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Bisulfite sequencing is considered as the gold standard approach for measuring DNA
methylation, which acts as a pivotal part in regulating a variety of biological processes
without changes in DNA sequences. In this study, we introduced the most prevalent
methods for processing bisulfite sequencing data and evaluated the consistency of
the data acquired from different measurements in liver cancer. Firstly, we introduced
three commonly used bisulfite sequencing assays, i.e., reduced-representation bisulfite
sequencing (RRBS), whole-genome bisulfite sequencing (WGBS), and targeted bisulfite
sequencing (targeted BS). Next, we discussed the principles and compared different
methods for alignment, quality assessment, methylation level scoring, and differentially
methylated region identification. After that, we screened differential methylated genes
in liver cancer through the three bisulfite sequencing assays and evaluated the
consistency of their results. Ultimately, we compared bisulfite sequencing to 450 k
beadchip and assessed the statistical similarity and functional association of differentially
methylated genes (DMGs) among the four assays. Our results demonstrated that the
DMGs measured by WGBS, RRBS, targeted BS and 450 k beadchip are consistently
hypo-methylated in liver cancer with high functional similarity.

Keywords: whole-genome bisulfite sequencing, reduced-representation bisulfite sequencing, targeted bisulfite
sequencing, liver cancer, DNA methylation

INTRODUCTION

Epigenetics investigates the heritable changes of gene activity or function not caused by
DNA sequences, such as mutations, deletions, insertions, and translocation. One of the major
mechanisms in epigenetics is DNA methylation, which is a chemical transformation that happened
in the DNA strand. DNA methylation, accounting for around 1.5% of human genomic DNA,
usually refers to the addition of the methyl group to the fifth carbon of cytosine (C), forming 5-
methylcytosine (5 mC). In human beings, DNA methylation mainly occurs at the site of a cytosine
followed by a guanidine nucleotide, which is called the CpG site, but it may also happen in non-CpG
contexts (Moore et al., 2013). CpG sites were revealed to be nonuniformly distributed and tend to
cluster together. CpG island is defined as a cluster of CpG sites where the fraction of CG interstrand
base pair is greater than 0.5 and the CpG ratio is greater than 0.6 within more than 200-bp regions.
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If methylation happens on CpG island in the promoter, the gene
expression is repressed. Besides CpG site, DNA methylation is
less-frequently found in non-CpG contexts (e.g., CHG and CHH,
where H = A, T or C).

DNA methylation is of vital importance in numerous
developmental, physiologic and pathologic processes (Moore
et al., 2013). DNA methylation pattern is distinct between cell
types, developmental states and different disease situations. Faults
in DNA methylation may result in lesion in liver cancer, which is
the third most fatal and the sixth commonly diagnosed cancer in
2020 with more than 905,600 new cases and 830,000 new deaths
(Sung et al., 2021). Understanding the epigenetic phenomenon
of liver cancer may contribute to the early diagnosis, which
is vital for curing liver cancer via partial hepatectomy or
liver transplantation (Villanueva et al., 2013). Aberrant p16
methylation was detected in both hepatocellular carcinoma
tissues and plasma/serum samples by Wong et al. (1999) two
decades ago. Yao et al. (2000) found that the methylation status
of γ-glutamyl transferase gene altered and γ-glutamyl transferase
expressed abnormally in hepatocellular carcinoma. Stefanska
et al. (2011) identified around 3,700 hypomethylated promotors
in liver cancer samples.

Many methods have been developed to measure DNA
methylation including affinity enrichment and bisulfite-based
ones. Bisulfite sequencing methods are usually considered as the
golden standard, owing to its high resolution, flexibility across
organisms, and low input requirements (Yong et al., 2016).
By using sodium bisulfite treatment, the epigenetic information
can be transformed into genetic information and therefore can
be assessed by sequencing methods. The principle of bisulfite
sequencing is a chemical reaction of bisulfite conversion that
transforms the unmethylated cytosine residues to uracil residues,
while the methylated cytosine remains unchanged. The DNA
is fragmented after bisulfite conversion due to the chemical
treatment. PCR amplification will then be applied and uracils
will be replaced by thymines. When sequencing is performed,
the methylated cytosines become thymines. Compared with the
reference-unconverted sequence, the methylated cytosines can
be distinguished.

Bisulfite sequencing methods include whole-genome bisulfite
sequencing (WGBS), reduced representation bisulfite sequencing
(RRBS), targeted bisulfite sequencing (targeted-BS), etc. In this
study, we mainly focus on the computational data processing
for the popular methods WGBS, RRBS and targeted-BS in liver
cancer. WGBS sequences the whole genome and therefore covers
all the cytosine information in theory (Lister et al., 2009). The
genomic DNA is purified from tissue and cut into fragments.
Bisulfite treatment is then performed on DNA fragments to
convert unmethylated cytosine (C) into uracil (U). Bisulfite
converted DNA fragments are primed randomly by polymerase
to synthesize sequence tags. Resulting strands are selected to
synthesize with another sequence tag at 3′ end and become di-
tagged DNA with a known sequence at both ends. The tags can
be combined with adapters for PCR amplification. After PCR
amplification, the bisulfite-converted strand will be sequenced.
WGBS has several advantages, such as high coverage of nearly
every CpG site, detection of partially methylated domains, and

acquirement of absolute DNA methylation level. Moreover,
it can detect methylation in the non-CG context. However,
WGBS is expensive and labor-intensive due to the process of
the whole genome.

To measure methylome at a lower cost, RRBS (Meissner
et al., 2005) was proposed to investigate the regions with high
methylation probability. DNA is digested by Msp1 restriction
enzyme, which cuts at CCGG sites. It improves the CpG
enrichment in the fragments and covers 85% of the CpG islands,
mostly in promoters. The fragment ends are then ligated by
adapters and selected with sizes between 40 and 220 bps. Next,
bisulfite treatment, PCR amplification and sequencing were
applied. The digested and selected fragments only compose 1–
3% of the genome and hence save the cost of sequencing. RRBS
is more efficient than WGBS because it focuses on the CpG rich
regions, but it loses information due to the lack of coverage
at some less studied areas and cannot cover most of the non-
CG methylation.

Targeted BS was developed to measure the methylome of
more specific regions, such as exome and gene promotors. It
may require a hybridization step to capture targeted methylated
regions with pre-designed oligos. Targeted BS can obtain single-
base resolution DNA methylation patterns and thus achieve
enhanced accuracy and sensitivity with efficient cost. However,
the oligos need to be designed for different targets. One of the
targeted BS techniques developed in liver cancer is the liquid
hybridization capture-based bisulfite sequencing (LHC-BS),
which applied biotinylated RNA probes to capture target regions.

Other than bisulfite sequencing, microarrays such as the
Infinium© HumanMethylation450 BeadChip (450 k) are widely
used in methylation measurement for its high throughput and
low cost. The 450 k covers 480,000 CpG sites via target-specific
probes. Two types of probes are applied to CpG locus, one for
methylated cytosine or converted thymine and the other for the
complements of upstream. Methylation levels are obtained by
comparing the two probe intensities.

In this study, we first introduced the procedures of processing
bisulfite sequencing data, including alignment, quality control,
methylation level scoring, and differentially methylated region
identification. Then we compared the popular tools from
different aspects. Next, we screened differential methylated genes
in liver cancer through three bisulfite sequencing and compared
their consistency. Lastly, we made a comparison of the results
from bisulfite sequencing to 450 k microarray.

MATERIALS AND METHODS

A general bisulfite sequencing data process consists of adapter
trimming, alignment, quality control, methylation level scoring,
and differential methylation region identification. We details all
the steps except the trimming step, which is simple and the
normalization step is the same as DNA sequencing.

Aligning Bisulfite Sequencing Reads
Different from the alignment in DNA sequencing, aligning the
bisulfite sequencing reads to the reference genome is challenging
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because the unmethylated cytosines (C) are converted to
thymines (T) after bisulfite treatment. That means most of the
T in the bisulfite sequence should be mapped to C in the
reference genome.

Mostly two types of approaches, three-letter alignment and
wildcard alignment, are applied. The most popular three-letter
aligner in the past decade was Bismark (Krueger and Andrews,
2011). In Bismark, all the Cs in bisulfite reads and reference
genome was converted into Ts to perform alignment and thereby
only three letters, A, T and G were left. When C was converted to
T after bisulfite treatment, in the opposite strand the G becomes
A with PCR amplification. Therefore, in Bismark the alignment
was run once again with all the G converted to A in both bisulfite
sequence and reference sequence. As the sequence was converted
into three-letter alignment, Bismark applied Bowtie (Langmead
et al., 2009), which is a famous aligner for DNA sequence, to
map the reads into a reference genome. In the end, a comparison
between different strands was made to determine which part of
the reference genome to map. Moreover, the methylated loci were
pointed out by comparing the bisulfite sequence and the reference
gene. Bismark toolbox keeps update till now and is available for
WGBS, RRBS and targeted BS data. Although it may introduce
error when converting C to T and G to A, it worked fast as
compared to the BSMAP (Xi and Li, 2009), a wildcard aligner.

BSMAP (Xi and Li, 2009) was a representative wildcard
aligner. Different from the three-letter aligner, wildcard aligner
replaced Cs with Ys in the reference genome and allowed both
Cs and Ts in bisulfite reads to align to Ys. For each part of the
sequence in the reference genome, BSMAP built a seed table
that listed all the possible reads. Then part of the reads was
mapped to the potential references as key and checked whether
the rest of the reads were matched. It was more accurate than
Bismark because it enumerated all the possibilities, but on the
other hand less efficient.

Most aligners proposed in recent years applied three-letter
alignment due to its ability for large data size. BRAT-nova (Harris
et al., 2016) applied hash table and concatenated two strands
together to align to the reference genome instead of aligning
two times, resulting in high efficiency than Bismark. It also
supported single variable-length indel caused by mutation and
hence had better map ability. BatMeth2 (Zhou et al., 2019)
focused more on the indel during mapping. It allowed five
variable length mismatch and achieved high accuracy and map
ability. VAliBS (Li et al., 2017) discovered that some unmapped
reads were due to introducing primer during the assay. Hence

after aligning using Bismark, it trimmed the unmapped reads
and ran alignment again so that more reads can be mapped to
reference. Moreover, it provided a graphical user interface for
non-programmers. Since alignment is computationally heavy,
a natural way to improve efficiency is to compute in parallel.
BiSpark (Soe et al., 2018) used Spark engine to execute the
three-letter alignment parallelly on the distributed system with
load balance. It only took 1/3 to half the time of Bismark
according to their results. BS Seeker3 (Huang et al., 2018)
combined the hash table and three-letter aligner and allowed
longer reads to be aligned. Better accuracy was achieved by BS
Seeker3. The features of the aligner mentioned were compared
in Table 1.

Quality Control
Quality control is applied to evaluate the assay quality and
aligning quality aiming at finding out whether the results are
trustworthy. Typical metrics include the number of mapped and
unmapped reads, the read coverage at CpG sites, and the bisulfite
conversion rate.

A (fire)cloud-based platform proposed in 2019 by Kangeyan
et al. (2019) involved a lot of metrics for quality assessment
including Read metrics, CpG Coverage, M-bias, Downsampling
saturation curve, CpG discretization, Feature level coverage,
Bisulfite conversion rate, CpG density distribution, and
Methylation distribution. The pipeline RnBeads 2.0 (Muller
et al., 2019) provided quality control, but only focused on the
read coverage of each site. It also provided visualization of
the quality results. BS Seeker3 (Huang et al., 2018) calculated
the average rate of mismatch per read position for quality
assessment. MethGo (Liao et al., 2015) provided visualization of
metrics from different aspects including coverage distribution
and methylation level distribution. GBSA (Benoukraf et al.,
2013) assessed the quality with the depth of coverage for
each cytosine site of interest, and the ratio of sequenced
cytosine to the total amount of cytosine within the domain.
It provided a graphical interface, which is more user-friendly.
The features of quality control methods were summarized
in Table 2.

Methylation Level Scoring
If the quality of the alignment results is acceptable, the
methylation level is calculated for each methylation site. The
major principle is to calculate the fraction of methylated reads

TABLE 1 | Aligners for bisulfite sequencing data.

Methods Years Types Features GUI

BatMeth2 (Zhou et al., 2019) 2019 Three-letter aligner indel sensitive No

BS Seeker3 (Huang et al., 2018) 2018 Three-letter aligner hase table with greater length No

BiSpark (Soe et al., 2018) 2018 Three-letter aligner distributed system, load-balanced No

VAliBS (Li et al., 2017) 2017 Three-letter aligner improve accuracy by trimming unmapped read Yes

BRAT-nova (Harris et al., 2016) 2016 Three-letter aligner hash table with concatenate two strands, supports a single variable-length indel No

Bismark (Krueger and Andrews, 2011) 2011 Three-letter aligner methylated visualization in command line No

BSMAP (Xi and Li, 2009) 2009 Wildcard hase table, mismatch counting No
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TABLE 2 | Quality control methods for bisulfite sequencing data.

Methods Year Features GUI

(Fire)cloud-based platform (Kangeyan et al., 2019) 2019 Read metrics, CpG Coverage. . ., Fast No

RnBeads2 (Muller et al., 2019) 2019 based on read coverage, visualization Yes

BS Seeker3 (Huang et al., 2018) 2018 average rate of mismatch per read position No

MethGo (Liao et al., 2015) 2015 coverage distribution of methylation sites, other metrics for analysis, visualization No

GBSA (Benoukraf et al., 2013) 2013 depth of coverage for each cytosine site of interest, the ratio of sequenced cytosine
to the total amount of cytosine within the domain

Yes

GUI: Graph user interface.

that cover the sites. The basic formula is

Methylation Level =
C

(C + T)
× 100%

where C and T represent the number of cytosines and thymines
among all reads in the site.

BatMeth2 (Zhou et al., 2019) divided the situations into high
coverage which took SNP into consideration, and low coverage
which used the original formula. It improved the accuracy for the
high coverage situation. BS Seeker 3 (Huang et al., 2018) provided
a visualization of the methylated level in the whole genome.
GBSA (Benoukraf et al., 2013) offered a graphical interface for
methylation level scoring. Besides the methylation level, the
BSPAT (Hu et al., 2015) used Z-score to evaluate the significance
based on read coverage. It output graphs to show the methylation
levels and significance for the genome. Moreover, it is an online
tool so that users can run it for a large quantity of data. The above
methods were compared in Table 3.

Differentially Methylated Region
Identification
To reveal the methylation patterns in different stages,
differentially methylated region (DMR) identification/calling
is performed by comparing the methylation levels between
control and case samples with statistical methods. Classical
hypothesis testing methods can be applied for DMR calling
such as fisher’s exact test, chi-square test, t-test, Goeman’s global
test and analysis of variance (ANOVA). These methods can be
categorized into count-based hypothesis tests and ratio-based
hypothesis tests.

Count-based hypothesis tests regard the methylation level
within regions on each sample as categorical variable. By
counting the number of methylated and unmethylated samples

TABLE 3 | Methylation level scoring tools for bisulfite sequencing.

Methods Year Features GUI

BatMeth2 (Zhou
et al., 2019)

2019 divide high coverage and low coverage No

BS Seeker3 (Huang
et al., 2018)

2018 genome-wide view of methylation levels No

BSPAT (Hu et al.,
2015)

2015 3 types of visualization, Z-score for
significance, online

Yes

GBSA (Benoukraf
et al., 2013)

2013 results visualization Yes

of control and case groups, a contingency table is built.
Fisher’s exact test, which calculates whether the region is
significantly differential, is the most commonly used. Besides
Fisher’s exact test, Chi-square method can be applied to
select differential region, but also for multiple groups. Logistic
regression approaches assume the read counts follow a Poisson
distribution and apply the Wald test to evaluate the difference
between two Poisson means. Ratio-based hypothesis tests
compare the methylation rate between groups by taking the ratio
of methylated read counts and total read counts. T-test and
moderate t-test are used for two classes, and ANOVA can be
applied for multi-group comparison.

Most of the tools provide both count-based and ratio-based
methods for different read coverage. A well-known tool kit
methlKit (Akalin et al., 2012) provided logistic regression and
Fisher’s exact test for users to choose. DMAP (Stockwell et al.,
2014) implemented ANOVA, chi-square test for multiple groups
other than Fisher’s exact test. RnBead2 (Muller et al., 2019)
applied Fisher’s method but ranked the differential regions by
adjusting p-value, difference in variance, and size effect. All these
methods applied the false discovery rate (FDR) correction to
adjust P-value for multiple tests.

Other than the classical hypothesis test, the hidden Markov
model, which models the methylation level of the CpG sites
as methylation states, was once applied such as ComMet
(Li et al., 2013). DMRFusion (Yassi et al., 2018) integrated
Information gain, Between versus within Class scatter ratio,
Fisher ratio, Z-score, and Welch’s t-test by converting into rank
and combining together. HOME (Srivastava et al., 2019) built
a histogram of methylation reads region by region and selected
DMR by support vector machine. MethCP (Gong and Purdom,
2020) was one of the latest papers for DMR. It included the
spatial information of regions by circular binary segmentation
and applied Fisher’s combined probability test for p-value. It
took into account the weighted-sum effect size and variation for
time-course study. These methods were compared in Table 4.

Analysis of WGBS, RRBS, and Targeted
BS Datasets
We collected three types of publicly available data sets (Table 5)
from Gene Expression Omnibus (GEO) (Edgar et al., 2002) to
analyze the consistency of WGBS, RRBS and targeted BS in
liver cancer. Only one WGBS data set [GSE70090 (Li et al.,
2016)], one RRBS data set [GSE112221 (Hlady et al., 2019)]
and one targeted BS data set [GSE55752 (Gao et al., 2015)]
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TABLE 4 | DMR methods for bisulfite sequencing.

Methods Modeling Features

MethCP (Gong and Purdom, 2020) Circular Binary Segmentation (segment with significantly different mean), Fisher’s
combined probability test

weight sum effect size and variation, time
course

RnBead2 (Muller et al., 2019) Combined ranking of 1.absolute difference in mean DNA methylation levels
2.relative difference 3. p-value (Fisher’s method)

GUI, parallelization and automatic
distribution

HOME (Srivastava et al., 2019) Histogram, Support Vector Machine Learning methods for prediction

DMRFusion (Yassi et al., 2018) Information gain, Between versus within Class scatter ratio, Fisher ratio, Z-score
and Welch’s t-test

rank the metrics and combine together

DMAP (Stockwell et al., 2014) Fisher’s Exact test, ANOVA, chi-square test

ComMet (Li et al., 2013) Hidden Markov model

methlKit (Akalin et al., 2012) logistic regression, Fisher’s Exact Test

measuring liver cancer tissue were found using keywords “liver
cancer” / “Hepatocellular Carcinoma” and “bisulfite sequencing.”
The GSE70090 data set detected three liver cancer samples and
three normal controls using WGBS. The GSE112221 data set
includes four hepatocellular carcinomas (HCC) and six controls
containing four cirrhosis and two normals measured by RRBS.
The GSE55752 captured methylation from eight pairs of HCC
tumor and non-tumor liver samples using a type of targeted
BS approach called liquid hybridization capture-based bisulfite
sequencing (LHC-BS) (Wang et al., 2011).

The methylation levels captured on CpG locus were assigned
to gene references based on homo sapiens (human) genome
assembly GRCh37 (hg19). As multiple CpG locus were mapped
to the same gene, we took the average of methylation levels
across the whole gene region to represent the gene methylation
score. For every data set, differential methylated genes were
extracted using fold change, which is the absolute value of
the difference between the means of tumor and non-tumor
samples. We further analyzed the differential methylated genes
from three data sets using three different assays and filtered out
the commonly methylated genes. Moreover, we compared the
functional enrichment of the commonly methylated genes with
gene ontology (GO) (Ashburner et al., 2000; Gene Ontology
Consortium, 2021), the pathways and connections of differential
methylated gene from three data sets using Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000).

Besides the three bisulfite sequencing methods, we also
included Infinium Methylation 450 k Beadchip data from
The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas
Research Network et al., 2013) for comparison. The differential
methylated genes filtering and functional analysis followed the
same procedure as bisulfite sequencing data.

TABLE 5 | Statistic of datasets in experiment.

Liver
Cancer
Tissue

Normal
Tissue

Total Assay

GSE70090 (Li et al., 2016) 3 3 6 WGBS

GSE112221 (Hlady et al., 2019) 4 6 10 RRBS

GSE55752 (Gao et al., 2015) 8 8 16 Targeted BS

TCGA (Cancer Genome Atlas
Research Network et al., 2013)

209 41 250 450K

RESULTS

Procedures for Analyzing Bisulfite
Sequencing Data
A general bisulfite sequencing data process includes adapter
trimming, alignment, quality control, methylation level scoring,
and differential methylation region identification (Figure 1).

FIGURE 1 | Procedures for analyzing bisulfite sequencing data.
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Trimming aims to remove the sequence of adapters from reads,
which are known sequences. The most widely used trimming
method is Trim Galore! for WGBS, RRBS and targeted BS
(Babraham, 2012). Most of the commercial DNA methylation
assay kits provide the trimming tool. Generally, aligners also
perform trimming because it affects the alignment result. This
procedure is relatively fixed compared with other steps, resulting
in only a few studies focusing on trimming. Hence, we do not
discuss it in detail.

The bisulfite converted sequences require a specific aligner
to map the reads to the reference genome. Quality control is
applied for evaluating the quality of the assay and the alignment.
By comparing the bisulfite sequence and the reference genome,
the methylation level of loci or region can be calculated. Then
differentially methylated regions (DMR) will be identified with
statistical analysis according to the methylation level score.
The normalization step is the same as gene expression (Cheng
et al., 2016a,b; Liu et al., 2019) and hence not discussed in this
paper. After that, researchers can perform downstream analysis
depending on their research purposes, such as building machine
learning classifiers for diagnosis or prognosis (Liu et al., 2020a,c;
Wang et al., 2020a,b).

WGBS, RRBS and targeted BS have similar data format. Since
RRBS focuses on a small partion of genomes, the read coverage
of RRBS is higher than WGBS. Targeted BS has an even higher
density of reads.

Differential Methylated Genes Between
WGBS, RRBS, Targeted BS and 450 k
Microarray
By WGBS, RRBS, targeted BS and 450 k microarray, the
methylated levels of chromosome location in GSE70090,
GSE112221, GSE55752, and TCGA were measured. We mapped
methylation levels to genes and summarized as gene methylated
levels. 4,071, 15,059, 29,326, and 3,745 genes’ methylation levels
were obtained from the four datasets, respectively, and 3,139
genes were shared.

Then, we compared the tumor and non-tumor samples
within each dataset from the common genes and identified 202,
237, 253, and 241 differential methylated genes (DMG)
in GSE70090 (WGBS), GSE112221 (RRBS), GSE55752
(targeted BS) and TCGA (450 k), respectively, with the
threshold of fold change > 0.15. Our result illustrated
that most differentially methylated genes (DMGs) were
hypo methylation (Figures 2A,C) while few were hyper
methylation (Figures 2B,C). Specifically, 200, 191, 231, and
232 genes were hypo-methylated in GSE70090, GSE112221,
GSE55752, and TCGA (Figure 2A). Nine differential
genes were exclusively shared among the three bisulfite
sequencing datasets and 18 genes were common across
the four datasets.

The 18 differential methylated genes were
ADARB2, AICDA, CASP14, CD207, CD5L, COL28A1,
FCRL5, LAIR2, LILRA2, LILRA5, LILRA6, MNDA,
NLRP12, NLRP3, PLA2G4A, PRKCQ, SLC1A6, and
TARM1. These common differential genes were all

hypo-methylated in the four liver cancer datasets
(Figures 2D–G).

Functional Analysis of 18 Common
Differential Methylated Genes
We explored the topological properties of the 18 common
DMGs, including degree, betweenness and transitivity, which
have been widely used in cancer and disease analysis (Cheng
and Leung, 2018b; Cheng et al., 2019; Liu et al., 2020b).
In the protein-protein interaction (PPI) network, TARM1,
PRKCQ and MNDA are the top three genes with the highest
network connectivity. PLA2G4A, PRKCQ, CD207, and MNDA
have high betweenness, which measures the extent to which
a gene lies on the shortest paths between other genes. The
transitivity of COL28A1, CASP14, TARM1 and MNDA is
over 0.2, indicating their interactors are prone to cluster
together. Notably, Myeloid Cell Nuclear Differentiation Antigen
(MNDA) is at a high level in all the three topological
metrics, suggesting it is an important transcriptional regulator
in liver cancer.

We further analyzed the 18 common DMGs using
Gene Ontology (GO) (Gene Ontology Consortium, 2021).
They are significantly involved in the 15 immune-related
functions (Figure 3). 12 out of 15 belong to the regulation
of interleukin-1, i.e., interleukin-1 production, interleukin-1
secretion, interleukin-1 beta production, interleukin-1 beta
secretion, positive regulation of interleukin-1 beta secretion,
regulation of interleukin-1 beta production, etc. Interleukin-
1 is a family of cytokines related to liver diseases (Tsutsui
et al., 2015; Barbier et al., 2019). They also overrepresented
in three other functions, positive regulation of cytokine
production, positive regulation of cytokine secretion and
regulation of CD4-positive, and alpha-beta T cell activation,
all of which are of importance in cancer development
and progression.

Pathways of Differential Methylated
Genes in Four Datasets
We applied Kyoto Encyclopedia of Genes and Genomes (KEGG)
to study the biological pathways that the DMGs involved.
152, 124, 114, and 126 genes from GSE55752, GSE112221,
GSE70090, and TCGA were included in the KEGG database.
The methylated genes from the four datasets are consistently
involved in B cell receptor signaling pathway and osteoclast
differentiation (Figure 3C).

Moreover, we executed pathway enrichment analysis using the
DMGs exclusively identified from the four datasets. 40, 83 and
32 genes were detected from GSE112221, GSE70090, and TCGA,
respectively, which are enriched in the pathways of complement
and coagulation cascades, small cell lung cancer, amoebiasis, etc.
(Figure 3D). In comparison to the DMGs of each dataset, the
exclusive ones are implemented in distinct pathways that are
functionally inconsistent.

We also enriched the DMGs in functional categories of
GO (Supplementary Figures 1, 2). Similarly, the results
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FIGURE 2 | Hypo and hyper methylated genes in GSE70090, GSE112221, GSE55752, and TCGA (A–C). Heat map of 18 common hypo-methylated genes in four
datasets (D–G).

illustrated that the genes found in the four datasets have some
terms in common.

Functional Correlation Between WGBS,
RRBS, Targeted BS, and TCGA
Based on the semantic similarity of GO terms, we calculated the
functional similarity of the DMGs across the four datasets. These
DMGs are highly consistent with all the semantic similarity scores

higher than 0.88 (Figure 4A). Importantly, the dataset-exclusive
DMGs also obtain a high score (>0.74, Figure 4B), which is
significantly higher than that of the simulated genes (Figure 4C).

Moreover, we retrieved the proteins regulated by the DMGs
to compute the protein-protein association (Cheng et al., 2017;
Cheng and Leung, 2018a; Li et al., 2020) and formed the
protein-protein interaction (PPI) network using STRING v11
(Szklarczyk et al., 2019; Figure 4D). A high proportion of the
methylated genes of the four datasets are closely interacted,
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FIGURE 3 | (A) Ranking of the 18 DMGs by topological importance. (B) Enrichment analysis of the 18 genes. (C) Enriched KEGG pathways for the DMGs of each of
the four datasets. (D) Enriched KEGG pathways for the DMGs exclusive in each dataset.

revealing a high connection between methylated genes in the
four methylation measuring methods. Furthermore, GSE55752
(blue) and GSE70090 (green) are connected most closely in
the network followed by the connection between GSE70090
(green) and TCGA (red; Figure 4E). The connections were
reorganized in Figure 4F and GSE70090 shows a strong
correlation with other datasets.

DISCUSSION

This study introduced three types of bisulfite sequencing
measurements for DNA methylation and compared different
approaches for aligning bisulfite-converted reads, assessing
quality, calculating methylation level, and calling differentially
methylated regions. Datasets of liver cancer measured by
WGBS, RRBS, and targeted BS were preprocessed and DMGs
were screened. We observed that the common DMGs across
different technologies are consistently hypo-methylated, which is

consistent with our previous discoveries that genes tend to up-
regulated in cancers (Cheng et al., 2016a,b; Liu et al., 2019). We
further compared the functional enrichment analysis of the three
datasets and found the DEMs of the three assays are functionally
and semantically similar.

We compared the accuracy, efficiency, and mapping ability
of the aligners according to the experimental results reported in
other papers. For accuracy, the ranking is as follows, BathMeth2,
VAliBS, BS-Seeker3 > BSMAP > Bismark, BiSpark > Brat-
Nova. As for efficiency, the ranking is BiSaprk > BS-
Seeker3 > BSMAP > Brat-Nova > Bismark > VAliBS. For
map ability, the preference is BatMeth2, VAliBS > BiSpark, BS-
Seeker3,Brat-Nova > BSMAP > Bismark. Some aligners are not
implemented and compared by other papers, so we listed them
in the same rank.

The choice of aligners depends on not only the research
objectives but also the data and researchers’ situation. For a small
amount of data, BatMeth2 (Zhou et al., 2019) is recommended
because of its accuracy and map ability. On the other hand,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 April 2021 | Volume 9 | Article 671302

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-671302 April 23, 2021 Time: 15:58 # 9

Zheng et al. Bisulfite Sequencing in Liver Cancer

FIGURE 4 | (A) Semantic similarity of all the differential methylated genes from four datasets. (B) Semantic similarity of the differential methylated genes unique in
four datasets. (C) Density of semantic similarity of two genes randomly picked up from two datasets. (D) Protein-protein association network of four datasets.
(E) Connection across the four datasets. (F) Functional association between four datasets.

BiSpark (Soe et al., 2018) is better for a large amount of data. For
researchers not good at programming, ViAliBS (Li et al., 2017) is
more user-friendly for its graphical user interface.

The features of quality control methods are summarized
in Table 2. The cloud-based platform provides the most
comprehensive metrics for quality control, while MethGo has
better visualization of the results. GBSA can also be adopted for
non-programmers.

As for methylation level scoring, Table 3 shows that BSPAT
(Hu et al., 2015) outperforms other tools for its significance of
scoring, visualization of results, capability for large data, and
user friendliness.

For DMR identification, it depends on the research topics
for the choice of methods. For the pairwise situation such as
methylation in health and disease, DMRFusion can be chosen
because it makes use of different types of models. If the spatial
information is important for the study, MethCP may be a better
choice as well as for time course problem.

When using bisulfite sequencing methods to detect
methylation, WGBS has the highest coverage and resolution
followed by RRBS, but targeted BS is cost-effective. The
microarray technique (450 K in this paper) has the lowest
coverage and resolution compared with bisulfite sequencing.
Although WGBS, RRBS, and targeted BS have different coverage
of CpG locus, the commonly detected DMGs have high similarity
in functions and the common genes are consistently hypo-
methylated in liver cancer. Besides, 450 K is also comparable
in detecting DMGs in liver cancer without considering
its low resolution.
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