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Background: Esophageal cancer has the sixth highest rate of cancer-associated
deaths worldwide, with many patients displaying metastases and chemotherapy
resistance. We sought to find subtypes to see if precision medicine could play a role
in finding new potential targets and predicting responses to therapy. Since metabolism
not only drives cancers but also serves as a readout, metabolism was examined as a
key reporter for differences.

Methods: Unsupervised and supervised classification methods, including hierarchical
clustering, partial least squares discriminant analysis, k-nearest neighbors, and machine
learning techniques, were used to discover and display two major subgroups. Genes,
pathways, gene ontologies, survival, and immune differences between the groups were
further examined, along with biomarkers between the groups and against normal tissue.

Results: Esophageal cancer had two major unique metabolic profiles observed
between the histological subtypes esophageal squamous cell carcinoma (ESCC) and
esophageal adenocarcinoma (EAC). The metabolic differences suggest that ESCC
depends on glycolysis, whereas EAC relies more on oxidative metabolism, catabolism
of glycolipids, the tricarboxylic acid (TCA) cycle, and the electron transport chain. We
also noted a robust prognostic risk associated with COQ3 expression. In addition to
the metabolic alterations, we noted significant alterations in key pathways regulating
immunity, including alterations in cytokines and predicted immune infiltration. ESCC
appears to have increased signature associated with dendritic cells, Th17, and CD8
T cells, the latter of which correlate with survival in ESCC. We bioinformatically observed
that ESCC may be more responsive to checkpoint inhibitor therapy than EAC and
postulate targets to enhance therapy further. Lastly, we highlight correlations between
differentially expressed enzymes and the potential immune status.
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Conclusion: Overall, these results highlight the extreme differences observed between
the histological subtypes and may lead to novel biomarkers, therapeutic strategies, and
differences in therapeutic response for targeting each esophageal cancer subtype.

Keywords: metabolic subtypes, immunological subtypes, esophageal cancer, cancer metabolism, biomarkers

INTRODUCTION

Precision medicine holds strong potential for delivering more
promising therapeutics to the correct patients. One subset of
patients may respond strongly to a given therapy, while another
subset may show little to no improvement, thereby increasing the
risk of futilely decreasing quality of life for patients. Differences
in cancer etiology, environments, and evolutionary selection via
selection pressures from founding mutations may give rise to
different subsets of cancer profiles, which can have different
vulnerabilities and inherent resistances.

Metabolism is a key reporter of cellular status. It is no
surprise that founding mutations of cancers alter metabolism.
Either all functional genes utilize a metabolic reaction to
exert their function or their alteration impacts the cell in a
manner that affects proteins utilizing a metabolic reaction. It
has been observed that expression of enzyme-coding messenger
RNAs (mRNAs) can be utilized to estimate metabolic flux (Lee
et al,, 2012; Mehrmohamadi et al., 2014; Xiao et al., 2019).
This study hypothesizes that metabolic alterations can reveal
unique cancer subtypes that can give rise to precision medicine
based on differences in clinical attributes and their associated
selection that results from environmental factors and cancer
etiology. Hence, this study seeks to utilize metabolic enzyme
expression as a reporter to determine if differences can give
rise to distinctive subtypes that are uniquely targetable. The
following 13 cancer cohorts were screened through The Cancer
Genome Atlas (TCGA): esophageal carcinoma, kidney clear
cell renal carcinoma (KIRC), kidney renal papillary carcinoma,
lung adenocarcinoma, lung squamous cell carcinoma, prostate
adenocarcinoma acinar type, pancreatic adenocarcinoma, colon
adenocarcinoma, rectum adenocarcinoma, bladder urothelial
carcinoma, breast invasive carcinoma, stomach adenocarcinoma,
and uterine corpus endometrial carcinoma. Of these 13 cohorts,

Abbreviations: AUC, area under the curve; AUCPR, area under the precision-
recall curve; BH, Benjamini-Hochberg; BLCA, bladder urothelial carcinoma;
BP, biological process; BRCA, breast invasive carcinoma; CAFE, cancer-associated
fibroblast; COAD, colon adenocarcinoma; DC, dendritic cell; EAC, esophageal
adenocarcinoma; ERBB2+, Erb-B2 receptor tyrosine kinase 2; ESCA, esophageal
cancer; ESCC, esophageal squamous cell carcinoma; FC, fold change; GO, Gene
Ontology; GSEA, Gene Set Enrichment Analysis; KEGG, Kyoto Encyclopedia
of Genes and Genomes; KIRC, kidney clear cell renal carcinoma; KIRP, kidney
renal papillary carcinoma; LOO, leave-one-out; LUAD, lung adenocarcinoma;
LUSC, lung squamous cell carcinoma; MAGE-A, melanoma-associated antigen-
A; MSE, mean square error; NES, normalized enrichment score; PAAD,
pancreatic adenocarcinoma; PD-1, programmed death-1; PD-L1, programmed
death-ligand 1; PLS-DA, partial least-squares discriminant analysis; PRAD,
prostate adenocarcinoma acinar type; READ, rectum adenocarcinoma; RMSE,
root mean square error; ROC, receiver operating characteristic; RSEM, RNA
sequencing by expectation-maximization; sPLS-DA, sparse partial least-squares
discriminant analysis; STAD, stomach adenocarcinoma; TCA, tricarboxylic acid;
TCGA, The Cancer Genome Atlas; TIDE, Tumor Immune Dysfunction and
Exclusion; TIminer, tumor immunology miner; UCEC, uterine corpus endometrial
carcinoma.

only esophageal cancer showed a drastic change when patients
were separated based on attribute of histological subtype.

Worldwide, esophageal cancer is the eighth most common
cancer, presenting with the sixth highest rate of cancer-associated
deaths (Pisani et al., 1999; Ferlay et al., 2010). The 5-year overall
survival rate in the United States is 19.9% (Howlader et al.,
2019), and the rate of incidence and associated mortality has
increased 15-20% in the last 30 years (Enzinger and Mayer, 2003).
Although esophageal squamous cell carcinoma (ESCC) is more
prevalent than esophageal adenocarcinoma (EAC) worldwide
(Enzinger and Mayer, 2003; Spechler et al., 2006), the diagnosis
rate of EAC has also increased by over 600% in the last
30 years in the United States alone (Spechler et al, 2006).
Differences in lifestyle and associated etiological factors may give
rise to these different subtypes of esophageal cancer (Enzinger
and Mayer, 2003), which could be targeted more precisely
based on the subtype.

Roughly half of the patients with esophageal cancer present
with distant metastases and are treated with chemotherapies
despite heterogeneity-associated resistance of ESCC and EAC
to chemotherapy (Huang and Fu, 2019; Zhao et al, 2019).
These observations have prompted the field to examine potential
immunological approaches for treatment (Huang and Fu, 2019;
Kelly, 2019; Zhao et al., 2019). Due to differences in metabolism
between subtypes and the extent to which metabolism can exert
influence over the tumor microenvironment (Chang et al., 2015;
Allard et al., 2017; Gupta et al., 2017; Rivadeneira and Delgoffe,
2018; Sugiura and Rathmell, 2018; Triplett et al., 2018; Chen
et al., 2019; Najjar et al, 2019; Ngwa et al., 2019; Thapa and
Lee, 2019; Vigano et al., 2019), this study examined subtypes
based on the extent of metabolic differences, clinical parameters,
and the cytokine environment. This study also examined their
potential roles in immunity and checkpoint therapy. Overall, the
study suggests that potential metabolic and immune differences
in tumor subtypes can be exploited with precision medicine.

MATERIALS AND METHODS

Data Retrieval

The Cancer Genome Atlas data were downloaded using
TCGA Data Matrix on October 5, 2015. Esophageal feature
selection and machine learning were downloaded in October
2020 through “TCGAbiolinks” v2.16.4 on R 4.0.2 in R studio
v1.3.1093. Mapping gene symbols to ensemble gene IDs was
done through “ensembldb” v3.11 (Rainer et al, 2019), and
duplicated names that were not mRNA were dropped from the
analysis. TCGA mRNA and clinical attributes were analyzed
as performed previously (King et al., 2017). RNA sequencing
by expectation-maximization (RSEM) expression for mRNA
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was obtained as upper quartile-normalized RSEM for the
given TCGA cohort. A list of human metabolic enzymes
was downloaded from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway for hsa01100. Gene Ontology
(GO) and KEGG pathways were from the resources that
were supplied with Gene Set Enrichment Analysis (GSEA)
v2.2.3. Only pathways that contained >90% of the genes
coding for enzymes with a minimum of 10 enzymatic genes
per pathway, as defined from hsa01100, were considered
metabolically associated. The entire GO pathway, including
cellular component, molecular function, and biological process
(BP), was kept for a global perspective for Figure 3A
after being filtered for metabolically associated pathways. The
remaining GO pathway analyses use only BP to find functional
biological meaning.

Data and Statistical Analyses

ActiveState Perl5 version 5.24.1' was used to gather and
organize data, perform Student’s ¢-tests, Benjamini-Hochberg
corrections, and quartile quantifications, to feed commands
to GSEA through Java, to generate and execute R scripts,
and to record the output. Bar graphs were plotted and
analyzed in GraphPad Prism 5 (GraphPad Software Inc., San
Diego, CA, United States). Machine learning was conducted
solely in R using the R package randomForest and H20
v3.32.0.1 (Liaw and Wiener, 2001; H2O.ai, 2016). Cohorts
were randomly assigned with a seed of 123 giving 80% of
the data for training in the non-tuned randomForest, while
40% of the data were used for training in H2O. Twenty
percent of the data were used for validation and testing
in H20 with a maximum of 200 models generated for
hyperparameter tuning, when applicable, for distributed random
forest, gradient boosting machine, deep learning, and generalized
linear model. In all machine learning cases, a seed of 123 was set
prior for the run.

Partial least-squares discriminant analysis (PLS-DA) was
generated through the R package “mixOmics” (Le Cao et al., 2009;
Gonzalez et al., 2012; Rohart et al., 2017). mixOmics v6.12.2 was
utilized for feature selection through sparse partial least-squares
discriminant analysis (sPLS-DA), subsequent tuning, and the
resulting performance assessment. Upper quartile-normalized
RSEM was converted to loga(RSEM +1) before scaling. All
randomization events were preset with a seed of 123. Feature
selection tuning grid consisted of evaluating the performance
when including 1-10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160, 170, 180, 190, 200, and 300
genes. For EAC vs. ESCC sPLS-DA discrimination, 80% of
the cohorts went into training with rounding in effect after
randomization. For EAC vs. ESCC vs. normal tissue, 75% of
the data went to training, as 80% resulted in a testing cohort
having only two normal adjacent tissue samples. Cross-validation
was done with leave-one-out (LOO). The area under the curve
(AUC) was analyzed using the R package “pROC” v1.16.2
(Robin et al., 2011).

Lwww.perl.org

R versions 3.3.2 and 3.5.1° were responsible for the
remaining analysis, including heatmaps through the R
package “gplots” (Warnes et al., 2020). For Supplementary
Figure 5, hierarchical cluster analysis was performed using
Ward’s minimum-variance method and applied to data
with greater variability using the “factoextra” package in R,
while heatmaps were generated using Genesis 1.8.1 (Graz
University of Technology, Graz, Austria). Overall survival
in Supplementary Figure 5 was plotted using the Kaplan-
Meier method and compared between cluster groups using
log-rank tests via SAS version 9.4 (SAS Institute, Cary,
NC, United States). Survival analyses for the genes in the
Supplementary Tables were analyzed with the function
“survdiff” from R package “survival” using the Mantel-Haenszel
log-rank test (Grambsch and Therneau, 2000; Therneau,
2020). When Kaplan-Meier curves were presented, p-values
were from GraphPad Prism 5, using the Mantel-Cox log-
rank test for significance. The Mann-Whitney U test was
conducted in R with function “wilcox.test” and Spearman’s
correlations were calculated utilizing R package “Hmisc”
(Harrell and Dupont, 2020).

GraphPad Prism 5 was also utilized to calculate Mann-
Whitney U or Student’s t-test when two categories existed and
Kruskal-Wallis H test or one-way ANOVA with Bonferroni’s
multiple comparison test when more than two categories
existed. Error bars represent the standard error of the
mean. Prism also calculated Fisher’s exact test when two
categorical categories existed, and chi-square was used when
there were more than two categorical categories, except
where mentioned.

Immune Infiltration Prediction

Algorithms

CIBERSORT (Abbas et al., 2009) was analyzed through the
project’s website’ utilizing 1,000 permutations with quantile
normalization disabled, for the downloaded TCGA data
already had upper quartile normalization. The Tumor Immune
Dysfunction and Exclusion (TIDE) (Jiang et al., 2018) was run
through the projects main website* utilizing “Other” cancer
without previous immunotherapy after supplying log, (RSEM+1)
with normalization to the average of the entire esophageal
cohort. The xCell (Aran et al, 2017) data were generated
from the project’s website’. The docker provided by tumor
immunology miner (TIminer) (Tappeiner et al, 2017) was
downloaded from the project’s website®, and the.gmx files for
Angelova et al. (2015) and Charoentong et al. (2017) were
extracted to be run by GSEA utilizing pre-ranked files generated
by comparing the relative RSEM expression of each patient to
the average of the normal adjacent tissue. Due to similar results
for Th17 cells, the signature of Angelova et al. (2015) was used to
represent TIminer due to the computation time.

2www.r-project.org

Shttps://cibersort.stanford.edu/
*http://tide.dfciharvard.edu/

®https://xcell.ucsf.edu/
Chttps://icbi.i-med.ac.at/software/timiner/timiner.shtml
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RESULTS

Esophageal Squamous Cell Carcinoma
and Esophageal Adenocarcinoma
Present Unique Metabolic Gene
Signatures

Thirteen different cancer cohorts were downloaded from
TCGA to search for metabolic distinctions between clinical
attributes, including sex, stage, ethnicity, and histological
subtypes. Each of these covariates was controlled, and different
permutations were examined for potential differences, as
visualized through PLS-DA. When examining histological
subtypes, many cancers appeared to have metabolic gene
expression differences between adjacent normal tissue and
cancerous tissue (Supplementary Figure 1), which is in line
with Warburg’s observation and previous publications (Vander
Heiden et al., 2009; Chaika et al., 2012). However, while
the majority of TCGA cohorts examined appeared not to
have any metabolic differences between histological subtypes,
slight differences exist in breast, rectal, and uterine cancer
subtypes (Supplementary Figure 2). One exception is the
astounding metabolic differences observed between ESCC
and EAC (Figure 1A). The univariate analysis revealed a
global change in metabolic enzyme mRNA expression levels
(Figure 1B), confirming the observation of differential metabolic
regulation between ESCC and EAC histological subtypes.

A feature selection approach was used through mixOmics
(Rohart et al., 2017), utilizing only enzyme mRNA expression
to discover the key metabolic differences between the subtypes
by tuning an sPLS-DA. Patients were separated by histological
subtypes and randomly assigned 80% to the training cohort
(Figure 1C) with the remaining assigned to the testing cohort
(Figure 1D). The resulting training dataset fit well with a perfect
performance, but the testing cohort made one mistake in 32
patients (Figures 1E,F). The responsible enzymes for the tuned
sPLS-DA separation were further examined for their contribution
(Figure 1G). Combining up to six components was examined;
however, utilizing more than the first principal component had
a negligible performance impact after the first component, as the
first component gave the lowest balanced error rate (Figure 1H).
The 40 genes that were comprised within the first component
were found to be mostly stable (Figures 1G,I).

We next examined the performance by evaluating if enzyme
expression could be used to separate normal adjacent tissue
from the two histological cohorts (Supplementary Figure 3A).
Seventy-five percent of the data were randomly sent to training
(Supplementary Figure 3B) and 25% to testing (Supplementary
Figure 3C). The tuning grid showed that two components were
optimal (Supplementary Figure 3D). The first component’s top
genes were similar to the component for separating EAC from
ESCC (Figure 1H and Supplementary Figure 3E) and that
component 2 helps in the separation of normal tissue from
the rest (Supplementary Figure 3F). While the majority of
the genes were mostly stable, there was difficulty in separating
normal tissue from the rest with feature selection in the
training and testing dataset (Supplementary Figures 3H-J),

despite optimistic separation with limited testing sample size
in the sPLS-DA (Supplementary Figure 3C). The final sPLS-
DA shows a slight cluster of normal tissue, with distant normal
adjacent tissue, EAC-like normal tissue, as well as ESCC-like
normal tissue. This begs the question if there is minor local
influence on adjacent normal tissue’s metabolic phenotype or if
the normal tissue was not as pure as desired (Supplementary
Figure 3K). To further chase differences, we next examined
the entire expression of mRNA-encoding genes and also found
good separation (Supplementary Figure 3L). Tuning the sPLS-
DA suggested just one component and one gene, GPR35, was
sufficient to separate these with decent stability and performance
(Supplementary Figures 3M-P).

To further examine if the enzyme differences between
esophageal cohorts were indeed objectively different, we turned
to machine learning approaches. We first examined a simple
random forest without hyperparameter tuning aside from
increasing the number of trees, which quickly converged before
the 500-tree epoch (Figure 2A). The contribution of the genes
in the categorical prediction (Figure 2B) was somewhat similar
to the 40 genes in component 1 for the sPLS-DA, which can
be reasoned by their highly significant differences (Figure 2C).
We therefore pursued a variety of hyperparameter-tuned, when
appropriate, machine learning approaches that generated great
predictive capability in the validation cohort, and all generated
the same testing results (Figures 2D,E). Variable contribution for
the decision was explored for deep learning, generalized linear
model, gradient boosting machine, and distributed random forest
(Figures 2F-K). A subset of five genes was repeated across the top
10 most important variables from the models and was found to be
significantly different (Figure 2L).

To further examine the malignant transformation into
cancerous tissue in hopes of discovering biomarkers, the
study examined what genes were most diverged from normal
tissue in the transformation to malignant carcinogenesis.
To examine their potential use as future biomarkers,
genes were included if they showed a 25-fold change when
comparing normal to EAC and ESCC, a Benjamini-Hochberg-
corrected Mann-Whitney U test of g < 0.001 between
normal tissue and both EAC and ESCC subtypes, and a
minimum AUC of 0.95 compared to normal tissue for both
groups. Twelve genes appeared, which included two for
matrix metallopeptidases (MMP11, MMPI2), homeobox
genes (HOX8, HOXIO, HOXII), IL8, CHRNAI, IBSP,
HIST1H3B, SP8, CGB5, APOC2, Cl5orf53, and CKMT2
(Supplementary Figure 4).

Considering the profound metabolic differences observed
(Figures 1, 2), esophageal cancer was further examined to
identify if the subtypes differed in metabolic pathways, as defined
by a gene set comprising a minimum of 10 enzymes, with
at least 90% of the genes in the gene set being enzymes.
All GO subgroups, including cellular component, BP, and
molecular function, were examined through GSEA and revealed
a separation of the histological subtypes (Figure 3A). Four
metabolic pathway subtypes were identified in EAC and two
in ESCC, in which the subtype of EAC impacted survival
(Supplementary Figure 5).
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enzyme mRNA levels between esophageal adenocarcinoma (EAC), esophageal squamous cell carcinoma (ESCC), and normal tissue (left) and just the histological
subtypes (right). (B) Heatmap row Z-scores of logo mRNA expression. (C,D) PLS-DA containing scaled logy enzyme mRNA for 80% of each histological subtype
that was randomly sent to training (C), while the remainder went to the testing dataset (D). (E) The receiver operating characteristic (ROC) curve of the training
(upper left), testing (right), and the full dataset (bottom). (F) The confusion matrix with incorrect predicted classifications shown in red after tuning the sparse partial
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The approach was then refined to focus on metabolic
pathways by using a smaller database known as KEGG. Results
again revealed a separation between EAC and ESCC with enzyme
pathways (Figure 3B). There appeared to be a correlation of

clinical features associated with histological subtypes in the
heatmaps (Figures 3A,B). These correlations were further
examined in which histological subtypes had a significant
difference in clinical features (Supplementary Figure 6).
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FIGURE 2 | Key enzymatic markers between histological subtypes. (A) Random forest error rate with increasing number of trees when differentiating subtypes
based on enzymes. (B) Random forest variable importance from 500 trees. (C) The fold change loge mRNA expression and -logqg p-values generated from a
Mann-Whitney U test for the optimal enzymes discovered from the sparse partial least-squares discriminant analysis (sPLS-DA) in Figure 1. (D) Machine modules
with hyperparameter tuning trained on enzyme expression with the best logloss model being reported for each category, when applicable. Abbreviations are as
follows: AUC, area under the curve; AUCPR, area under the precision-recall curve; RMSE, root mean square error; MSE, mean square error. (E) All of the models
resulted in the same confusion matrix with the same holdout dataset. (F-K) Variable importance is seen for each of the top tuned models, including deep learning
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**p < 0.01, **p < 0.001.
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However, these clinical features failed to show a relationship
with subtype-specific enzyme expression with the exception
of histological subtype and patients with a history of Barretts
goblet cell in EAC (Supplementary Figure 7). A relationship
with clinical features and survival was also not observed
(Supplementary Figure 8). Further validating differences
between the subtypes in another dataset provided by the Gene
Expression Omnibus, ESCC was found to be more dissimilar
to esophageal, gastric, and gastroesophageal adenocarcinomas
when comparing only the enzymes or all the genes.

This study sought to further examine differences in metabolic
pathways shared among KEGG and GO BP that significantly
impact survival. We observed that the tricarboxylic acid (TCA)
cycle pathway was noted to be significantly enriched in
adenocarcinomas (Figure 3C). The regulation of genes within
the TCA pathway was also found to be differentially regulated
(Figure 3D). Kaplan-Meier survival curves revealed that the
TCA cycle plays a significant role in patient survival for only
ESCC compared to EAC, suggesting that the decreased pathway
enrichment in ESCC promotes its aggressiveness (Figures 3C,E).
These data prompted further examination into TCA-linked
energy metabolism. Interestingly, in EAC, there is a very strong
survival difference associated with the gene expression of COQ3,
which involves the electron transport chain (ETC) electron
carrier known as ubiquinone or coenzyme Q, but not in ESCC
(Figure 3F). Combining these subtypes together dampens the
association, as it reveals a weak significant difference. However,
considering the significant survival differences, this study next
examined which metabolic enzyme had the most significant
survival alteration.

The protein-coding gene COQ3 appeared to be the
most significant survival-altering enzyme for EAC, by a
large magnitude, compared to the next largest alteration
(Supplementary Table 1). On the other hand, ESCC had several
enzymes that showed significant correlations with survival,
with the largest being QARS (Supplementary Table 1 and
Supplementary Figure 10). All available genes listed in TCGA
and their impact on survival were further examined. Surprisingly,
COQ3 appeared to have the largest significant survival impact on
EAC when comparing all available genes, whereas QARS ranked
number 10 in terms of the p-value for EAC (Supplementary
Table 2 and Supplementary Figure 10). These data suggest that
ESCC is more aggressive when TCA enrichment is decreased.
In contrast, EAC appears to function in reverse, being highly
dependent on the ETC as seen with COQ3, which may allow
for specific targeting of subtypes to enhance patient response
through survival.

It was further observed that there was a difference in
the enrichment and expression of glycerolipid enzymes, as
represented by the GO BP pathway glycerolipid catabolic
process and glycerolipid metabolism in KEGG (Figures 3G,H).
Oddly, it appears that increased enrichment of glycerolipid
enzymes significantly enhances the aggressiveness of ESCC but
not EAC, which masked survival differences when combining
the cohorts (Figure 3I). This study hypothesizes that ESCC
has limited glycerolipid metabolism. Supporting this finding,
positive regulation of lipid transportation was found to be

the second highest increased pathway in GO BP by EAC,
showing a 98-fold change in enrichment compared to ESCC,
suggesting a potentially limited pool of lipids in ESCC
(Supplementary Table 3).

This study next aimed to identify which metabolic pathway
is supplying carbon and energy for ESCC. It was observed here
that the TCA cycle is enriched in EAC and that increased EAC
aggressiveness is associated with the ETC as seen through COQ3.
Furthermore, decreased enrichment in the TCA cycle increased
ESCC aggressiveness (Figures 3C,E,F), suggesting that the ESCC
energy flux lies elsewhere. Anaerobic glycolysis is known to be
upregulated in many cancer types (Vander Heiden et al., 2009). In
turn, this study next examined glucose uptake and metabolism.
Differences were observed between EAC and ESCC for SLC2A1
(the gene for GLUT1 for glucose entry), HK2 (a limiting step in
glycolysis), and LDHA (an important exit for glycolysis for NAD+
regeneration) (Figure 3J). This suggests that ESCC receives its
energy and carbon from glycolysis, whereas EAC has upregulated
oxidative metabolic pathways.

Next, we examined the metabolic subtypes correlated with
other biological responses. While positive regulation of lipid
transportation was the second greatest pathway increased in EAC
for GO BP, the greatest enriched pathway in ESCC showed a
145-fold change during the acute phase response pathway, which
contains the genes involved in an acute inflammatory response
(Supplementary Table 3). Significance was seen at both the
individual and group average level of enrichment (Figure 4A).
Further examination of the top hits revealed regulation of acute
inflammatory response as the third largest increase in ESCC over
EAC with a 36-fold decrease, which was significant for both
the individual level and group level of enrichment (Figure 4B
and Supplementary Table 3). KEGG does not appear to have
a pathway dedicated solely to inflammation but contains a
related cytokine-cytokine receptor interaction pathway, which
showed marginally significant enrichment (Figure 4C and
Supplementary Table 4). Therefore, a heatmap was constructed
to examine the role of inflammation and cytokines utilizing the
genes contained in GO’ term “cytokine activity” (Figure 4D).
Two largely different environments were quickly seen, in which
case, it was observed that interleukin (IL)17-related cytokines
clustered near each other and were highly upregulated in EAC
(Figure 4D). Significant upregulation of ILI7A, IL17C, and
IL17F was confirmed (Figure 4E). Observing a cytokine-based
signature of Th17 cells, we further examined the signature for
Th17 effector memory cells (Korn et al., 2009), in which markers
were found to be significantly upregulated, including IL26, CCR6,
and CCL20 (Figure 4E). Consequently, the study next examined
if the cytokine environment induced Th17 cells.

IL-23 is known for further inducing Th17 responses (Korn
etal., 2009), but IL23A was insignificantly upregulated (p = 0.06)
(Figure 4E). IL-6, along with transforming growth factor (TGF)-
B, can induce naive CD4 T-cell maturation into Th17 (Korn
et al., 2009). Although IL6 expression was unchanged, TGFBI
expression increased in ESCC. It is possible that Th17 is
promoted in the presence of increased TGFBI with non-
diminished IL6 or that Th17 infiltrates to the tumor, upon which
the tumor microenvironment promotes memory differentiation.
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FIGURE 4 | Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) histological subtypes show distinct inflammatory responses.
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expression (left) and as a group against the average of each subtype (right) for Gene Ontology biological processes (GO BPs). (A) The largest fold change of ESCC
compared to EA was discovered to be acute phase response, (B) while the third was regulation of acute inflammatory response. (C) The same calculation was made
for the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to show the NES Z-score (left) and average group enrichment (right). (D) Heatmap mRNA
Z-scores of differentially expressed genes (Student’s t-test, p < 0.05) for GO term “cytokine activity” (GO: 0005125). The color bar on top indicates normal (gray),
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Kruskal-Wallis H test with Dunn’s multiple comparison test between all columns. **p < 0.01, **p < 0.001.
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These data ultimately show a difference in the inflammatory
environment of EAC and ESCC, in which the extent can be seen
through cytokines, and further indicate a potential difference in
the immune environment.

To examine if the immune environment is altered between the
subtypes EAC and ESCC, this study aimed to bioinformatically
validate the cytokine-based hypothesized alteration in Th17
presence and to explore additional alterations in the immune
environment. Thus, we utilized TIminer, an algorithm that
employs a marker enrichment-based procedure approach to
predict immune populations (Tappeiner et al., 2017). The present
study then examined Th17 through two independent marker
datasets by Angelova et al. (2015) and Charoentong et al. (2017).
Both datasets showed a significant increase in Th17 infiltration
in EAC compared to ESCC (Supplementary Figure 11), which
agreed with the cytokine profile. This study, therefore, expanded
to examine the full dataset of Angelova et al. (2015) in TIminer
(Figure 5A). Differences were observed between EAC and ESCC,
so the number of immune prediction algorithms and prediction-
based logic was expanded to further validate and enhance
the coverage of immune differences with xCell (Aran et al,
2017), a marker-based approach (Figure 5B), and CIBERSORT
(Abbas et al., 2009), which utilizes partial deconvolution to
predict the immune populations (Figure 5). An interesting
enrichment was observed for dendritic cells (DCs) across all
three platforms, as activated DCs, classical DCs, and resting
DCs were observed to increase (Supplementary Figures 12A-
D). However, CIBERSORT did not show a significant change in
activation (Supplementary Figure 12E). Furthermore, the status
of CD8 T cells was seen to be significantly increased in ESCC
compared to EAC, including signs of naive and activated CD8
T cells (Supplementary Figures 13A,B). However, differences in
general CD8 T-cell signatures did not appear significant for xCell
(p = 0.0543) and CIBERSORT (Supplementary Figures 13C,D).
This study further investigated possible markers revealing T-cell
status through lymphocyte markers. Markers associated with
activation showed a significant increase in ESCC, including
CD44 (Schumann et al., 2015), CDI09 (Haregewoin et al,
1994), and CD70 (Brugnoni et al., 1997; Tesselaar et al,
2003; Supplementary Figures 13E-G). On the other hand,
PF4 (Supplementary Figure 13H), which is known to inhibit
T-cell function (Fleischer et al.,, 2002), was the second largest
significantly downregulated cytokine in ESCC compared to EAC,
showing a —54-fold change (Supplementary Table 5). This
study further examined helper T cells and immunosuppressive
immune cells but did not observe a significant consistent
trend (Supplementary Figures 14, 15). Taken together, the
strong possibility arises that ESCC represents a potential anti-
tumorigenic immune environment through increased DCs and
the presence of activated T cells.

The effect of immune presence and response was examined for
its potential impact on patient survival. Examining CIBERSORT
revealed the presence of CD8 T cells (Figure 5E), and eosinophils
had an impact on survival (Supplementary Figure 16). When
both subgroups were combined, increased numbers of CD8 T
cells were found to enhance survival, but ESCC was seen to have
a more significant impact than EAC (Figure 5E). This study

utilized the computational framework of TIDE (Jiang et al., 2018)
to examine the potential role of checkpoint inhibitors on ESCC
and EAC (Jiang et al., 2018). TIDE predicted that EAC will have
an enriched benefit and response to checkpoint inhibitor therapy
compared to ESCC (Figures 5F,G). Interestingly, TIDE suggests
that cytotoxic T lymphocytes are hindered by exclusionary
pressures in ESCC and are dysfunctional in EAC (Figures 5H,I).
Together with the survival data from CIBERSORT’s predictions,
these data suggest that if CD8 T cells can infiltrate into the ESCC
tumors, the CD8 T cells can respond positively and promote a
survival benefit, whereas CD8 T cells are likely to be dysfunctional
in EAC and do not have a significant correlation with survival.
Given that EAC likely utilizes dysfunctional mechanisms, it is
rationalized that EAC may respond well to checkpoint therapy,
which is in agreement with TIDE’s prediction, and could
capitalize on the non-exclusionary pressures present in EAC.
Furthermore, if the exclusion pressures are reduced in ESCC,
ESCC may also show an improved overall survival response, as
it is seen to correlate with survival.

As part of this study, literature was searched for genes
associated with activation and dysfunction in order to identify
therapeutic opportunities. Clear differences were found between
EAC and ESCC (Figure 5D). These results include significant
differences in the costimulatory B7 molecules of CD274,
CD86, and CD276 (Supplementary Figures 17A-C), whose
protein products bind immune checkpoint molecules PD-1,
CLTA4/CD28, and an unknown receptor, respectively (Greaves
and Gribben, 2013). Furthermore, differences in CD40 were
observed, as well as in the mRNA encoding its ligand CD40LG
(Supplementary Figures 17D,E). Interestingly, two of the
adenosine receptors, ADORA2A (Supplementary Figure 17F)
and ADORA2B (Supplementary Figure 17G), were significantly
increased in EAC and ESCC, respectively. Both receptors have
been shown to be stimulated by adenosine and stimulate
cAMP production, which plays an immune suppressive role
(Sek et al,, 2018). The main sources of adenosine in cancer
are typically CD39 and CD73, which are encoded by ENTPDI
and NT5E, respectively. A modest decline in ENTPDI in
ESCC was observed, although EAC had similar levels to
the normal adjacent tissue (Supplementary Figure 17H).
However, there appears to be an increase in NT5E when
comparing EAC to ESCC (Supplementary Figure 171). Together,
these data suggest that there are further potential immune-
altering targets that are differentially regulated between the
histological subtypes, which could potentially be targeted to
restore the exclusion and dysfunction seen in ESCC and
EAC, respectively.

Tumor metabolism has been shown to play a significant role
in immune recruitment and function (Chang et al., 2015; Allard
et al., 2017; Gupta et al,, 2017; Rivadeneira and Delgoffe, 2018;
Sugiura and Rathmell, 2018; Triplett et al., 2018; Chen et al., 2019;
Najjar et al., 2019; Ngwa et al., 2019; Thapa and Lee, 2019; Vigano
et al,, 2019). To augment the significance of this work, this study
investigated if any enzymes are differentially regulated between
EAC and ESCC that potentially play a role in immune infiltration.
To this extent, 13 enzymes were found to be differentially
expressed that correlated with the immune prediction by more
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FIGURE 5 | Differences in the immune environment and predicted response to immune therapy between esophageal adenocarcinoma (EAC) and esophageal
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according to (A) CIBERSORT, (B) xCell, (C) and TIiminer utilizing the dataset of Angelova et al. (2015). (D) mRNA Z-scores of differentially expressed (> 1.5-fold,

g < 0.05) genes of potential immunotherapeutic interest between EAC and ESCC. The color bars on top indicate esophageal tissues from normal (gray),
adenocarcinomas (orange), and squamous cell carcinoma (blue). (E) Kaplan-Meier survival plots for patient survival based on CIBERSORT's immune prediction.
(F-1) Shown here are predicted therapy benefit (F), predicted therapy response (G), immune exclusion (H), and immune dysfunction prediction (I) according to the
computational method of Tumor Immune Dysfunction and Exclusion (TIDE). Survival statistics utilized Mantel-Cox log-rank tests. Therapy prediction utilized Fisher’s
exact test and a Student’s t-test for immune dysfunction, immune exclusion, and heatmaps, with the latter corrected by Benjamini-Hochberg correction for g-values.

advanced algorithms of CIBERSORT and TIDE (Figures 6A-C).
The magnitude of the correlation of these genes with the immune
environment also appeared to be impacted by the histological
subtype (Supplementary Figures 18A,B). It is reasonable to

postulate that metabolic differences between subtypes exist and
that a given enzyme can influence the environment or vice versa.

Of the 13 genes identified, the gene ALDH3BI had the

greatest association with altered patient survival (Figure 6D)
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FIGURE 6 | Enzyme expression correlates with immune function prediction. (A-C) Legends (A) for Z-score of differentially expressed enzymes between subtypes
(B) and Spearman'’s rho for correlation between expression and immune function prediction from CIBERSORT and Tumor Immune Dysfunction and Exclusion (TIDE)
utilizing both subtypes (C). (D) Kaplan—Meier survival curves for ALDH3B1. (E) Ranked Spearman’s rho correlation between enzyme mRNA and TIDE score for
tumor immune dysfunction and exclusion utilizing both subtypes. Survival statistics utilized Mantel-Cox log-rank. *p < 0.05, “*p < 0.01.

compared to the other genes CYP3A5, UGT1A7, and PLA2GI10  scores reported by TIDE (Figure 6E). Many of these differentially
that were found to be significantly associated with survival expressed genes were found to rank high in their correlation with
(Supplementary Figures 18C-E). The tumor immune immune function. The enzyme correlation was then expanded
dysfunction and exclusion score is postulated to be a strong to include all previously used algorithms (Supplementary
overall assessment of the immune environment. Therefore, this  Figure 19). Likewise, the expanded data support a similar
study examined the 13 enzymes and the association with the observation, in which seven out of the 13 identified genes,
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including CYP3A5, PLA2G10, UGTIA7, GCNT3, SMPD3, DDC,
and ST6GALNACI, reappeared as top enzymes correlating with
the immune environment. These data indicate a casual role of
differentially expressed enzymes that correlate with the immune
status and highlight the potential role of cancer metabolism in
modulating the tumor microenvironment.

DISCUSSION

Precision medicine holds the promise of correctly leveraging
the cellular and extracellular environment against the tumor
in order to benefit from unique vulnerabilities. A shift in
the metabolic profile of the cell reflects a change in the
cellular programming, which is altered through the cancerous
transformation. Observing metabolic differences is critical, as
the change in the metabolic machinery reflects altered nutrient
consumption and production, which may further alter the
cell and/or the environment. These differences, ideally, can be
targeted through precision medicine.

With the goal of discovering clinical differences that could be
targeted to benefit patients, as well as for the effort to discover
metabolic differences, we examined multiple cancers in TCGA
for clinical attributes including sex, cancer stages, ethnicity,
and histology. Interestingly, we did not find key differences
in attributes among many cancer cohorts (Supplementary
Figures 1, 2). However, we discovered an exception in the
histological subtypes for esophageal cancer. These findings were
radically different (Figures 1A,B). The differences were so
pronounced that some of these enzymes could be used as
biomarkers, although better non-enzymatic markers exist to
differentiate EAC and ESCC (Supplementary Table 6).

Importantly, there appeared to be a difference in oxidative
metabolism between ESCC and EAC. Pathway differences were
also found to be associated with survival (Figure 3). EAC is
associated with the TCA cycle, glycerolipid metabolism, and
shows extreme aggressiveness in patients with increased tumoral
expression of electron transport chain gene, COQ3. In contrast,
ESCC appears to increase glycolysis for energy (Figure 3). These
findings mirror a recent study that found lung squamous cell
carcinomas drastically increase GLUT1, upregulate glycolysis,
and are sensitive to glycolysis modulation compared to lung
adenocarcinomas (Goodwin et al., 2017). This difference in
GLUT1 expression has also been observed to be largely due
to histology, as demonstrated in a meta-analysis between lung
squamous cell carcinomas and lung adenocarcinomas (Tan et al,,
2017). Recently, it was observed that YAP1 mediates an increase
of GLUT1 in esophageal cancer to promote resistance to therapy
(Li et al, 2019). This finding raises the question as to how
these pathways and survival differences can aid the possible
therapeutic intervention to help the prognosis of the patient.
Recently, mubritinib cleared a Phase I clinical trial for Erb-B2
receptor tyrosine kinase 2 (ERBB2+) solid tumors, which can
also inhibit complex I (Baccelli et al., 2019). Although ERBB2
is seen to significantly impact EAC and both subtypes when
combined (Supplementary Table 2), its potential effects could
serve a further purpose in EAC by hampering the ETC. However,

the treatment of mubritinib for ERBB2 alone could prove
advantageous for EAC, as more genomic alterations are prevalent
for ERBB2 in EAC (23% EAC vs. 3% ESCC) (Wang et al,
2015). Similarly, another study found that 19% of EAC patients
have overexpression of ERBB2 (Dulak et al., 2013). Although
trastuzumab, the antibody against ERBB2, is already approved
for EAC, it is important to consider how far these findings
extend to the similarly related gastroesophageal adenocarcinomas
(Supplementary Figure 9), gastric adenocarcinomas, and
gastroesophageal junction adenocarcinomas, where ERRB2 may
be overexpressed as well (Battaglin et al, 2018). COQ3 is
the most significant survival-altering gene in EAC, which also
could be potentially susceptible to the complex I inhibitor
metformin (Cameron et al., 2018), which has already been
shown to be beneficial in esophageal cancer with combination
therapy (Qie et al, 2019). Among this list, HDAC2 was
strongly associated with patient survival in EAC, which also
could be potentially targeted with histone deacetylase inhibitors.
Furthermore, ESCC could derive its energy from glycolysis,
which might be more sensitive to glycolysis inhibitors. These
include inhibitors such as 2-deoxyglucose, ionidamine, and
silibinin (Sborov et al., 2015), the latter of which was found
to decrease SLC2A1, HK2, and LDHA (Shukla et al., 2015),
which were observed in the present study to be increased in
ESCC (Figure 3]). Our research team previously observed an
increased shift from glycolytic to oxidative metabolism under
acidic conditions (Abrego et al., 2017). We also observed that
acid reflux is enriched in EAC (Supplementary Figure 6A)
and hence could drive the potential shift away from glycolysis
traditionally observed by the Warburg effect (Vander Heiden
et al, 2009) and more toward oxidative metabolism. If the
proposed metabolic shift is true, then there is likely to be
an impact on response not only to therapies but also to
indicators, such as 2-deoxy-2-['8F]-fluoro-D-glucose positron
emission tomography/computed tomography (Wieder et al,
2004; Jadvar et al., 2006; Higuchi et al., 2008; Roedl et al., 2008;
Cuellar et al., 2014; Kim et al,, 2019) and NMR (Zhang et al.,
2012, 2013). Lastly, these results with the enzymatic differences
(Figure 2) and proposed biomarkers (Supplementary Figure 4
and Supplementary Table 6) have the strong potential to be
utilized with a device similar to the cytosponge to reduce cost and
discomfort associated with traditional endoscopy (Ross-Innes
etal., 2015; Heberle et al., 2017; Moinova et al., 2018; Januszewicz
etal., 2019).

Differences in glucose metabolism and hypoxic environments
have been shown to alter immunity (Barsoum et al., 2014;
Noman et al., 2015; Krzywinska and Stockmann, 2018; Li et al,,
2018). To this extent, two of the top 3 enriched pathways
for ESCC were observed to be associated with inflammation,
and there was a drastic change in the cytokine environment
(Figure 4 and Supplementary Table 3). Many cytokines are
controlled under nuclear factor-kB, which is in part controlled
by hypoxia and related stress (Koong et al., 1994; Oliver et al.,
2009; Culver et al, 2010; Fitzpatrick et al,, 2011; D’Ignazio
and Rocha, 2016; Patel et al., 2017). These characteristics
are in line with our overall view regarding metabolism and
potentially increased hypoxia in ESCC. The data presented here
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reinforce the hypothesis that metabolic alterations can reveal
unique subtypes and their associated selection pressures due
to their environments and etiology. The present study further
enhances this finding with multiple algorithms to examine
the immune status (Figure 5). CD8 T cells and DCs were
found to be altered between the subtypes (Supplementary
Figures 5, 12, 13), suggesting that adoptive DC therapy or
T-cell therapy could have an advantageous role in ESCC
treatment. DCs have been associated with an advantage in ESCC
patients (Ikeguchi et al, 1998). A previous study examining
advanced-stage ESCC observed an immune response with treated
monocyte-derived DCs (Narita et al., 2015); however, DCs in
ESCC may simply be less suppressed than in EAC (Liu et al.,
2009). On the other hand, esophageal cancer, especially ESCC,
demonstrates highly expressed (>50%) cancer/testis antigens,
including melanoma-associated antigen-A (MAGE-A) (Huang
and Fu, 2019). Of note, MAGE-A-specific CD8 T cells can
be seen in the peripheral blood of ESCC patients, and these
T cells respond to MAGE-A3-loaded DCs to target MAGE-
A3+ tumor cells (Huang and Fu, 2019). In the current study,
we further observed that CD8 T cells play an important role
in survival, similar to a previous observation (Schumacher
et al, 2001). Current results also show that EAC is much
more likely to respond to checkpoint therapy (Figures 5EG).
However, it is expected that ESCC will show some benefit not
only from checkpoint therapy but also, more importantly, from
agents geared toward improving immune cell infiltration in
tumors, as it has been previously observed that programmed
death-ligand 1 (PD-L1) is increased in ESCC and that a
decrease in tumor-infiltrating lymphocytes decreases patient
survival (Cho et al, 2003; Chen et al, 2016; Yagi et al,
2019).

Recently, the KEYNOTE-028 study utilizing the anti-
programmed death-1 (PD-1) antibody pembrolizumab showed
that 80% of EAC patients had decreasing tumor volume
from baseline compared to 46% in ESCC (Doi et al., 2018).
Ultimately, KEYNOTE-181 study showed that targeting PD-L1
was more efficacious than chemotherapy and shows the promise
of checkpoint therapy (Shah et al., 2019a). KEYNOTE-180 also
showed a great response in ESCC (Shah et al., 2019b), and
ultimately, PD-L1 therapy was approved by the Food and Drug
Administration to treat ESCC. Although these data highlight the
observed correlation of CD8 infiltration and patient survival in
ESCC, we suggest that there could be even greater benefit in EAC
and caution future studies not to comingle histological subtype
covariates. Furthermore, we suggest that there could be further
targetable genes and enzymes to help modulate the immune
environment (Figures 5, 6 and Supplementary Figures 17-19).
Three of these genes belong to the B7 family of ligands, and
two of these are adenosine receptors, in addition to adenosine-
producing ENTPDI. These findings indicate that an improved
response is possible for ESCC by utilizing checkpoint inhibition
and new combination targets in conjunction with anti-PD-1.

While the immune compartment of the tumor was examined,
other components, such as fibroblasts and endothelial cells,
could also be pursued for further studies. Additionally, the
data analyzed here consisted of the bulk tumor, which merges

the heterogeneity of cell types and compartments. As such,
important heterogeneity differences, such as regions of hypoxia,
which impacts metabolism and the immune response, will
be slightly masked. We suggest that the differences are
robust and informative and should be further explored with
single-cell and spatial transcriptomic approaches to further
examine the interplay and heterogeneity between cancer cell
subtypes, metabolism, immune cells, and the additional cells
present in the stroma.

CONCLUSION

Ultimately, we observed a remarkable difference in
esophageal  metabolism, clinical attributes, cytokines,
potential response to therapy, and altered immune and
tumor  environments between  histological  subtypes.
Unique subtypes were further observed within histological
subtypes, which correlated with patient survival and
require further examination (Supplementary Figure 5).
As such, these data highlight the risks associated with
combining histological subtypes for studying esophageal
cancer. By separating these vastly different cancers, improved
opportunities and options in precision medicine are opened
in order to tailor customized therapies suited for these
drastic differences.
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