double layer of the epithelial sheath grows apically and positions itself between the
dental papilla and dental follicle. During root elongation and formation of dentin, the HERS
will be fragmented into the epithelial rests of Malassez allowing dental follicle cells to establish
contact with the newly formed dentin and to differentiate into cementoblasts (Huang X. et al.,
2009). Collagen fibers secreted by dental follicle cells are deposited against the cementum to enable
a firm connection to the alveolar bone (Zhou et al., 2019). Consequently, tooth root formation
and elongation is associated with eruption and positioning of the newly formed tooth. Complete
elongation and maturation of the dental root is guided by the apical papilla (Figure 1) which
originates from the ectomesenchyme (Huang et al., 2008). From a developmental point of view,
the architectural composition of the apical papilla and its role in dental root maturation are poorly
studied. Here, we will provide an in depth overview on the current knowledge of the apical papilla
tissue and how the stem cell rich content drives dental root development through specific signaling
pathways and micro-environmental changes.

From a macroscopic point of view, the apical papilla is located apical to the epithelial
diaphragm and is partitioned from the dental pulp by a cell-rich zone (Sonoyama et al., 2008).
Within the collagenous-rich matrix of the apical papilla, a high concentration of mesenchymal
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FIGURE 1 | Schematic representation of apical papilla-induced root maturation. (A) The apical papilla is located at the growing part of the maturing dental root. Note
the different components of the tooth and the dental vasculature entering the apical papilla and pulp tissue. (B) During root elongation the apical papilla progressively
decreases in size. (C) Fully mature roots are associated with a complete loss of the apical papilla tissue. This image was created using Servier Medical Art, licensed
under a Creative Common Attribution 3.0 Generic License, available online at https://smart.servier.com/.

stem cells reside which are defined as stem cells of the
apical papilla (SCAP). These highly proliferative SCAP will
contribute to the formation of dentin by differentiating into
odontoblasts and/or are recruited to the connected pulp tissue.
Since the discovery of the SCAP within the apical papilla, it
became clear that multipotent SCAP are highly suitable for
osteogenic, adipogenic and chondrogenic differentiation (Huang
G. T. J. et al., 2009). Together with their immunomodulatory
capacity (Gaudin et al., 2018; Liu et al., 2019; Fehrmann et al.,
2020), SCAP have a high potential for implementation in
tissue regeneration. This offered the research community an
easily accessible mesenchymal stem cell source with low ethical
considerations. Recently, our group identified novel histological
regions (Driesen et al., 2020) based on the collagen distribution
and organization. At the surface layer, the connective tissue is
organized as a dense collagen matrix with perpendicular aligned
collagen fibers and which is defined as cortex fibrosa. The
inner part of the apical papilla which is indicated as medulla
consists of a loosely disorganized collagen matrix with a high
concentration of SCAP. The whole apical papilla is furthermore
encapsulated by a single layered cuboid epithelium and can
be considered as an independent tissue structure with its own
vascular network and innervation branching toward the central
dental pulp vasculature and nerve. Therefore, the apical papilla is
less susceptible to pathologic events leading to pulp necrosis and
to apical periodontitis (Chepra et al., 2017). In addition SCAP
have been demonstrated to own a high immune stability profile
(Lei et al., 2021). Furthermore, resection of the dental pulp via
pulpectomy (Jung et al., 2011) or periapical lesion after trauma
(Jiang and Liu, 2020) with preservation of the apical papilla
revealed that root maturation is continuous and is independent
from the dental pulp.

MOLECULAR MECHANISM OF ROOT
FORMATION

Recent studies have procured more information on the signaling
pathways specifically involved in tooth root development. An
important prerequisite for the start of dental root growth after
crown formation is the de-activation of fibroblast growth factor-
10 signaling in the dental papilla (Yokohama-Tamaki et al.,
2006). At the apical site of root development, a dynamic
interaction of SCAP in close vicinity with the HERS is observed
which influences apical root morphogenesis and controls root
number, length and dentin formation (Luder, 2015; Figure 2).
HERS stimulates root formation in the mesenchyme of the
apical papilla through secretion of Wnt3a and 4 and sonic
Hedgehog (SHH) which upregulate the expression of the Nfic
transcription factor, the central regulator for root formation.
HERS triggers the Nfic pathway in SCAP by switching on the
canonical Wnt pathway which has been shown to be essential
for postnatal root maturation (Kim et al., 2013; Wang et al.,
2020). HERS-secreted Wnt3a and Wnt4 proteins will couple to
the seven-pass transmembrane Frizzled receptor and the low-
density lipoprotein receptor-related protein 5 or 6 (LRP5/6)
(Wen et al., 2020). Recruitment of Disheveled (DVL) promotes
phosphorylation of the LRP6 receptor and binding of the
Axin complex composed of tumor suppressor adenomatous
polyposis coli gene product (APC), glycogen synthase kinase 3
(GSK3) and casein kinase 1 (CK1) (MacDonald et al., 2009).
This will lead to a reduction of β-catenin phosphorylation and
degradation allowing β-catenin to upregulate the expression
of runt-related transcription factor 2 (Runx2) followed by
direct activation of the Nfic pathway. The importance of
β-catenin in root development has previously been shown in
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FIGURE 2 | Overview of signaling pathways regulating the stemness of SCAP and promoting dental root development via extrinsic signals of HERS. bFGF maintains
the stemness of SCAP via activation of FGFR1 and 2 promoting expression of stemness factors oct4, Sox2, and Nanog, inhibits mineralization through interaction
with Osx, Osteocalcin, and ALP and promotes cell proliferation. HERS stimulates dental root maturation by secretion of Wnt3a and Wnt4 interacting with the Frizzled
and LRP5/6 receptors. Activation of Wnt signaling acts via binding and phosphorylation of DVL, phosphorylation of LRP5/6 and de-activation of the Axin, APC,
GSK-3β, and CK-1 complex leading to inhibition of β-catenin degradation. Consequently, β-catenin interacts with Runx2 activating the Nfic pathway. Nfic triggers
odontoblast differentiation and dentin formation by acting with Klf4 and promoting DMP-1 and DSPP expression. Secondly, Nfic induces mineralization by
upregulating Osteocalcin, ALP and collagen type I and through interaction with Osx which promotes ALP production and DSPP expression. Alternatively, HERS
activates Nfic signaling independent of Runx2 via secretion of SHH. Wnt and hedgehog signaling pathways are, respectively, antagonized by Runx2-driven secretion
of NOTUM and Nfic-promoted expression of Hhip which promotes stem cell proliferation. Activators of signaling pathways are shown in black lines (full and dotted)
whereas inhibition is depicted in red. This image was created using Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License, available
online at https://smart.servier.com/.

conditional knockout mice for β-catenin revealing impaired
root elongation (Yang et al., 2020) and loss of HERS structural
integrity. Consequently, activation of the Nfic signaling pathway
will promote odontoblast differentiation and dentin formation
via Krüppel-like factor 4 (Klf4) expression resulting in the
production of dentin matrix acidic phosphoprotein-1 (DMP-1)
and dentin sialophosphoprotein (DSPP) (Lee et al., 2014). Nfic-
induced mineralization is stimulated via increased expression
of collagen type I and osteocalcin (Zhang et al., 2015) and
through upregulation of osterix (Osx) which activates ALP
production and induces DSPP expression (He et al., 2016).
Loss of Osx expression has been shown to result in failure
of complete root maturation and a decrease in odontogenic
differentiation (Zhang et al., 2015). The interplay between Runx2
and Wnt signaling, however, is considered complex and requires
a delicate regulation for achieving optimal root elongation
(Wen et al., 2020). Overexpression of Wnt signaling results
in shorter roots whereas de-activation completely arrests root
development. This balance is guided by the Runx2-induced
secretion of NOTUM, an inhibitor of the Wnt signaling pathway
by de-acetylating Wnt3a (Wen et al., 2020). It should be
noted that the Ror2 mediated non-canonical Wnt signaling
and its downstream Cdc42 mediator has revealed an impact
on the mesenchyme cell proliferation and a contribution to

root development size in mouse molars (Ma et al., 2021).
Secondly, HERS triggers tooth root development by secretion
of SHH which is regulated in the epithelial compartment
by SMAD4-mediated transforming growth factor-beta (TGF-
β)/bone morphogenetic protein (BMP) signaling (Huang and
Chai, 2012). SHH contributes to the activation of the Nfic
signaling pathway independent of Runx2 resulting in elevated
expression levels of hedgehog interacting protein (Hhip) and
promotion of SCAP proliferation (Liu Y. et al., 2015). It has
been shown that hedgehog signaling activity is the highest in
SCAP at the periphery of the apical papilla and diminishes
toward the center of the tissue creating a concentration gradient
(Li et al., 2015). In addition, the level of hedgehog activity is
negatively regulated by the Nfic-activated Hhip ensuring proper
root formation (Liu Y. et al., 2015).

Once root growth is initiated, apical odontoblasts emerge at
the base of the developing roots displaying the expression of
the aforementioned transcription factors i.e., Nfic, Osx, β-catenin
and alkaline phosphatase (Bae et al., 2013). The differentiation
level of this phenotype is more advanced compared to the
pre-odontoblasts originating from the dental papilla which
only express β-catenin. Differential regulation of odontogenic
differentiation could be the result of a dynamic interplay
between Nfic and TGF-β1 which is highly dependent on the
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expression levels of both factors (He et al., 2014). TGF-β1
signaling promotes odontoblast differentiation via stimulation
of the BMP/SMAD pathway and expression of DSPP (Iwamoto
et al., 2017). On the other hand, TGF-β1 inhibits Nfic
expression directly via SMAD3 upregulation and activation of
the mitogen-activated protein kinase pathway which initiates
Nfic degradation by SMURF1 and 2 (Lee et al., 2011). Nfic
itself can counteract the inhibitory effect of TGF-β1 signaling
by dephosphorylating the SMAD2/3 pathway. Comparing
the expression levels of both signaling pathways during the
progression of root elongation will shed more light on their
close interaction.

HETEROGENEITY IN SCAP
PHENOTYPE—LESSONS AND PITFALLS

A vast amount of differentiation protocols have been successfully
optimized in primary cell cultures of SCAP to demonstrate
the high capacity of SCAP for osteogenic and adipogenic
differentiation. SCAP are easily isolated from the apical papilla by
tissue explant culture or by enzymatic digestion as demonstrated
previously for dental pulp stem cells (Hilkens et al., 2013).
However, to study the contribution of SCAP to dental root
development, one should be cautious in interpreting the function
of SCAP in culture. In tissue, SCAP are part of a micro-
environmental niche which determines cell cycle, functional
behavior and differentiation capacity (Diao et al., 2017).
Orchestration of progressive root maturation is coordinated
in conjunction with changes in the extracellular matrix and
expression of growth factors (Huang et al., 2020). Gene
expression analysis has proven that disruption of the micro-
environmental niche leads to high number of differentially
expressed genes when compared between tissue and SCAP in
culture (Diao et al., 2017). SCAP from early passage have been
shown to retain a more original phenotype as demonstrated
by their intact mesodermal differentiation capacity (Rémy
et al., 2019). A similar observation was made when studying
Wnt inhibitory factor 1 (WIF1) expression, a Wnt/β-catenin
modulator which maintains stem cell commitment (Wang and
Cao, 2019). High expression levels of WIF1 are encountered
within the native tissue of the apical papilla but decrease rapidly
in primary cultures of SCAP. When overexpressing WIF1 in
SCAP, it became apparent that the Wnt pathway promotes
dentinogenic differentiation as indicated by the increased
expression of odontogenic genes i.e., DSPP, DMP1, Runx2,
and Osx (Wang and Cao, 2019). Prevention of cell culture
induced adaptations in SCAP can be limited through either
recreating tissue atmospheric conditions by lowering the oxygen
concentration (Rémy et al., 2019) or by re-integration in a 3-D
scaffold system (Somoza et al., 2017).

SCAP are identified as mesenchymal stem cells based on
the expression of a standard panel of markers including Stro-
1, CD24, CD29, CD73, CD90, CD105, CD106, CD146, ALP,
and absence of expression of CD34, CD45, CD18, and CD150.
Recent studies have underscored the presence of a heterogeneous
pool of SCAP phenotypes residing in the apical papilla. When

evaluating these phenotypes throughout literature, a distinction
can be made based on the localization within the tissue. The
majority of cells within the apical papilla express CD90 and a high
concentration of CD105 and CD73 positive cells is located near
the blood vessels (Ruparel et al., 2013). A further characterization
within the CD146+ stem cell pool can be made based on STRO-1
expression (Bakopoulou et al., 2013). STRO1+ SCAP were shown
to retain a high expression of embryonic and mesenchymal
stem cell markers and enhanced odontogenic differentiation via
activation of SMAD and Erk signaling. These characteristics were
completely absent in the STRO1− subpopulation. Importantly,
the level of STRO-1 expression decreases progressively during
increase in cell passages masking the original phenotype from
the tissue. Treatment of SCAP using basic Fibroblast-Growth
Factor (bFGF) maintains STRO-1 expression up to 10 passages,
increases their proliferation, and preserves the undifferentiated
state of the isolated stem cells (Wu et al., 2012). This process
is regulated through binding of bFGF to FGF-receptors 1
or 2 expressed in SCAP (Chang et al., 2020) which initiate
upregulation of oct4, Nanog and SOX2. These genes are highly
involved in maintaining stem cell pluripotency and are part
of a common stemness gene expression program observed in
different types of dental stem cells originating from the bud
and pulp tissue (Ballini et al., 2019). Furthermore, activation
of FGF receptors enhances cell proliferation but negatively
regulates mineralization by inhibiting Osx, osteocalcin, and
ALP (Wu et al., 2012). Immunohistochemistry revealed the
location of NOTCH3+ and CD146+ stem cells in the vicinity
of the blood vessel walls (Jamal et al., 2015). The role of
NOTCH3 has also been associated with the preservation of
the undifferentiated state of stem cells and its expression is
markedly present during tooth development (Zhang et al., 2008;
Sun et al., 2014). FACS analysis identified 4 different SCAP
subpopulations based on NOTCH3 and STRO-1 expression
underscoring the heterogeneity of SCAP phenotypes in tissue
(Jamal et al., 2015). Furthermore, CXCR4 is highly expressed
in perivascular SCAP and is activated via SDF-1, indicating
chemo-attraction (Liu J. Y. et al., 2015). SDF-1 activates
phosphatidylinositol 3-kinase and protein kinase C signaling
pathways in SCAP and contributes to the transmigration
capacity (Chen et al., 2016). The latter is reflected by the
formation of focal adhesions and the expression of focal adhesion
molecules, i.e., p-focal adhesion kinase, p-paxillin, and vinculin,
linking the adhesion complexes to a stress fiber network
(Chen et al., 2016). In addition, the SDF-1/CXCR4 pathway
contributes to induction of odontogenic differentiation via BMP-
2 (Xiao et al., 2019).

INTERACTION OF SCAP WITH THE
MICRO-ENVIRONMENT

From the aforementioned studies we can conclude that SCAP
are a heterogeneous stem cell pool which have the capacity to
migrate to the growing dental root and to differentiate into
odontoblasts. However, the impact of SCAP is not only confined
to mere differentiation but they also affect their surrounding
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micro-environment by high secretion of a plethora of factors.
Analysis of the SCAP secretome in conditioned medium revealed
a diverse collection of proteins consisting of chemokines
along with angiogenic, immunomodulatory, anti-apoptotic,
neuroprotective factors, and extracellular matrix (ECM) proteins
(Yu et al., 2020). Moreover, SCAP produce components of the
renin-angiotensin system (RAS) (Macedo et al., 2021) which
could increase SCAP proliferation rate via angiotensin 2 receptor
activation (Pizzatto et al., 2020). Several studies indicate the
capacity of the apical papilla to maintain cells in a non-
differentiated state intrinsically and even in neighboring tissues
via currently unknown secretory signaling molecules. Our group
discovered that the central peripheral nerve within the apical
papilla is surrounded by a resident vimentin negative cell
population in contrast to the abundant vimentin positive SCAP
in the medulla (Driesen et al., 2020). Therefore, it is hypothesized
that the vimentin negative cell fraction maintains the opening of
the root canal preventing odontoblast differentiation and dentin
deposition. Indeed, in a co-culture system, SCAP were able to
negatively regulate osteogenic differentiation of dental follicle
stem cells (Wu et al., 2018). The apical papilla would thus exert an
inhibitory effect on dental follicle stem cells during the formation
of the dental root.

Since progression of dental root growth is associated
with a reduction in apical papilla size and eventually
disappears after final root maturation (Figure 1), one can
hypothesize that the extracellular matrix is prone to continuous
remodeling and degradation. Thus, an intrinsic balance
between collagen digestion and cross-linking could serve as
a mechanism for SCAP migration and recruitment to the
growing root. Collagen digestion requires the secretion of
enzymes with a collagenase activity such as membrane-type
matrix metalloproteinase 1 (MT1-MMP) which is a zinc-
endopeptidase and exclusively expressed during dental formation
within the dental mesenchyme (Xu et al., 2016). Reduced activity
of MT1-MMP has led to impaired root formation and as a
result incomplete tooth eruption. In addition, we identified
abundant expression of fibroblast-activation protein-α in dental
mesenchymal stem cells and in particular within SCAP (Driesen
et al., 2020). FAP-α is a member of the family of cell surface
serine proteases and is highly expressed during embryonic
development and contributes to extracellular matrix remodeling
via collagenase type I activity. The presence of FAP-α in SCAP
could point to a capacity to re-organize their collagen-based
micro-environment creating a suitable substrate for enhanced
migration toward the developing root.

FUTURE PERSPECTIVES AND
CONCLUSION

Studies involved in comprehending the molecular mechanism
of root formation has already provided novel insights in dental
disorders. The pathology of short root anomaly is recognized by
the development of abnormal short roots with a blunt appearance
(Yu et al., 2021) and is a consequence of a dysregulation of nuclear
factor 1 C-type, Osx, bone morphogenetic protein, TGF-β, Wnt-
β catenin, and DKK1. Pulp necrosis and apical periodontitis
in immature teeth negatively affects proper root development
posing difficulties for proper dental treatment. Strategies are
currently being investigated to restore or regenerate defective
root formation. Berberine has been shown to induce root repair
via activation of the Wnt/β-catenin pathway in SCAP leading to
longer roots and thicker root walls (Cui et al., 2020). Mixture of
SCAP and PDLSCs has proven to initiate regeneration of the root
and periodontal structure in swine (Sonoyama et al., 2006). An
interesting novel approach is the use of biomimetic scaffolds with
flexible modeling of the scaffold’s geometry. Integration of SCAP
into these scaffolds with a stem-cell matching microarchitecture
could procure new therapeutic strategies for bio-artificial root
replacement (Ballini et al., 2017). However, many processes
in dental root maturation are not resolved at the moment.
Studying the interaction between the apical papilla, HERS and
dental follicle will shed more light on the micro-environmental
changes and extracellular matrix remodeling associated with
apical papilla remodeling during root maturation. Identification
and mechanistic understanding of the cellular heterogeneity
within the apical papilla will be an important first step toward the
development of tissue engineered apical papillae for future dental
root regeneration therapy.
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