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Dental caries and trauma always lead to pulp necrosis and subsequent root
development arrest of young permanent teeth. The traditional treatment, apexification,
with the absence of further root formation, results in abnormal root morphology and
compromises long-term prognosis. Regeneration endodontics procedures (REPs) have
been developed and considered as an alternative strategy for management of immature
permanent teeth with pulpal necrosis, including cell-free and cell-based REPs. Cell-free
REPs, including revascularization and cell homing with molecules recruiting endogenous
mesenchymal stem cells (MSCs), have been widely applied in clinical treatment, showing
optimistic periapical lesion healing and continued root development. However, the
regenerated pulp–dentin complex is still absent in these cases. Dental MSCs, as one of
the essentials of tissue engineering, are vital seed cells in regenerative medicine. Dental
MSC–based REPs have presented promising potential with pulp–dentin regeneration
in large animal studies and clinical trials via cell transplantation. In the present review,
we summarize current understanding of the biological basis of clinical treatments for
immature necrotic permanent teeth and the roles of dental MSCs during this process
and update the progress of MSC-based REPs in the administration of immature necrotic
permanent teeth.

Keywords: dental mesenchymal stem cells, regenerative endodontics, pulp-dentin regeneration, immature
permanent teeth, cell transplantation

INTRODUCTION

Immature permanent teeth are prone to pulpal necrosis due to caries, trauma, or developmental
malformation. These cases always lead to arrest of root formation, accompanied by thin root
dentinal walls and open apices, which has been a challenge in endodontics (Shabahang, 2012). With
apexification, the traditional treatment, either calcium hydroxide or mineral trioxide aggregate
(MTA) is applied to achieve apical sealing (Andreasen and Bakland, 2011; Nicoloso et al., 2017).
Apexification has been reported to resolve apical periodontitis with a success rate of 74–100% (Al
Ansary et al., 2009). However, absence of further root formation with apexification still results in
abnormal root morphology, such as thin dentinal walls with an increased risk of root fracture,
consequently compromising long-term prognosis (Rafter, 2004).
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Regeneration endodontics procedures (REPs) have been
developed and considered as an alternative strategy for treatment
of immature permanent teeth with pulp necrosis (Murray
et al., 2006). The notion of tissue regeneration in the root
canal was first proposed in the 1960s (Nygaard-Ostby, 1961).
Banchs and Trope (2004) introduced a case report describing an
alternative treatment for the management of necrotic immature
permanent teeth called revascularization, in which a blood clot
was induced inside the root canal after control of inflammation.
Later, autologous platelet-rich plasma (PRP) and platelet-rich
fibrin (PRF) took the place of the blood clot as alternative
scaffolds because of their potential to induce tissue regeneration
(Lovelace et al., 2010). A standard protocol for clinical REPs
was proposed by the American Association of Endodontists
[AAE], 2016b) in 2016 These REPs without exogenous cells,
including revascularization and cell homing, have been successful
in resolving apical periodontitis and arrest of root formation
(Iwaya et al., 2001; Torabinejad and Turman, 2010; Shimizu
et al., 2013). However, histological studies show that the pulp–
dentin complex is absent in these cases although some of them
have shown vital pulp (Shimizu et al., 2013; Ulusoy et al., 2019).
Desired REPs are supposed to eliminate apical periodontitis;
increase root length, dentinal wall thickness, and apical closure;
and restore homeostatic function of the pulp–dentin complex,
including inherent immunity, tertiary dentin formation with
stimulus, and pulp sensibility. In particular, the reinstitution of
pulp–dentin structure functions prolongs the life of the tooth.
Hence, scientists and endodontists are keen to develop a novel
regenerative strategy to achieve pulp vitality and organized pulp–
dentin structure with homeostatic functions.

Three major elements have been recommended by Diogenes
for further studies of pulp–dentin regeneration, including (i)
reliable cell resources responsible for formation of root dentin,
pulp tissue, and supporting tissue; (ii) an applicable scaffold
to facilitate cellular proliferation and differentiation; and (iii)
signaling molecules to motivate and direct tissue development,
maturation, and neovascularization (Diogenes et al., 2016).
Mesenchymal stem cells (MSCs) responsible for pulp–dentin
regeneration might be indispensable for ideal REPs. Several
preclinical studies reveal the regenerative potential of pulp–
dentin tissue via cultured cell transplantation (Nakashima et al.,
2017; El Ashiry et al., 2018; Xuan et al., 2018). With its
accessibility and unique potential in dental tissue regeneration,
including the pulp–dentin complex, dental MSCs play a decisive
role of seed cells in REPs. In this context, the applications of
dental pulp stem cells (DPSCs), stem cells from human exfoliated
deciduous teeth (SHED), stem cells from apical papilla (SCAP),
periodontal ligament stem cells (PDLSCs), and dental follicle
stem cells (DFSCs) have been explored. In the latest clinical study
(Xuan et al., 2018), implantation of autologous SHED aggregates
generated pulp–dentin complex in immature necrotic permanent
incisors of pediatric patients, including functional dental pulp
tissue regeneration with vasculature, innervation, and the lining
odontoblast layer. The regenerated dental pulp tissue promotes
root elongation and apical foramen closure. Therefore, dental
MSCs exert therapeutic applications and are of great importance
in treating immature necrotic permanent teeth.

In this review, we briefly summarize the current
understanding of the biological basis of clinical treatments
for immature permanent teeth with pulpal necrosis and the roles
of dental MSCs during this process and update the progress
of MSC-based REPs in the treatment of immature necrotic
permanent teeth.

BIOLOGICAL BASIS FOR REPs

Root development relies on temporospatial reciprocal action
between dental epithelium (Hertwig’s epithelial root sheath,
HERS) and mesenchyme from the cranial neural crest (dental
papilla and follicle) (Thesleff and Sharpe, 1997). When the tooth
crown is formed, HERS is formed by the inner and outer
enamel epithelium of the enamel organ, which lies between
the dental papilla and follicle. Then, HERS extends apically
with the dental papilla and follicle and eventually regulates root
formation. The inner epithelial cells of HERS induce MSCs at
the periphery of the pulp to form odontoblasts, which produce
the root dentin (Huang et al., 2009). As SHED fragments, the
dental follicle penetrates into the epithelial fenestrations, contacts
the root dentin, and differentiates into cementoblasts, which
form the cementum covering the root dentin (Zeichner-David
et al., 2003; Sonoyama et al., 2007b; Huang et al., 2009). The
dental follicle is also responsible for the formation of periodontal
ligament and fiber bundles. Hence, HERS plays a vital role in the
interaction between the dental epithelial and dental mesenchymal
compartment during root formation (Figure 1).

Arrested root formation in immature necrotic permanent
teeth is always related to severe HERS damage due to dental
trauma (Andreasen et al., 1988). Inflammatory cytokines and
chemokines induced by severe and chronic inflammation
impair the stem cells during tissue repair (Cooper et al.,
2014). Additionally, function of SCAP could be disrupted by
proinflammatory cytokines (Johnson, 1997; Liu et al., 2016;
Wang et al., 2017). Hence, root formation is halted in immature
permanent teeth with pulpal necrosis. Once inflammation
is controlled, proinflammatory cytokine and chemokines are
reduced, which leads to resumption of the regulatory effect
of HERS and, consequently, induces the continued formation
of the incomplete root (Cooper et al., 2010; Diogenes and
Hargeraves, 2017). MSCs are vulnerable to the inflammatory
microenvironment, and their immunomodulatory capacities can
vary unexpectedly with the exposure to different inflammatory
conditions (Noronha et al., 2019). It is demonstrated that the
TNFα/TNFR2 signaling pathway is involved in regulating the
immunomodulatory properties of MSCs (Beldi et al., 2020a,b).
The TNFα–TNFR2 axis mediates MSCs’ anti-inflammatory
effects and cell survival, indicated by the inhibition of T cell
proliferation, the production of proinflammatory cytokines, and
the inductive activation of regulatory T cells. The presence of
the TNFR2 molecule is also involved in the regulatory effect of
MSCs, such as the colony-forming unit, proliferation, and MSC-
specific surface markers. TNFR2 is expressed predominantly
in endothelial progenitor cells. The TNFα/TNFR2 signaling
pathway is also critical in the regulation of endothelial progenitor
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FIGURE 1 | Summary of root formation.

cell immunosuppression and the angiogenic effect to form new
immunosuppressive vessels (Naserian et al., 2020). Whether
the inflammatory environment caused by pulpal necrosis/apical
periodontitis plays protective and essential roles in the biological
functions of SCAPs needs further study. A previous study
suggests the long-term viability of apical papilla under prolonged
root canal infection and apical periodontitis (Diogenes and
Hargeraves, 2017). On the contrary, MSCs responsible for the
pulp–dentin complex in the root canal rarely survive during
chronic endodontic infection, which explains the absence of
pulp–dentin regeneration with revascularization or cell homing.

DENTAL MESENCHYMAL STEM CELLS

Human MSCs are multipotent cells from various tissues, such as
skeletal muscle, adipose tissue, placenta, bone, and dental tissue
(Pittenger et al., 1999). Based on minimal criteria proposed by
the International Society for Cellular Therapy (ISCT), MSCs are
plastic-adherent; possess multilineage differentiation potential
in vitro; express at least CD105, CD73, and CD90; and negatively
express CD11b, CD14, CD19, CD34, CD45, CD79α, and HLA-
DR cell surface markers (Dominici et al., 2006; Han et al., 2019).
According to MSC minimal criteria, dental MSCs derived from
dental tissues, including impacted teeth and their supporting
tissues, have been identified and characterized with typical MSC
properties (Sharpe, 2016; Table 1). In addition to easy access,
dental MSCs are genomically stable after multiple passages
in vitro. Despite their multilineage differentiation capacity, dental
MSCs are distinct from other MSCs because of the unique
potential in dental tissue regeneration and have aroused much
interest in regenerative medicine, especially the applications
of REPs (Huang et al., 2009a). To date, dentin, dental pulp,
or even pulp–dentin complex-like structure regenerations with

the application of dental MSCs have been widely investigated,
including DPSCs, SHED, SCAP, PDLSCs, and DFSCs.

DPSCs
Dental pulp tissue, formed by neural crest–derived dental papilla,
is the soft tissue surrounded by the dentin. Responding to
external stimuli, odontoblasts form the tertiary dentin. These
odontoblasts are supposed to be derived from the progenitor cell
populations within dental pulp. DPSCs, first isolated from adult
third molar pulp tissues by Gronthos et al., possess definitive
MSC characteristics, self-renewal capacity, and multilineage
differentiation potential (Gronthos et al., 2000). DPSCs can
differentiate into osteoblast-like cells with specific markers,
forming new bone in vivo (Mortada and Mortada, 2018). A series
of case reports indicate the potential application of DPSCs
in treating intraosseous defects. In these patients with such
defects caused by periodontitis, minimally invasive flap and
collagen sponge integrated with autologous/allogeneic DPSCs
have been applied. Results showed decreased probing depth
reduction, achievement of clinical attachment, and formation of
new bone with rare adverse effects, indicating the periodontal
tissue regeneration potential of DPSCs (Aimetti et al., 2018;
Ferrarotti et al., 2018; Hernández-Monjaraz et al., 2018).
DPSCs are known to differentiate into odontoblasts that are
indispensable for dentinogenesis. Dentin-like tissue is formed
in vivo with DPSCs and hydroxyapatite/tricalcium phosphate
(HA/TCP) scaffold, presenting a lining odontoblast-like cell layer
of a specific odontoblastic-related marker expression, dentin
sialophosphoprotein (DSPP) (Anitua et al., 2017; da Silva et al.,
2019). Compared with human bone marrow MSCs, DPSCs
exhibit notable neurogenic potential due to their origin of the
neural crest and could differentiate into neurons upon specific
differentiation induction (Pagella et al., 2019). The neurogenic
potential was also confirmed with higher expression levels of
neurotrophins when DPSCs were cocultured with trigeminal
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TABLE 1 | Comparison of root formation-related dental MSCs in immature permanent teeth.

Source Surface marker
positive

Surface marker
negative

Multi-lineage differentiation
potential

Immunomodulatory properties

DPSCs Dental pulp
tissue of
permanent
teeth

CD9, CD10, CD13, CD29, CD44,
CD59, CD73, CD90, CD105, CD106,
CD146, CD166, STRO-1, NANOG,
SOX2, OCT4, TRA1-60, TRA-1-80-1,
and Nestin

CD14, CD19,
CD24, CD31,
CD34, CD45, and
CD117

odontoblasts,
osteoblasts,
chondrocytes,
adipocytes,
neurons,
cardiomyocyte,
and hepatocytes

Immunosuppressive properties increased HGF,
TGF-β, PGE-2, IL-6, and IDO; decreased IL-4
and IFN-γ; suppressed proliferation of T cells
and PBMCs; increased number of regulatory T
cells

SHED Dental pulp
tissue of
exfoliated
deciduous
teeth

CD13, CD29, CD44, CD73, CD90,
CD105, CD146, STRO-1, NANOG, adn
Nestin

CD14, CD15,
CD19, CD34, and
CD45

odontoblasts,
osteocytes,
chondrocytes,
adipocytes,
neurons,
and hepatocytes

Immunosuppressive properties increased IL-10;
decreased IL-4 and IFN-γ; inhibited Th17 cell
differentiation; increased number of regulatory T
cells

SCAP Apical
papilla

CD13, CD24, CD29, CD44, CD49,
CD51, CD56, CD61, CD73, CD90,
CD106, CD146, CD166, STRO-1,
NANOG, and Nestin

CD14, CD18,
CD34, and CD45

odontoblasts,
osteocytes,
adipocytes,
neurons,
and hepatocytes

Low immunogenicity inhibited proliferation of T
cells

PDLSCs Periodontal
ligament

CD9, CD10, CD13, CD29, CD44,
CD59, CD73, CD90, CD105 CD106,
CD146, CD166, and STRO-1

CD14, CD19,
CD34, CD45, and
HLA-DR

cementoblasts, osteoblasts,
chondrocytes, adipocytes, and
neurons

Immunosuppressive properties expressing
TLR2 and TLR4; released HGF, TGF-β, and
IDO; suppressed proliferation of PBMCs

DFSCs Dental
follicle

CD9, CD10, CD13, CD29, CD44,
CD59, CD73, CD90, CD105, CD106,
CD146, CD166, STRO-1, NANOG,
SOX2, OCT4, and Nestin

CD31, CD34,
CD45, and CD133

odontoblasts, cementoblasts,
osteoblasts, chondrocytes,
adipocytes, neurons, and
cardiomyocytes

Immunosuppressive properties expressing
TLR2, TLR3, and TLR4; increased IL-6, TGF-β,
and IDO-1; decreased IFN-γ, IL-4, and IL-8;
suppressed proliferation and apoptosis of
PBMCs; increased number of regulatory T cells

DPSCs, dental pulp stem cells; SHED, stem cells of human exfoliated deciduous teeth; SCAP, stem cells from apical papilla; PDLSCs, periodontal ligament stem cells;
DFSCs, dental follicle stem cells; HFG, hepatocyte growth factor; IDO, indole amine 2,3-dioxygenase; IFN, interferon; IL, interleukin; PGE2, prostaglandin E2; TGF-β,
transforming growth factor beta; Th17, T-helper 17; TLR, Toll-like receptor; PBMCs, peripheral blood mononuclear cells.

neurons (Jung et al., 2016; Kawase-Koga et al., 2019). DPSCs
also display angiogenic potential for differentiation potential
of endothelial cells and the formation of blood vessels after
in vivo transplantation with HA scaffold (Jeong et al., 2020).
A clinical study shows that implanted DPSCs achieve pulp-
like tissue regeneration with vasculature and innervation in
the root canal of traumatized incisors (Nakashima et al.,
2017). The potential application of DPSCs in dental pulp
tissue regeneration has also been indicated by another case
report. The affected mature permanent tooth with symptomatic
irreversible pulpitis shows a positive response in pulp vitality
test, following the administration of autologous DPSCs and
leukocyte PRF in the root canal of the affected tooth (Meza et al.,
2018). The promising neurogenic, angiogenic, and odontoblastic
differentiation potential makes DPSCs a major contributor to
dentin regeneration and even whole pulp regeneration.

SHED
SHED were collected from children’s exfoliated deciduous teeth
with a similar methodology as that for DPSCs (Miura et al.,
2003). SHED possess multilineage differentiation potential and
can differentiate into various cell types, such as odontoblasts,
adipocytes, and neurons (Miura et al., 2003). However, SHED
show capacities of higher proliferation, more cell population
doublings, and remarkable osteoinduction compared with
DPSCs based on developmental differences between deciduous

and permanent teeth. Regenerated new bone with larger osteoids
and more collagen fibers by SHED with a polylactic-coglycolic
acid membrane suggests that SHED exhibit outstanding potential
for bone regeneration compared with DPSCs and bone marrow
MSCs (Miura et al., 2003; Kunimatsu et al., 2018). As for the
potential of neural regeneration, SHED show more intensive
expression of neural differentiation markers than DPSCs under
neural induction culture, such as β-III-tubulin and nestin (Wang
et al., 2009) and can also promote neural functional recovery
(Nicola et al., 2018). The odontoblastic differentiation capacity
of SHED has been confirmed by in vivo transplantation that the
composites of SHED and HA/TCP form a dentin-like structure
containing DPSS-positive odontoblasts (Miura et al., 2003).
SHED are also capable of forming functional dental pulp tissue,
containing odontoblasts to regenerate tubular dentin in full-
length root canals combined with collagen type I (Cordeiro
et al., 2008). The abovementioned odontoblastic differentiation
capacity renders SHED a promising cell source for dentin or
pulp regeneration; and whole dental pulp regeneration has been
achieved by SHED (Xuan et al., 2018).

SCAP
In the process of tooth development, dental papilla forms
dental pulp and migrates apically (Sonoyama et al., 2007b).
Several clinical case reports show that root formation continues
in some necrotic immature permanent teeth, indicating that
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TABLE 2 | Current preclinical and clinical studies of cell-free REPs.

Study/year Sample size
(teeth)

Animal
model

Intracanal
medication

Scaffold Capping
material

Observation
period

Results or outcomes

Preclinical studies

da Silva et al.,
2009

40 Dogs TAP Empty scaffold MTA 90 days Hard tissue barrier, and increase of apical
periodontal ligament thickness

Yamauchi et al.,
2010

64 Dogs TAP Cross-linked collagen
scaffold + blood clot,
blood clot

MTA 3.5 months Periapical healing and root wall thickening

Tawfik et al.,
2013

108 Dogs TAP bFGF injectable
scaffold + blood clot,
blood clot

MTA 3 months Negative results in this study: no change of root
length and root thickness.

Khademi et al.,
2014

36 Dogs TAP Blood clot MTA 3-6 months periapical healing, apical closure, and dentinal
walls thickening

Yoo et al., 2014 30 Dogs TAP a collagen scaffold
sponge (soaked with
conditioned media from
mouse preameloblasts)
+ blood clot

MTA 12 weeks Continuous growth of root dentin, and hard
tissue formation

Zhang et al.,
2014

27 Dogs TAP PRP, blood blot MTA 3 months Root canal walls thickening, and apical closure

Londero Cde
et al., 2015

20 Dogs TAP Gelatin-based scaffold
(Gelfoam) + blood clot,
blood clot

MTA 7 months Increase in root length

Rodríguez-
Benítez et al.,
2015

40 Dogs modified
triple-

antibiotics
paste (mTAP)

PRP, blood blot MTA 6 months Root dentinal walls thickening, hard tissue
deposition on dentinal walls, and apical closure

Saoud et al.,
2015

17 Dogs TAP Blood clot MTA 3 months Not reported about root development and
apical closure; but significant dentinal walls
thickening, and periapical healing

Torabinejad
et al., 2015

24 Dogs TAP Blood clot/Gelfoam,
PRP

MTA 3 months Apical narrowing, and hard tissue deposition in
the apical third of the root

Altaii et al.,
2017

4 Sheep TAP Blood clot MTA 6 months Significant increases in root length, root wall
thickness and narrowing of root canal apical
diameter

Study/year Sample size
(teeth)

Age of
patients

(mean ± SD)

Intracanal
medication

Scaffold Capping
material

Observation
period

(mean ± SD)

Results or outcomes

Clinical studies

Reynolds et al.,
2008

2 11 years old TAP Blood clot MTA 18 months Significant root development with maturation of
the dentin

Bose et al.,
2009

88 - TAP,
Ca(OH)2, and
formocresol

Blood clot MTA 6 months-
36 months

Continued root development: increased
percentage of root length and dentinal wall
thickness

Ding et al.,
2009

12 8–11 years
old

TAP Blood clot MTA 15 months 3 teeth of 12 exhibit complete root
development with closed apex and positive
response to electric pulp testing

Petrino et al.,
2009

6 6, 11, and
13 years old

TAP Blood clot MTA 6-12 months 3 of 6 teeth showed continued root
development, and 2 teeth displayed positive
response to vitality testing

Iwaya et al.,
2010

1 7 years old Ca(OH)2
paste

(Vitapex)

Empty scaffold Gutta-
percha

30 months Continued root development, root apex
closure, and root canal thickness increase

Thomson and
Kahler, 2010

1 12 years old TAP Blood clot MTA 18 months Continued root maturation and apical closure

Torabinejad and
Turman, 2010

1 11 years old TAP PRP MTA 5.5 months Periapical lesion resolution, further root
development, and continued apical closure of
the root apex

(Continued)
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TABLE 2 | Continued

Study/year Sample size
(teeth)

Age of
patients

(mean ± SD)

Intracanal
medication

Scaffold Capping
material

Observation
period

(mean ± SD)

Results or outcomes

Chen et al.,
2011

20 8-13 years
old

Ca(OH)2 Blood clot MTA 6-26 months periapical wound healing, and Increased
thickening of root canal walls; 15 of 20 teeth
continued root development
; 4 of 20 teeth exhibited severe hard tissue
calcification in pulp canal; 2 of 20 teeth formed
a hard tissue barrier in root canal space

Nosrat et al.,
2011

2 8, and
9 years old

TAP Blood clot Calcium
enriched
mixture
(CEM)

15-18 months Periapical radiolucent lesions healing, and
continued roots development

Jeeruphan
et al., 2012

20 8-24 years
old

TAP Blood clot MTA 21.15 ± 11.70
months

Increased percentage of root width and root
length

Kim et al., 2012 3 10 and
12 years old

TAP Blood clot MTA 24, 42, and
48 months

Periapical radiolucency disappeared, and root
wall thickness increased

Martin et al.,
2012

1 9 years old TAP PRP + Blood clot MTA 2 years and
1 months

Resolution of apical periodontitis; hard tissue of
obliteration in distal canal, reduction in size of
mesial canal space

Jadhav et al.,
2013

6 10, 13, and
23 years old

TAP PRP + blood clot,
blood clot

Resin
modified

glass
ionomer
cement

12 months Periapical healing, apical closure, and dentinal
wall thickening

Kahler et al.,
2013

16 7-12 years
old

TAP Blood clot MTA 18 months Patterns of continued root maturogenesis were
variable: 90.3% resolution of the periapical
radiolucency, 47.2% incomplete apical closure,
19.4% complete apical closure, 2.7% to 25.3%
change of root length, and 1.9% to 72.6%
change of root dentin thickness

Nagy et al.,
2013

36 9-13 years
old

TAP FGF + blood clot,
blood clot

MTA 18 months –
3 years

Periapical healing, increase in root length and
width, and a decrease in apical diameter

Shimizu et al.,
2013

1 9 years old Ca(OH)2 Blood clot MTA 26 months Resolution of periapical lesion, continued root
development, thickening of the canal walls

Sönmez et al.,
2013

3 9 years old TAP Blood clot MTA 24 months Continued thickening of the dentinal walls with
apical closure; complete resolution of periapical
radiolucencies

Alobaid et al.,
2014

31 6-16 years
old

TAP, BAP,
Ca(OH)2

Blood clot MTA 14.5 ± 8.5
months

Apical closure and hard tissue barrier; but a
greater incidence of adverse events in
revascularization group

Bezgin et al.,
2014

22 7–13 years
old

TAP PRP, blood clot MTA 18 months Complete apical closure, periapical tissue
pathology resolution

Nagata et al.,
2014

23 7-17 years
old

TAP,
Ca(OH)2, and
chlorhexidine

Blood clot MTA 9-19 months Periapical repair, apical closure, root length
increase, dentinal walls thickening; but crown
discoloration in teeth of TAP group

Saoud et al.,
2014

20 11.3 ± 1.9
years old

TAP Blood clot MTA 1 year Increase in radiographic root width and length
and decrease in apical diameter

Narang et al.,
2015

20 Below
20 years old

TAP RPF + blood clot,
PRP + collagen, blood
clot

Resin-
modified

glass
ionomer
cement

6-18 months PRF shows significant periapical healing, apical
closure, root lengthening, and dentinal wall
thickening in revascularization treatment

Nosrat et al.,
2015

2 9, 10 years
old

TAP Blood clot MTA 4 months Progression of root development and
maturation of the roots

Timmerman
and Parashos,
2016

1 16 years old Ca(OH)2 Blood clot MTA 3 years Complete periapical healing, thickening of the
dentinal root walls, and completed apex
formation

Austah et al.,
2018

2 8, and
10 years old

BAP, Ca(OH)2 Blood clot + CollaPlug MTA 43-54 months Complete healing of periapical tissues,
continued root development, root length
increase, and dentin thickness increase

(Continued)
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TABLE 2 | Continued

Study/year Sample size
(teeth)

Age of
patients

(mean ± SD)

Intracanal
medication

Scaffold Capping
material

Observation
period

(mean ± SD)

Results or outcomes

Ajram et al.,
2019

1 7 years old Ca(OH)2 Blood clot Micro
Mega-
MTA
(MM-
MTA)

2 years Complete apical healing, continued root
growth, and apical closure

Rizk et al.,
2019

26 8-14 years
old

TAP PRP, blood clot MTA 12 months Significant increase in root length, root width,
and decrease in apical diameter of PRP-treated
teeth compared with blood clot group; but
higher amount of crown discoloration in blood
clot-treated teeth

Alasqah et al.,
2020

1 8 years old Ca(OH)2, TAP Blood clot MTA 24 months Periapical healing with increased root thickness
and length, and complete apical closure

BAP, bi-antibiotics paste; bFGF, basic fibroblast growth factor; Ca(OH)2, calcium hydroxide; MTA, mineral trioxide aggregate; PRF, platelet-rich fibrin; PRP, platelet-rich
plasma; TAP, triple-antibiotics paste.

MSCs in apical papilla contribute to root development. SCAP
are obtained from apical papilla of immature tooth roots and
exhibit MSC properties, including expression of MSC surface
markers and differentiation potential to a wide variety of cell
types (Sonoyama et al., 2006, 2007a). SCAP possess neural
differentiation potential similar to DPSCs and SHED, partially
attributed to their common origin from the neural crest, and
could be an alternative future therapy for spinal cord injury (De
Berdt et al., 2015). Interestingly, SCAP have higher proliferation
and greater odontoblastic differentiation potential than DPSCs,
suggesting their potential applications for dentin regeneration
(Sonoyama et al., 2006). In vivo studies show that SCAP are
able to differentiate into odontoblast-like cells and generate
dentin-like tissue with DSP expression (Sonoyama et al., 2006,
2007a). The dentin regeneration capacity of SCAP via cell homing
strategy is enhanced by their greater migration ability following
a scratch assay. SCAP can also form ectopic vascularized pulp-
like tissue with DSPP and dentin matrix protein 1 (DMP1)-
positive odontoblasts in mouse molars without exogenous
growth factor application (Pelissari et al., 2018). Owing to their
critical role in root development, SCAP are supposed to make
a major contribution to root regeneration. After transplantation
of SCAP and PDLSCs into a minipig model with a lower
incisor extracted, a functional bioroot with root/periodontal–
like complex was formed. Mineralized root-like tissue is able to
support a porcelain crown and perform normal tooth function
(Sonoyama et al., 2006).

PDLSCs
A population of MSCs exists in the periodontal ligament (PDL),
and it is responsible for periodontal tissue homeostasis and
regeneration (McCulloch and Melcher, 1983; Seo et al., 2004).
These cells were first isolated from the PDL of third molars and
named PDLSCs. The cementogenic/osteogenic differentiation
potential is indicated by the formation of mineralization nodules
with the expression of bone-specific markers after in vivo
transplantation (Seo et al., 2004). The cementogenic/osteogenic
differentiation potential and PDL tissue regeneration potential

of PDLSCs are shown in a rat model of periodontal lesions,
confirmed by newly formed cementum/PDL-like structures at
the lesion area, such as Sharpey’s fiber-like tissue (Seo et al.,
2004; Iwata et al., 2010). A recent preclinical study using a
novel cell transfer technology demonstrates the potential of
PDLSCs in periodontal regeneration. In a rat model of surgical
periodontal defects, the transplantation of PDLSC-amniotic
membrane composite enhanced the periodontal defect recovery,
manifested as newly formed PDL, bone, and cementum at
surgically defective sites (Iwasaki et al., 2019).

DFSCs
Dental follicle contributes to alveolar bone formation during
tooth development, and contains an MSC population to form
supporting tissues, named DFSCs. DFSCs were separated from
the dental follicle of developing teeth (Morsczeck et al., 2004;
Han et al., 2009; Zhou et al., 2019). Compared with DPSCs,
SHED, and PDLSCs, DFSCs show a higher proliferation and
colony-forming capacity, indicating their application potential in
regenerative medicine (Tian et al., 2015; Yildirim et al., 2016).
DFSCs also exhibit superior osteogenic properties compared
with DPSCs and SHED as shown by the higher expression
levels of osteogenic genes (Yildirim et al., 2016). Under the
administration of differentiation induction culture medium,
DFSCs form osteoblasts and produce mineralized nodules with
osteogenic differentiation marker expression, bone sialoprotein,
and osteocalcin (Morsczeck et al., 2004; Han et al., 2009).
DFSCs are capable of periodontal differentiation, indicated by
the formation of PDL-like tissues or mineralized structures
with bone- or cementum-like tissues (Morsczeck et al., 2004;
Han et al., 2009). DFSCs generate complex tissues similar to
cementum-PDL complex in vivo, in which PDL-like collagen
fibers are inserted into newly formed cementum-like tissue
(Han et al., 2009). The potential of odontoblastic differentiation
has also been suggested in DFSCs because they have been
shown to express higher level of DSPP compared with PDLSCs.
The formation of dentin, including dentin, predentin, and
calcospherites, is observed with treated dentin matrix induction
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(Trubiani et al., 2019). All these findings suggest DFSCs as
promising seed cells for both dentin and root regeneration.

CELL-FREE REPs

Roles of Dental MSCs in Cell-Free REPs
The first attempt at dental pulp tissue regeneration was proposed
by Nygaard-Otsby et al. (Nygaard-Ostby, 1961; Nygaard-Ostby
and Hjortdal, 1971). Over-instrumentation was applied to
introduce blood from the periapical tissues into the root canal,
followed by tissue growth. Later, Banchs and Trope (2004)
proposed a protocol termed revascularization based on the
experiments of Kling et al. (1986) on implanted teeth, Hoshino
et al. (1996) on root canal disinfection, and (Nygaard-Ostby and
Hjortdal, 1971) on blood clots in the canal space.

The standard REP protocol proposed by the American
Association of Endodontists [AAE] (2016b; 2018) involves a
multistep procedure. The first visit focuses on infection control
of the affected tooth with the administration of a proper access
cavity, canal irrigation, and disinfection. The common root
canal dressing is calcium hydroxide or triple antibiotic paste
(TAP), which is a mixture of ciprofloxacin, metronidazole, and
minocycline. The second appointment aims to form the suitable
scaffold formation for fresh tissue ingrowth and permanent
coronal restoration following the absence of clinical signs and
symptoms. During this appointment, the root canal is thoroughly
irrigated with ethylenediaminetetraacetic acid to release the
growth factor from the dentin. Apical bleeding is then stimulated
by gentle irritation with a precurved K-file at 2 mm past the apical
foramen to form a blood clot in the root canal. Finally, capping
material, usually MTA, is placed over the blood clot, followed by
the permanent coronal seal to prevent bacterial reinfection. At the
follow-up, eliminating clinical signs and symptoms and healing
periapical lesion are considered as primary goal of REPs. It is
desirable, but not essential, that REPs increase the thickness of the
root wall and/or length of the roots, which is the secondary goal.
Some cases report that the teeth showed a positive response to
pulp vitality testing, suggesting organized pulp tissue in the root
canal, which achieves the tertiary goal.

As an amelioration to revascularization with blood clots, the
cell homing strategy has been proposed to regenerate dental
tissue via a cell-free strategy in which molecules encourage
recruitment of the patient’s endogenous MSCs to the root-
canal space (He et al., 2016; Yin et al., 2017). Several
endodontists believe that cell homing is conducive to achieving
a more effective strategy of pulp–dentin regeneration than
simple revascularization without exogenous cell transplantation
(Table 2). Several molecules, including basic fibroblast growth
factors, vascular endothelial growth factors, platelet-derived
growth factors, nerve growth factors, and bone morphogenetic
protein 7, have been applied as homing factors, showing
promising outcomes in preclinical studies (Kim et al., 2010).
These REPs without exogenous cell transplantation, including
revascularization and cell homing, are considered cell-free REPs.
Survival rates of cell-free REPs are reported close to 100%
in some studies. Therefore, these studies suggest that cell-free

REPs have an obvious therapeutic effect on necrotic immature
teeth (Figure 2A).

Stem cells, homing to the injury site, have an essential role
in wound healing (Rustad and Gurtner, 2011). The cells in the
sites of injury and inflammation release chemokines, stem cell
factors, and growth factors, which motivate the cell homing
(Eramo et al., 2018). CXCR4+ SCAP are demonstrated to be
chemoattracted by stromal derived factor 1, a chemokine, and
migrate into a scaffold made of collagen gel (Liu et al., 2015).
In cell-free REPs, stem cells from the periapical tissues get
into the root canal space in various ways, mainly by periapical
bleeding and molecules in the scaffolds. It is demonstrated that
a large number of MSCs with expression of CD105, CD73, and
STRO1 were induced into the empty root canal by importing
periapical bleeding (Lovelace et al., 2010). These cells were
supposed to be MSCs from the adjacent apical papilla rather
than systemic circulation although no direct evidence is shown in
that study. Additionally, histological and immunohistochemical
analysis presented the formation of cementum- and bone-like
structures in necrotic immature permanent teeth with cell-free
REPs. It suggests that stem/progenitor cells in periapical tissue,
responsible for production of cementum and bone, also entered
the root canal and participated in the formation of mineralized
tissue during continued root formation (Martin et al., 2012;
Shimizu et al., 2012, 2013; Torabinejad and Faras, 2012; Becerra
et al., 2013; Nosrat et al., 2015). Therefore, undifferentiated
MSCs originated from apical papilla, and periapical tissues are
considered to be major cell sources for continued root formation
and pulp–dentin regeneration. Cells from distant site, such as
systemic circulation, are considered to be cell sources for cell-
free REPs. However, these cells make little contribution to pulp
regeneration, considering their small numbers.

Limitations of Cell-Free REPs
Although cell-free REPs are suggested to be effective in
eliminating apical periodontitis and even revitalization of non-
vital immature teeth in some case reports, their outcomes are
still unpredictable. Elimination of apical periodontitis associated
with necrotic immature permanent teeth, the primary goal of
REPs, can be easily achieved once the infection in the root canal
is controlled with disinfection. However, the vitality of cells in
apical papilla, dental follicle, and HERS is determined by severity,
origin, and duration of inflammation from immature permanent
teeth with pulpal necrosis, which is beyond the control of the
endodontists. Once severe damage happens to the apical papilla
or follicle, there are no dental MSCs supporting odontoblast
differentiation or dentin formation, which results in a lack of
continued root formation (Figure 3). It is impossible to clearly
define the status of MSCs in the apical papilla and dental follicle;
thus, endodontists in the clinic always fail to predict the outcomes
of cell-free REPs in the necrotic immature permanent teeth.

American Association of Endodontists [AAE] (2016a) has
defined REPs as “biologically based procedures designed to
physiologically replace damaged tooth structures, including
dentine and root structures, as well as cells of the pulp –
dentin complex.” This suggests that endogenous stem cells
introduced by periapical bleeding might achieve pulp–dentin
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FIGURE 2 | Schematic diagram of REPs. (A) Cell-free REPs. (B) Cell-based REPs. REPs, regeneration endodontics procedures.

regeneration, which produce odontoblast-like cells and form
dentin. However, both animal and preclinical studies fail
to show such results. Formation of bone, cementum, and
fibrous tissue is observed with revascularization in dogs. The
regeneration of the pulp–dentin complex is rarely detected
in the root canal. Additionally, histological studies of human
teeth present similar cementum apposition, ectopic bone,
and fibrous tissues in human mandibular molars treated
with revascularization (Torabinejad and Faras, 2012; Nosrat
et al., 2015). Only one human study shows regenerated

pulp–dentin complex with odontoblast-like cells and dentin-
like tissue in necrotic immature permanent teeth with cell-
free REPs, which is assigned to survival of odontoblasts in
the root canal (Austah et al., 2018). These studies suggest
that the cell-free REPs of necrotic immature permanent teeth
are “repair” rather than “regeneration” procedures (Diogenes
et al., 2016). Unlike immature teeth with pulpal necrosis, teeth
with reversible or irreversible pulpitis can regenerate pulp–
dentin complex after cell-free REPs. This might result from
the remaining pulp tissue, which means the presence of MSCs
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FIGURE 3 | Revascularization promotes continued root development and resolution of periapical lesion, but disorganized radio-opaque changes occur within the
apical root canal. (A) Radiograph of a maxillary left central incisor: immature root formation with a wide-open apex and periapical lesion. (B) Postoperative
radiograph of revascularization and coronal restoration. (C) Radiograph of one-year follow-up: resolution of periapical lesion and root apex closure. Arrow:
non-specific radio-opaque calcific deposit within apical root canal. Courtesy of Dr. Xin Zhou.

responsible for pulp–dentin complex is indispensable for true
regeneration in endodontics.

CELL-BASED REPs

Roles of Dental MSCs in Cell-Based
REPs
Mooney et al. (1996) achieved cell-based pulp regeneration
by applying pulp cells and polyglycolic acid in vitro as early
as 1996. In 2005, stem cells were introduced as one of the
essential elements of pulp–dentin regeneration in endodontics by
Nakashima and Akamine (2005). Soon afterward, Murray et al.
(2006) proposed regenerative endodontics as biologically based
procedures, in which stem cells play a vital role. Since then,
some studies demonstrate the effectiveness of cultured stem cell
transplantation in pulp–dentin regeneration (Table 3). Huang
et al. (2010) reported that MSC transplantation regenerated
pulp–dentin complex in human root fragments compared with
formation of fibrous tissue with scaffold alone, which was the first
in vivo study of pulp–dentin regeneration. Pulp–dentin complex,
a layer of odontoblast-like cells on nascent mineralized tissue,
is observed in dental MSC–transplanted human dentin with
polylactic acid, suggesting a requirement for cell transplantation
in pulp–dentin regeneration (Sakai et al., 2010). Later, the
necessity of cell transplantation was confirmed with animal
studies. Pulp–dentin complex regeneration in large animals was
first reported by Iohara et al. (2009) in a pulpotomy model
in dogs, in which fractionated side-population cells enriched
with CD31−/CD146− were transplanted. They also indicate that
pulp tissue is regenerated in the root canal with a combination
of CD105+ DPSCs and SDF-1 (Iohara et al., 2010). SDF-1 is
considered an important homing signal by recruiting MSCs to
injury sites and facilitating regeneration in various tissues (Suzuki
et al., 2011). However, pulp tissue is hardly detected in the
root canal with SDF-1 alone. These studies further demonstrate
that homing signaling alone is insufficient for pulp–dentin

regeneration. The transplantation of pulpal MSCs into the root
canal is necessary for pulp–dentin regeneration (Figure 2B).

In recent years, cell-based REPs have aroused growing concern
for pulpless teeth. Several clinical studies demonstrate whole
dental pulp regeneration. In a preclinical trial, a composite
containing human mobilized DPSCs (MDPSCs) and a collagen
scaffold was utilized (Nakashima and Iohara, 2014). Upon
autologous transplantation with the composite into the root
canals of canine mature teeth after pulpectomy, vasculature
and innervation- regenerated pulp-like tissue was formed with
odontoblast-like cells on the surface of the root dentinal wall
and newly formed dentin along the dentinal wall. It suggests
that complete dental pulp regeneration similar to healthy dental
pulp is achieved along with restoration of tooth function. The
rarity of adverse events has confirmed the safety of MDPSC-
based REPs. The biological characteristics of MDPSCs do
not vary with age, including their stability and regenerative
potential. Thus, MDPSCs have been applied to a clinical study
to further explore the therapeutic potential and clinical safety
of autologous MDPSC transplantation in pulpectomized human
teeth (Nakashima et al., 2017). The results show mineralized
structure formation of cone beam computed tomography
(CBCT), similar signal intensity of magnetic resonance imaging
to that of normal dental pulp in untreated controls, robust
positive response of a pulp vitality test, and minor adverse events
or toxicity. Therefore, human MDPSCs are suggested as safe and
efficacious dental MSCs candidates in cell-based REPs.

The therapeutic potential of DPSCs in pulp–dentin
regeneration via cell-based REPs is also explored in a minipig
pulpectomy model with empty root canals (Xuan et al., 2018).
The whole functional pulp tissue regenerates in root canals
after implantation of DPSC aggregates harvested from minipigs,
consisting of an odontoblast-like layer, blood vessels, and nerves.
Based on the preclinical trial with a large animal model, they
further conducted a randomized clinical controlled trial to
determine the therapeutic effect on immature permanent tooth
injuries caused by trauma (Xuan et al., 2018). Those immature
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TABLE 3 | Current preclinical and clinical studies of REPs based on dental MSCs.

Study/year Type of dental
MSCs

Experiment design Results or outcomes

Animal model Defects Route of
administration

Biomaterial/
scaffold

Growth factors Observation
period

Tissue
regeneration

Effect evaluation and safety
assessment

Preclinical studies

Iohara et al.,
2010

CD 105 + canine
DPSCs

60 incisors; 15
dogs

whole pulp removal;
enlargement of apical
foramen to 0.7 mm

Autologous
transplantation;

root canal

Mixture of
collagen type I

& III

Stromal cell-derived
factor-1 (SDF-1)

14-90 days Functional
dental pulp

HE: regenerative pulp with well
vasculature and innervation on day 14

Iohara et al.,
2012

Canine DPSCs 72 incisors; 18
dogs

The whole pulp tissue
was removed, and the
root canals were
enlarged to open the
apical foramen to
0.6mmin width in
incisors

Autologous
transplantation;

root canal

Atelocollagen
scaffold

Granulocyte-colony
stimulating factor
(G-CSF)

14-180 days Functional
dental pulp

Safety: no adverse effects on both the
whole and local
HE: regenerative pulp with well
vasculature and innervation on day 14
RG: complete obliteration of the
enlarged apical portion and lateral and
coronal dentin formation
Laser Doppler: functional recovery of
pulpal blood flow after 90 days
Pulp vitality: positive response on day
60 and day 180

Iohara et al.,
2014

canine mobilized
DPSCs

16 incisors; 4
dogs

Whole pulp removed,
apical foramen
enlarged to 0.5 mm

Autologous
transplantation;

root canal

Atelocollagen
scaffold

Granulocyte-colony
stimulating factor
(G-CSF)

14-120 days Functional
dental pulp

HE: regenerative pulp with well
vasculature and innervation on day 14
RG: complete obliteration of the
enlarged apical portion and lateral and
coronal dentin formation

Nakashima and
Iohara, 2014

Canine mobilized
DPSCs

- Root canals after
pulpectomy

Autologous
transplantation;

root canal

Drug-approved
collagen

Granulocyte-colony
stimulating factor
(G-CSF)

14-180 days Pulp-like
tissue

Safety: no adverse effects, no
inflammatory cells infiltrated, and no
internal or external resorption of the
tooth
HE: pulplike tissue with well vasculature
and innervation was regenerated
14 days
RG: complete obliteration of the
enlarged apical portion and lateral and
coronal dentin formation

El Ashiry et al.,
2018

Canine DPSCs 36 incisors; 12
dogs

Pulps from
crown and root

Autologous
transplantation;

root canal

Chitosan
hydrogel
scaffold

Vascular endothelial
growth factor (VEGF-2),
basic fibroblast growth
factor (bFGF),
platelet-derived growth
factor (PDGF), nerve
growth factor (NGF),
bone
Morphogenetic
protein-7 (BMP7)

1-4 months Vascularized
pulp- dentin
like tissue

HE: delicate fibrous tissue resembling
the pulp tissue inside the root canal
containing multiple large and small
blood vessels; newly formed dentin-like
tissue with dentinal tubule-like
structures along the dentinal walls of
the root canal; the regenerated
dentin-like tissue did not form
well-organized dentinal tubules
RGE: closure of the root apex,
thickening of the root canal wall, and
prolongation of the root lengthening

(Continued)
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TABLE 3 | Continued

Study/year Type of dental
MSCs

Experiment design Results or outcomes

Animal model Defects Route of
administration

Biomaterial/
scaffold

Growth factors Observation
period

Tissue
regeneration

Effect evaluation and safety
assessment

Xuan et al.,
2018

Pig DPSCs minipigs Empty root canals after
pulpectomy

DPSC
aggregates;
autologous

transplantation;
root canals

- - 3 months Whole pulp
tissue

HE: regenerated pulp tissue containing
an odontoblast layer and blood vessels
IHC: NeuN

Study/year Type of dental
MSCs

Experiment design Results or outcomes

No. of
subjects
(teeth)

Defects Route of
administration

Biomaterial/
scaffold

Growth factors Observation
period

Tissue
regeneration

Effect evaluation and safety
assessment

Clinical studies

Nakashima
et al., 2017

Human mobilized
DPSCs

5 teeth (2
incisors, 3
premolars); 5
patients with
irreversible
pulpitis

Root canals after
pulpectomy

Autologous
transplantation;

root canal

Atelocollagen
scaffold

Granulocyte
colony-stimulating
factor (G-CSF)

1, 2, 4, 12, and
24/28/32

weeks

Pulp-like
tissue

Safety:no adverse events; no
postoperative pain, including
percussion pain and tenderness; no
significant changes in the periapical
areas
EPT: positive responses after 4 weeks
in 4 patients; 1 patient demonstrated a
negative response after 24 weeks
RG: obliteration of the enlarged apical
portion at 24/28 weeks in 3 patients
CBCT: lateral dentin formation at
28 weeks in 3 patients
MRI: regenerated tissue in the root
canal after 24 weeks was similar to that
of normal dental pulp in 4 patients

Xuan et al.,
2018

Human DPSCs 26 incisors; 36
patients

Dental trauma
with pulp
necrosis

Two hDPSC
Aggregates;
Autologous

implantation;
Root canals

- Extracellular matrix 1, 3, 6, 9, 12,
and 24 months

Whole dental
pulp

Safety: no significant side effects after
12 months
HE: regeneration of 3D whole dental
pulp tissue
Digital RVG: no inflammation at the
periapical area and continued root
development after 24 months
EPT: decrease in sensation thresholds
CBCT: apical foramen width decreased,
the length of the treated tooth root
increased
Laser Doppler: increase in vascular
formation

HE, hematoxylin and eosin staining; IHC, immunohistochemical staining; RG, radiographic examination; RVG, radiovisiography; EPT, electric pulp vitality testing; CBCT, cone beam computed tomography.
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necrotic permanent teeth were transplanted autologously with
DPSCs collected from primary teeth. Taking apexification as
a control group, DPSC-treated immature permanent teeth
presented with eliminated apical periodontitis and continued
root formation during two years’ follow-up. This was indicated
by decreased apical foramen width and increased root length via
CBCT, and dentin thickness increased via 3-D reconstruction.
The viability of DPSC-treated teeth was validated by laser
Doppler flowmetry and electric pulp testing, which showed
an increase in vascular formation and decrease in sensation
thresholds compared with controls. More excitingly, histological
analysis of further traumatized teeth showed regeneration of
pulp–dentin complex with an odontoblast layer. Thus, this study
demonstrates better efficacy and safety of DPSCs implantation in
cell-based REPs, in which 3-D dental pulp tissue with vasculature
and innervation was regenerated. Besides, the efficacy and
safety of allogenic umbilical cord MSCs have been proved in a
preclinical trial (Brizuela et al., 2020). Other cell populations,
such as SCAP or non-dental cells might also be useful in
cell-based REPs. Considering the accessibility of cell sources,
allogeneic cell sources are more usable.

Challenge for Cell-Based REPs
Cell-based REPs show promising outcomes in pulp–dentin
regeneration. Several cell-based REPs are at the stage of
clinical studies (Nakashima et al., 2017; Xuan et al., 2018),
but transplantation of stem cells is still not recommended by
either the American Association of Endodontists [AAE] (2018)
or the European Society of Endodontology (ESE) (Galler et al.,
2016). Multiple problems needed to be resolved before clinical
application of stem cell transplantation, including isolation of
stem cells, expansion of cells in vitro, practice facilities with good
manufacturing, skill of clinicians, training of chair-side assistants,
and high cost (Huang et al., 2013). MSCs are one of the most
important elements in regenerative endodontics. However, their
source and potency are still restrained due to the limitation of our
available knowledge. In vitro- cultured human somatic stem cells,
such as DPSCs, will end up with replicative senescence, a terminal
state, after limited cell divisions (Kang et al., 2004). It is suggested
that there is a notable elevation of senescent DPSCs cultured
in vitro and an obvious reduction of odontogenic differentiation
potential that may be attributed to loss of stem cell marker,
Bmi1 (Mehrazarin et al., 2011). Besides, a large number of cell
doublings with homogeneous loss of differentiation potential
are required for cell transplantation with ex vivo expansion
of DPSCs. Due to the aging-related change in DPSCs in the
dental tissue of aged patients, the accessibility of DPSCs suitable
for regeneration is restricted to immature permanent teeth of
young patients. Therefore, lack of DPSCs from pulp tissue
would make cell-based REPs in adult permanent teeth difficult
to achieve. The ex vivo expansion of autologous MSCs in
dental appointments with high time restrictions requires practice

facilities with good manufacturing, and the procedure is always
accompanied by high costs. In this context, allogeneic DPSCs
may serve as a potential alternative, which can be produced in
high volume and manipulated ready for REPs in the clinic. The
immunomodulatory effects of allogeneic MSCs are suggested to
be of importance in inflammatory disorders. Allogenic umbilical
cord MSCs have been used for mature permanent teeth with
combination of plasma-derived biomaterials, showing acceptable
safety and efficacy in a phase 1/2 clinical trial (Brizuela et al.,
2020). Although transplantation of allogeneic MSCs in REPs
shows promising prospects, more research is needed regarding
immunogenicity, long-term outcomes, and safety.

CONCLUSION

Cell-free REPs, including revascularization and cell homing
with molecules recruiting endogenous MSCs, are successful
in resolving apical periodontitis and arrested root formation,
which are eventually clinical regenerative endodontics and
widely applied in treating immature permanent teeth with
necrotic pulp. However, histological studies show that pulp–
dentin complex is absent in these cases although some studies
show a positive response to vitality testing. Instead, cell-based
REPs with dental MSCs have shown potential with pulp–dentin
regeneration in large animal studies and clinical trials through
cell transplantation. Before clinical translation of cell-based REPs,
more research is still needed regarding isolation of stem cells,
expansion of cells in vitro, good practice facilities, skills of
clinicians, training of assistants, and reduction of costs. It is
hoped that, when cell-based REPs realize true regeneration,
they can be applied to the management of necrotic immature
permanent teeth, resulting in long-term survival of patients’
natural teeth and dentition.
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