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Alzheimer’s disease (AD), a nervous system disease, lacks effective therapies at present.
RNA expression is the basic way to regulate life activities, and identifying related
characteristics in AD patients may aid the exploration of AD pathogenesis and treatment.
This study developed a classifier that could accurately classify AD patients and healthy
people, and then obtained 3 core genes that may be related to the pathogenesis of
AD. To this end, RNA expression data of the middle temporal gyrus of AD patients
were firstly downloaded from GEO database, and the data were then normalized using
limma package following a supplementation of missing data by k-Nearest Neighbor
(KNN) algorithm. Afterwards, the top 500 genes of the most feature importance were
obtained through Max-Relevance and Min-Redundancy (mRMR) analysis, and based
on these genes, a series of AD classifiers were constructed through Support Vector
Machine (SVM), Random Forest (RF), and KNN algorithms. Then, the KNN classifier
with the highest Matthews correlation coefficient (MCC) value composed of 14 genes in
incremental feature selection (IFS) analysis was identified as the best AD classifier. As
analyzed, the 14 genes played a pivotal role in determination of AD and may be core
genes associated with the pathogenesis of AD. Finally, protein-protein interaction (PPI)
network and Random Walk with Restart (RWR) analysis were applied to obtain core
gene-associated genes, and key pathways related to AD were further analyzed. Overall,
this study contributed to a deeper understanding of AD pathogenesis and provided
theoretical guidance for related research and experiments.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is almost incurable.
According to the World Alzheimer Report 2018, there were approximately 50 million patients
worldwide who suffered from AD, and AD became a major cause of death among old people
(Patterson, 2018). Its main features are the deposit of β-amyloid (Aβ) plaques and neurofibrillary
agglomerates (Dos Santos Picanco et al., 2018). A recent genetic study unearthed that Aβ deposition
frequently occurs in people with ApoE4 (Genin et al., 2011). People with ApoE4 gene have
high plasma cholesterol, which in turn stimulates the deposition of Aβ and tau proteins in the
brain, thereby leading to AD (Greenberg et al., 2020). It is reported that the pathogenesis of AD
is associated with heredity and gene expression like TREM2, PLCG2, ABI3 (Sims et al., 2017;
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Ulland and Colonna, 2018). Besides, circRNA and miRNA are
also found to be related to the pathogenesis of AD (Dube et al.,
2019; Iranifar et al., 2019).

Gene expression regulation is the most critical way of life
regulating. Aberrant gene expression in brain tissue accounts
for diverse diseases. For instance, ROCK1 gene expression is
relevant to AD progression (Li X. et al., 2020). While aberrant
expression of genes such as LRRK induces the occurrence of
Parkinson’s disease (Wang et al., 2017). Researchers disclosed
that gene expression in the MTG is probably closely related to
the pathogenesis of AD, and the blockage of GABA signaling
pathway in the MTG may result in cognitive decline (Govindpani
et al., 2020). Given the above studies, this study surmised that the
gene expression of the MTG is closely related to the pathogenesis
of AD. This study attempted to probe into the critical factors
affecting the pathogenesis of AD by analyzing the gene expression
related to the MTG of AD sufferers.

Machine learning is a pivotal means of modern medical
research, by which researchers always explore core genes that
affect the occurrence of diseases. In the field of bioinformatics,
machine learning is mainly applied in construction of diagnostic
or prognostic models for disease, screening for biomarkers
indicating disease outcome, etc., while linear-regression analysis
is the common one in prognostic model establishment. For
example, Feng and Jin (2018) constructed a risk model for
prognostic prediction of patients with breast cancer through
bioinformatics methods. Additionally, in algorithms that help for
model construction, Support Vector Machine (SVM), Random
Forest (RF), Artificial Neural Network (ANN), and K-Nearest
Neighbor (KNN) are frequently used (Zhang, 2016; Huang
et al., 2018; Chowdhury et al., 2019; Kulkarni et al., 2021).
A previous study combined the KNN with genetic algorithm to
greatly improve the accuracy of heart disease diagnosis (Jabbar
et al., 2013). Max-Relevance and Min-Redundancy (mRMR) is
an effective analytical method used to identify core genes in
diseases. For example, Xu et al. (2014) identified core genes with
mRMR to establish a model for determining malignant thyroid
epithelioma. Regarding the identification of feature genes, the
genes that are screened out to establish prognostic models or
classifiers for disease are recognized potential biomarkers for
outcome prediction. Besides, methods like mRMR, Boruta and
ReliefF are also practicable (Zhang et al., 2008; Degenhardt et al.,
2019). The mRMR method is instrumental for discovering core
genes that affect Guillain-Barré syndrome (GBS) (Xu et al., 2016).
This study selected the best AD classifier among SVM, RF, and
KNN classifiers following the mRMR analysis and incremental
feature selection (IFS) algorithm. Afterwards, functions of related
genes in the optimal classifier were further explored. These
findings may provide a deeper insight into the research and
treatment of AD.

ANALYTICAL METHODS

Dataset Preparing
As presented in Figure 1, the overall workflow of this study
was drawn to clarify our research design. RNA expression

FIGURE 1 | Overall workflow of this study.

data (GSE132903) of the AD MTG were downloaded from
the Gene Expression Omnibus (GEO) database1. The samples
in this dataset were collected from Brain and Body Donation
Program (BBDP) volunteers, including 98 healthy subjects (ND)
and 97 AD patients. The corresponding platform annotation
file was downloaded to annotate the RNA expression dataset,
and an expression matrix with gene ids was created with the
probe annotation categories. Afterwards, the missing data were
supplemented with KNN (K = 10) (Troyanskaya et al., 2001; de
Brevern et al., 2004), and the final data were standardized using
the R package limma for further analysis.

Feature Selection by mRMR
The mRMR algorithm was implemented to rank feature
importance in standardized cohort as previously reported (Xu
et al., 2014, 2016; He et al., 2019). The mRMR feature selection
method can compute relevance between features and sample
phenotypes, and can comprehensively rank features according to
the redundancy between features. Features at the top have a better
trade-off between the relevance and redundancy than features
at the bottom. Here, feature genes with the maximum relevance
with AD and the minimum redundancy with other features were
found through the mRMR algorithm (Peng et al., 2005). Mutual
information (MI) represents the relevance between a random
variable and another random variable. MI function was applied to
assess the relevance between features and quantify the relevance
and redundancy. The MI function was defined as follows (1),

I
(
x, y

)
=

x
p(x, y)log

p(x, y)
p(x)p(y)

dxdy (1)

where x and y represent two vectors, p (x, y) represents
joint probabilistic density, p(x) and p(y) represent marginal
probabilistic densities. Thereafter, the relevance between genes

1https://www.ncbi.nlm.nih.gov/geo/
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and sample phenotypes were computed following the MI
function (2),

D = I(f , c) (2)

where D represents the relevance between genes and phenotypes,
f represents gene, and c represents phenotype. The redundancy
between genes was identified as R and was computed by the
following formula (3),

R =
1
m

∑
fi ∈ T

I(f , fi) (3)

where m represents the total number of genes in the dataset, and
T represents the gene set containing all genes. Then, the trade-
off between the relevance and redundancy was computed by the
following formula (4),

maxf (D− R) (4)

After repeated computation per the above formula, the trade-
off of each feature gene in the dataset was sorted. A new gene list
was obtained (5),

S = {f
′

1, f
′

2, ..., f
′

h, ..., f
′

N} (5)

where the subscript index of each feature gene in S was selected.
A feature that was selected earlier had a smaller index and could
have high feature importance. Finally, the top 500 genes in the
ranked feature list were selected for subsequent research.

Classifier Selection by IFS Method
Following mRMR analysis, IFS was sequentially applied to
identify genes for the optimal AD classifier (Chen et al., 2017;
Li M. et al., 2020). Firstly, based on the ranked feature list,
a series of feature subsets were set as F1, F2, F3. . .Fn, where
Fi = {f1, f2. . .fi} and fi refers to the top 500 genes in the
ranked feature list. Secondly, the Python package sklearn was
applied to establish a series of AD classifiers using the above
feature subsets with SVM, RF, and KNN algorithms. SVM, RF,
and KNN classifiers all can compute the expression of feature
genes to identify AD patients (Zhang, 2016; Sarica et al., 2017;
Huang et al., 2018). IFS curves were then plotted under 10-fold
cross-validation to obtain the Matthews correlation coefficient
(MCC), a parameter able to reflect classifier effectiveness (Chicco
and Jurman, 2020), of each candidate classifier. Eventually, the
classifier with the greatest MCC value was identified as the
optimal AD classifier, and the genes involved in were taken as the
optimal feature genes.

Principal Component Analysis (PCA) and
Heatmap Construction
The R package FactoMineR was applied for dimensionality
reduction of the two downloaded cohort based on the features
of the optimal classifier following PCA. In brief, PCA can reduce
the dimensionality of the data in two datasets and map the data
into 2 representative dimensions. A scatter plot was drawn based

on the distribution of samples in the two dimensions to present
the variance between samples and between groups. Furthermore,
the expression of feature genes of the classifier in ND and AD
populations was compared through clustering analysis using the
R package pheatmap.

Random Walk With Restart (RWR) and
Enrichment Analyses
To explore core genes from the optimal classifier and their
potential functions, R package limma was firstly employed to
analyze the difference in gene expression between the ND and
AD groups in GEO, and differentially expressed genes (DEGs)
were screened (| Log2FC| > 0.585, FDR < 0.05). The DEGs
were then intersected with the feature genes in the identified
classifier to obtain core genes. Wilcox test was implemented to
test the differential expression of the core genes in ND and
AD samples. Additionally, the DEGs were projected onto the
STRING website to construct a protein-protein interaction (PPI)
network (Interaction Score > 0.4). RWR algorithm stimulates
a random walking starting from a seed node or several seed
nodes to a randomly selected neighbor node or to return to
the origin in a constructed network. This walking is iterative
and terminates when all nodes in the network are walked,
and finally a relevance score between each node and the seed
node is obtained (Kohler et al., 2008; Zhang et al., 2018).
Here, RWR algorithm was run to calculate the relevance score
between each node gene and the seed node gene, and the
node gene with a score > 10−5 was taken as the core gene-
associated gene.

Gene Ontology (GO) function annotation and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were sequentially carried out for the core
gene-associated genes using the R package ClusterProfiler,
thereby to explore the critical functions that may affect the
pathogenesis of AD. The results were finally visualized using the
R package enrichplot.

RESULTS

Results of the mRMR and IFS Analyses
Following data downloading and normalization, 28,844 genes
were obtained for feature importance analysis through mRMR
analysis. The top 500 feature genes in the mRMR analysis
were selected (Supplementary Table 1), by which a series
of AD classifiers were constructed. Then, IFS analysis was
implemented to select the optimal classifier. As illustrated in
Figure 2A, the KNN classifier composed of 14 feature genes
had the highest Matthews correlation coefficient (MCC) value.
Then, the diagnostic efficacy of the KNN classifier was validated
using receiver operation characteristic (ROC) curves. The results
presented the sensitivity was 0.907, the specificity was 0.929, the
accuracy was 0.918, the MCC value was 0.836, and the area
under the curve (AUC) value was 0.935, indicating the high
diagnostic efficacy of the KNN classifier in classifying AD patients
accurately (Figure 2B).
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FIGURE 2 | IFS and ROC analyses. (A) IFS curves of SVM, RF and KNN classifiers. The black curves indicate SVM classifiers; The blue curves indicate RF
classifiers; The red curves indicate KNN classifiers; (B) ROC curve of the KNN classifier.

Results of PCA and Heatmap Analysis
Principal Component analysis was conducted for two groups of
patients (ND/AD) according to the expression of 14 feature genes
in the optimal KNN classifier. The results revealed that PCA
analysis could markedly classify AD patients and normal subjects
(Figure 3A). Besides, a clustering heat map was drawn to analyze
the expression of the 14 feature genes in different populations.
The results denoted that the 14 feature genes in the KNN model
could distinguish AD patients from healthy subjects (Figure 3B).
These findings manifested that the 14 feature genes in the
KNN model exhibited a favorable performance in classifying
AD patients from normal individuals, indicating an outstanding
diagnostic efficacy.

Results of RWR and Enrichment Analysis
Differentially expressed genes screened from the downloaded
gene expression data in GEO and feature genes in the KNN
classifier were intersected to obtain 3 core genes, including heat
shock protein family B (small) member 3 (HSPB3), adipocyte
enhancer binding protein 1 (AEBP1), RNA U1 Small Nuclear 4
(RNU1G2) (Figure 4A). Based on the DEGs, a PPI network was
constructed. Since the Interaction Score of RNU1G2 in the PPI
network was less than 0.4, AEBP1 and HSPB3 were picked up as
seed nodes to perform RWR algorithm. Eventually, 52 core gene-
associated genes were obtained (Supplementary Table 2). Then,
the 52 core gene-associated genes were subjected to enrichment
analysis. As analyzed, the genes were related to biological
processes, such as synaptic vesicle cycle, transport vesicle, protein
kinase C binding (Figure 4B), and activated in pathways such
as MAPK signaling pathway, B cell receptor signaling pathway,
and T cell receptor signaling pathway (Figure 4C). Finally,
expression of the 3 core genes in AD was detected. As shown
in Figure 4D, HSPB3 was conspicuously down-regulated, while
AEBP1 and RNU1G2 were notably up-regulated in the AD
group. Taken together, these results demonstrated that the 3 core

genes were closely associated with the pathogenesis of AD, and
were mainly related to cell functions involved in immunity and
cell transportation.

DISCUSSION

The cause of AD is thought to be correlated with Aβ deposition
and the hyperphosphorylation of tau proteins, whereas the
cause of the above processes remains a mystery, which puzzles
researchers for treatment and prevention of AD (Park et al., 2019;
Busche and Hyman, 2020). There are many hypotheses about AD,
including Aβ cascade hypothesis, tau hypothesis, inflammation
hypothesis, cholinergic and oxidative stress hypothesis and
glucose hypometabolism (Du et al., 2018). Aβ hypothesis
considered as a major cause of AD believes that Aβ deposition is
the major cause of AD, and Aβ deposition in the nervous system
makes nerve cells lack necessary nutrients and cell apoptosis
(Du et al., 2018). Neurofibrillary tangles are another pathological
feature of AD patients, besides, phosphorylated tau aggregates
proteins to cause neuron damage, and drugs targeting tau are
promising for AD therapy (Brier et al., 2016; Gauthier et al.,
2016; Li and Gotz, 2017; Novak et al., 2017). In addition, several
investigations considered that inflammation and oxidative stress
are central to AD pathogenesis. The sustained activation of the
brain’s resident macrophages (microglia) exacerbates both Aβ

and tau pathology and hastens AD pathogenesis (Kinney et al.,
2018). Besides, the Aβ clearance disorder caused by oxidative
stress also hastens AD pathogenesis (Cheignon et al., 2018). The
deepening of study on the pathogenesis of AD has revealed
numerous key genes affecting the pathogenesis of AD. For
instance, MS4A and somatic APP are involved in the above
pathways to influence AD pathogenesis (Lee et al., 2018; Deming
et al., 2019). Moreover, lncRNA and miRNA also participate in
AD pathogenesis (Dube et al., 2019; Iranifar et al., 2019). In
this study, publicly available gene expression data of AD patients

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 April 2021 | Volume 9 | Article 668738

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-668738 April 21, 2021 Time: 12:19 # 5

Yang et al. Core Genes of Alzheimer’s Disease

FIGURE 3 | PCA and heatmap analysis based on the feature genes in the KNN classifier. (A) PCA showed diagnostic efficiency of the KNN classifier in ND and AD
populations; (B) Heatmap showed expression of feature genes in the KNN classifier in ND and AD populations. The red means high expression while the green
means low expression.

FIGURE 4 | Core gene selection and functional enrichment analysis. (A) Venn diagram was drawn to select core genes between DEGs and feature genes in the KNN
classifier; (B,C) Results of GO and KEGG enrichment analyses. The dot size means the number of genes enriched in corresponding terms; The dot color represents
the significance of corresponding terms; (D) Expression of core genes (HSPB3, AEBP1, RNU1G2) in ND (green) and AD (red) populations.

were analyzed, and the top 500 feature genes that may affect
AD pathogenesis were screened out from 28,844 genes with the
mRMR algorithm. This study speculated that expression of these
genes may be closely related to AD pathogenesis.

Based on mRMR analysis, this study constructed an optimal
AD classifier that could accurately classify AD patients and
healthy individuals among SVM, RF, and KNN classifiers via
IFS analysis, and then a 14-gene signature was obtained. These

feature genes were then intersected with DEGs to obtain 3
core genes (HSPB3, AEBP1, RNU1G2) which may function in
AD pathogenesis. Heat shock proteins (HSPs) are important
molecular chaperones that prevent protein misfolding and
promote the degradation of improperly folded proteins (van
Noort et al., 2017). HSPs play a role in protecting multiple
sclerosis, protein folding diseases, and genetic white matter
diseases (van Noort et al., 2017). Although there is no direct
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evidence that HSPB3, a member of the HSP family, participates
in AD pathogenesis, this study observed that HSPB3 was
conspicuously lowly expressed and may be critical in AD (Boelens
et al., 1998). Consulting to other members of the HSPs in
the nervous system, HSPB3 may protect the nervous system
from Aβ by degrading Aβ, whereas HSPB3 deletion may lead
to AD (Calderwood and Murshid, 2017). AEBP1 plays an
important role in lipid metabolism, which activates inflammatory
responses through the NF-κB pathway and regulates adipogenesis
in preadipocytes (Majdalawieh and Ro, 2010; Shijo et al.,
2018; Gerhard et al., 2019). AEBP1 is up-regulated in AD
patients, which promotes the inflammatory response around
the nucleus in hippocampal pyramidal neurons, the formation
of neurofibrillary tangles, and the progression of AD (Shijo
et al., 2018). This study revealed that AEBP1 was up-regulated
in the MTG of AD patients. This result denoted that the
inflammatory stress and adipogenesis in the MTG may result
in the pathogenesis of AD. RNU1G2 is a kind of small nuclear
RNA molecule (snRNA) that cannot translate itself into protein,
but it participates in pre-mRNA processing. So far, there has
been few discussions about the mechanism of RNU1G2 and its
biological functions. However, a study manifested the changes
of RNU1G2 expression in the brain of AD patients (Piras et al.,
2019). This study disclosed that RNU1G2 was highly expressed in
the brain of AD patients and may be critical in AD pathogenesis,
indicating that alternative RNA splicing is promising to disclose
the pathogenesis of AD. In conclusion, whilst some research on
HSPB3 and AEBP1 has presented their roles in the pathogenesis
of AD, these investigations are still insufficient. It is worth
exploring the role of the above three genes in the occurrence and
progression of AD.

Furthermore, RWR analysis was conducted here on a
DEGs-based PPI network with the above core genes as seed
genes, and the core gene-associated genes screened out were
then subjected to GO and KEGG enrichment analyses. The
results illustrated that these core gene-associated genes were
mainly related to biological processes such as synaptic vesicle
cycle, transport vesicle, and protein kinase C binding, and
activated in functional pathways such as MAPK signaling
pathway, B cell receptor signaling pathway, and T cell receptor
signaling pathway. The above results indicated that AD may
be associated with neurotransmitter transmission. The decrease
of neurotransmitter and activity is an essential phenotype
of AD, whereas neurotransmitter supplementation is pivotal
to the treatment of AD (Kandimalla and Reddy, 2017). In
this study, the three core genes we identified were related
to neurotransmitter transmission, suggesting that these genes
may affect AD pathogenesis by modulating neurotransmitter
secretion. Moreover, the results of enrichment analysis clarified
that AD was associated with immune cell stress response.
Inflammation is considered to be a key factor influencing the
progression of AD, and microglia activation exacerbates both
Aβ and tau deposition (Kinney et al., 2018). T cells function
in AD and multiple sclerosis. An investigation displayed that
hippocampal T cell infiltration leads to neuroinflammation and
cognitive impairments (Laurent et al., 2017). Another study
suggested that Aβ serves as an antigenic factor of T cells to

potentiate encephalitis (Leoutsakos et al., 2018). As such, this
study exhibited that the core genes we identified were related
to B cell and T cell receptor signaling pathways, indicating that
the three core genes may regulate immune cell activity, thereby
affecting the pathogenesis of AD.

In summary, gene expression data of AD were firstly
downloaded here from GEO database. Next, an AD classifier
with favorable diagnostic efficacy was screened out through
mRMR and IFS. The feature genes in the classifier were
intersected with DEGs to obtain three core genes (HSPB3,
AEBP1, RNU1G2) closely related to AD pathogenesis. Among
the three core genes, HSPB3 may regulate protein folding
processes and degrade misfolded proteins. AEBP1 stimulates
adipogenesis in preadipocytes to induce inflammation and
activates inflammatory responses to facilitate the pathogenesis of
AD. Although our studies are reliable, these results are still in
need of verification by molecular biological experiments. Further
research could explore the biological functions of the three genes
and the pathogenesis of AD to produce findings that account
more for clinical therapy, thereby benefiting AD patients.
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