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BACKGROUND

Micronuclei is a cytogenetic term describing small nuclei composed of one to a few chromosomes
or chromosomal fragments, which often result from abnormal cell divisions (Fenech et al., 2016).
Micronuclei were discovered by Henry Howell and JustinMarie Jolly in erythrocytes over a century
ago (Sears and Udden, 2012). Initially, Howell-Jolly bodies were used to describe the visible DNA
fragments following the expulsion of the nucleus. Later on, the term “micronuclei” was adapted to
describe all smaller fragments of the nucleus (1/5−1/20 the size of a normal nucleus) (Evans et al.,
1959; Schmid, 1975). Micronuclei were initially correlated with conditions such as vitamin B12
and folate deficiency (Dawson and Bury, 1961). Soon thereafter, they were linked to many other
genotoxic factors such as chemical exposure and radiation (Fenech et al., 2011). The presence of
micronuclei is usually considered as an indicator of DNA damage and defects in mitosis.

Several different assays have been developed for the use of micronuclei. The cytokinesis-block,
peripheral lymphocytic, and buccal MN assays have all been developed for use in mammalian cells
in vivo (Sommer et al., 2020). Particularly, the development of the peripheral lymphocyticMN assay
pioneered the use of micronuclei as a biomarker in mammalian cells with higher efficiency, along
with a more rigorous definition for scoring (<1/3 of a nucleus, similar staining, no overlap, within
3–4 nuclear diameters from the main nucleus) (Countryman and Heddle, 1976).

Recently, enthusiasm for micronuclei studies has reemerged (Xie et al., 2016; Guo et al., 2019,
2020a,b; Fenech, 2020; Lepage et al., 2020; Mirzayans and Murray, 2020). First, the linkage to
chromosomal instability, cancer, and other aging-related diseases has made micronuclei a potential
potent biomarker (Aranda et al., 2018). Secondly, micronuclei, among many other previously
ignored chromosomal abnormalities (most of which belong to the non-clonal chromosome
aberrations or NCCAs), are key contributing factors for cancer by re-organizing the karyotype
coding (Iourov et al., 2010, 2020; Heng et al., 2013; Ye et al., 2019a). Thirdly, micronuclei involve
the activation of the immune system, further broadening the utility of micronuclei (Bartsch et al.,
2017; Mackenzie et al., 2017; Kirsch-Volders et al., 2020). Finally, micronuclei are linked to stress
response-mediated genome chaos, a driving force for cancer evolution (Heng, 2019; Ye et al., 2019b,
2021; Shoshani et al., 2020).

MICRONUCLEI CLUSTERS: CHANGING THE SYSTEM
INHERITANCE

Micronuclei clusters are a group of micronuclei with variable size, which are often generated from
one cell (either diploid or polyploid cell) (Figure 1A). These structures have been largely ignored,
based on the reasoning that they represented cells that would soon be dead regardless. However,
recent studies have demonstrated that micronuclei clusters belong to a type of chaotic genome,
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some of which can continue to evolve by cellular fusion
and fission, representing important transitional structures for
cellular macroevolution (Heng, 2015, 2019). In fact, the
micronuclei cluster is most commonly observed in cancer
samples, especially following drug treatment (Heng et al.,
2008). Moreover, polyploid giant cancer cells (PGCCs) have
generated excitement in cancer research lately, due to their
contribution to rapid drug resistance and induced cancer lethality
(Mirzayans et al., 2018; Erenpreisa et al., 2020; Mannan et al.,
2020; Pienta et al., 2020a,b). PGCCs belong to numerical
genome chaos, which can generate many aggressive near-diploid
cancer cells with newly rearranged karyotypes (Heng et al.,
2008; Liu et al., 2014). During this transition, PGCCs also
can generate polyploid types of micronuclei clusters (Heng
et al., 2013; Zhang et al., 2014). A model of how PGCCs
contribute to drug resistance and aggressive cancer growth has
been proposed, which involves high levels of cellular stress-
induced abnormal developmental processes (dedifferentiation),
genome chaos-mediated macroevolution (creation of new
genome systems by PGCCs in smaller cell populations), and
microevolution (growth of stable cancer populations) (Niu
et al., 2016, 2017; Liu, 2018, 2020). This series of studies
has also highlighted the importance of micronuclei, as they
have now been shown to be initiators of genome instability
and macroevolution, rather than just a reflection of genotoxic
conditions. Along these lines, micronuclei clusters are often
detected from drug treatment-induced genome chaos, including
PGCCs. Clearly, the micronuclei cluster represents a means
to change the karyotype coding, and by extension, the system
inheritance (Ye et al., 2019b).

SEARCH FOR THE LINK BETWEEN
ENDOPLASMIC RETICULUM (ER) STRESS,
MICRONUCLEI, AND GIANT CELLS

Interestingly, the cellular stress responsemachinery controls both
the switching of genome stability and the dynamics leading
to a spectrum of numerical and structural karyotypic variants
(normal to chaotic) (Beaupere and Labunskyy, 2019; Heng, 2019;
Limia et al., 2019). It is thus necessary to investigate how ER stress
response impacts micronuclei and their triggered genome chaos
(Heng et al., 2013; Zhang et al., 2015). The ER is responsible
for the majority of cellular protein synthesis and folding while
playing a key role in sensing cellular stress. For example, ER
stress response or unfolded protein response (UPR) can either
promote cellular survival or commit the cell to a pathway of
apoptosis under different stress conditions. There are already
two types of established linkages between intracellular stress and
micronuclei: (1). Linking ER stress and oxidative stress responses
to micronuclei/chromosome instability; (2). Linking ER stress to
micronuclei clusters and polyploidy.

Most publications belong to the first category. For example,
many studies suggest that micronuclei not only serve as an index
of genotoxic effects and chromosomal instability (Guo et al.,
2020b), but also are associated with the cellular stress response
and immune activation following DNA damage (Chatterjee

et al., 2018). Many biochemical and pathophysiological
conditions, such as double-stranded DNA breaks, impaired
DNA repair response, improper DNA replication, treatment
of DNA adduct-forming chemicals, inhibition of microtubule
polymerization, and centromere interference (Ye et al., 2019b;
Guo et al., 2020a) can all directly or indirectly cause the formation
of micronuclei. Studies further suggest that micronuclei can
result from natural processes, such as metabolism and aging,
and can be induced by environmental factors or irregular
lifestyles (Luzhna et al., 2013; Nefic and Handzic, 2013). Over
the past decade, mounting evidence suggests that micronucleus-
causing genotoxicity is intrinsically linked to intracellular stress
responses, particularly oxidative stress and ER stress responses
(Luzhna et al., 2013; Horne et al., 2014; Hetz et al., 2020).

During mitotic exit, mis-segregated chromosomes can
recruit their own nuclear envelope to form micronuclei.
Over 60% of micronuclei undergo an irreversible loss of
compartmentalization during interphase due to the collapse
of the nuclear envelope (Hatch et al., 2013). This disruption
of micronuclei reduces nuclear functions and can trigger
massive DNA damage. Micronuclei disruption is associated
with chromatin compaction and invasion of ER tubules into
the chromatin. Disrupted micronuclei were identified in both
major subtypes of human non-small cell lung cancer, solidifying
evidence that disrupted micronuclei are useful objective
biomarkers for genomic instability in cancer.

The process leading to the formation of micronuclei is
associated with intracellular stress response and genotoxicity.
It has been demonstrated that oxidative stress preferentially
induces a subtype of micronuclei, specifically, the subclass
marked by pan-staining of γ-H2AX or γ-H2AX (+), and
mediates genomic instability caused by p53 dysfunction (Xu
et al., 2014) (Figure 1B). Furthermore, reactive oxygen species
(ROS) are known to cause many types of DNA lesions that can be
converted into cancer-promoting genetic alterations. However,
the tumor suppressor p53 plays an important role in regulating
the generation of cellular ROS, by reducing oxidative stress under
physiological or stress conditions. Indeed, in human and mouse
cells that are deficient in p53, the frequencies of γ-H2AX (+)
micronuclei are significantly elevated but can be attenuated by
the antioxidant N-acetylcysteine (NAC). These findings implicate
the importance of p53-regulated redox levels in the maintenance
of genomic stability by preventing the formation of micronuclei.

Genotoxic stress-induced micronuclei formation is associated
with the activation of ER stress response or UPR that modulates
DNA damage repair programs and sustains cell survival (Dufey
et al., 2020). DNA damage triggers the UPR signaling pathway
mediated through the ER stress sensor inositol-requiring enzyme
1α (IRE1α), leading to the activation of regulated IRE1α-
dependent decay (RIDD). The RIDD pathway sustains the
activity of the key factors involved in the DNA damage response,
including checkpoint kinase (CHK) 1, CHK2, andH2A.XVariant
Histone (H2AX), therefore boosting the DNA damage response
(DDR) (Figure 1B) (Dufey et al., 2020). Through modulation
of DNA damage repair, cell cycle arrest, and apoptosis, UPR
signaling through IRE1α may preserve genome stability and
therefore protect the disruption of micronuclei under genotoxic
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FIGURE 1 | Micronuclei cluster: morphology and involved pathways in ER stress. (A) Example of micronuclei cluster. The upper image is a mitotic figure and the lower

image is a micronuclei cluster where different sized nuclei clustered with each other. Mitotic figure and micronuclei cluster was stained by Giemsa. (B) Illustrating a link

between oxidative stress, unfolded protein response (UPR) and micronuclei formation under genotoxic stress. DDR, DNA damage response; RIDD: IRE1α-dependent

decay. (C) A proposed conceptual relationship between different types of stresses, ER stress response, the types of evolution (macroevolution vs. microevolution).

Even though ER response acts differently according to low and high stress, which are linked to microevolution and macroevolution, respectively, they are overlapping

in terms of leading to senescence and genome chaos. For example, while high stress often can induce genome chaos including micronuclei clusters and senescence,

coupling with massive death, low stress also could lead to death and senescence, which can lead to genome reorganization, albeit at a much lower rate. The

association between senescence and ER stress response (UPR) is context-dependent. Indeed, senescence and ER stress response (UPR) make an interconnected

network (UPR is activated in consequence to cell senescence or UPR is a driver of senescence) in which oxidative stress (ROS) acts as a central element responsible

for an auto-amplification loop (Pluquet et al., 2015). The conceptual basis of this model is stress-induced genome reorganization that is essential for somatic evolution.

Cellular stress in general, and ER stress in particular, can serve as an informational code that determines the cell’s fate (Heng and Heng, 2021). Depending on the

stress intensity or duration, UPR can trigger diverse cellular responses, including apoptotic pathways, which can be linked to genome chaos with the involvement of

micronuclei clusters. This model also predicts the complex relationship between the UPR, genome reorganization, and functional relevance in cancer immunobalance.

Even though the UPR may promote genome reorganization under acute or severe stress conditions, newly formed genomes can either be favorable or unfavorable for

cancer cell malignancy depending on the genomic context. For example, the newly formed genomes, including micronuclei clusters, could either activate the immune

system to fight against cancer or instead help cancer unexpectedly. It was reported that cell fusion can occur between cancer cells and immune cells (such as

macrophages), promoting cancer cells to become more aggressive (Gast et al., 2018). In fact, a German gynecologist, Otto Aichel, first introduced this idea in 1911. It

is likely that fused hybrid cells change their genomes through genome chaos including micronuclei clusters. According to the Genome Architecture Theory, such a

mechanism of genome information creation under stress should be a universal phenomenon. However, for future research direction, quantitative studies are needed to

predict the clinical odds (beneficial or harmful) under different treatment conditions.

stress. Additionally, ER stress and inflammatory responses are
linked to genomic instability induced by gamma radiation
(Chatterjee et al., 2018).

As of late, an increasing number of reports belonging to the
second category that links ER stress to micronuclei clusters and
polyploidy are being produced. Micronuclei clusters have been
frequently observed in cancer, but many images of them were
left unpublished due to their supposed lack of scientific worth
(Hatch et al., 2013; Ye et al., 2019b). As the interaction of PGCCs
and genome chaos-mediated macroevolution represents a newly

emerging field in cancer research, we anticipate many studies of
the same type to soon follow (Heng and Heng, 2020; Ye et al.,
2021).

ER stress response has been linked to drug-induced-
chromosome fragmentation, a type of mitotic cell death, and
micronuclei clusters (Stevens et al., 2007, 2011). Similarly, ER
stress response has been linked to chromosome instability in
GWI (unpublished observation). Another noted study used the
ER stress response to study mechanisms of genomic instability in
polyploidization. Ploidy can activate ER stress response, resulting
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in anti-cancer immune responses. Immunoselection can then
reduce ploidy, ER stress, and calreticulin exposure (Senovilla
et al., 2012, 2017). It is thus interesting to study the complex
relationship between ER stress, PGCCs, micronuclei clusters, and
immune responses, which may yield new discoveries.

FUTURE PERSPECTIVE

The ER stress response represents a major regulating mechanism
for cellular function under stress. Since both ER stress and
micronuclei clusters can be linked to numerical molecular
pathways, and the micronuclei are linked to genome chaos
(Zhang et al., 2015; Ye et al., 2019b), we expect a sizable
number of diverse molecular mechanisms to be published in
the near future. It is thus essential to research the common
mechanisms rather than focus on specific, individual ones, as
in complex systems, there will always be too many genomic
and environmental factors involved, with most contributing only
moderately. Since CIN can be used to unify the triggering factors
of cancer evolution including drug resistance (Ye et al., 2020,
2021), establishing the quantitative link between the ER stress
response and CIN is a promising starting point. The quantitative
data of micronuclei, especially of micronuclei clusters, is of
importance when integrating into this platform.

Depending on the context, the ER stress response can play
paradoxical roles. Under normal circumstances, it maintains
system stability by repairing and eliminating unrepairable
cellular elements or cells; under crisis, it might promote changes
by incomplete cell death, and genome chaos (Heng, 2015,
2019). It is known that during cellular death, some outliers can
form survivable genomes, and form new cellular populations.
Furthermore, according to the Genome Architecture Theory,
karyotype coding is maintained via the function of sexual
reproduction and somatic genome instability (Gorelick and
Heng, 2011; Ye et al., 2019a). Under crisis, however, the
process of genome chaos can create new karyotype coding
systems for speciation. It is thus timely to investigate the
role played by ER stress response in this process. Similar
opposing functions can be found in cancer immune surveillance
as well. As mentioned previously, while ploidy can activate
anti-cancer immune responses via the ER stress response
(Senovilla et al., 2012), a high level of chromosomal structural
variations can also suppress the immune response to cancer
(Minton, 2012; Zanetti and Mahadevan, 2012; Zanetti, 2017).

In other words, chromosomal chaos may promote or silence
immune surveillance depending on different environmental and
informational contexts. Consequently, how ER stress plays a
role in the interplay between chromosomal abnormalities and
immune surveillance is of importance in cancer research.

During tumorigenesis, high proliferation rates of cancer cells
demand increased activities of ER protein folding and transport,
a condition that triggers ER stress. As tumors grow, cancer cells
experience nutrient starvation and hypoxia, which can induce
the accumulation of unfolded or misfolded proteins in the ER
and activation of the ER stress response (Hetz et al., 2020). It
has been demonstrated that ER stress response is an important
mechanism required for cancer cells to adapt to and survive from
oncogenic stress conditions (Wang et al., 2010). Recently, the
cancer problem, traditionally considered as an issue of out-of-
control growth, has been rephrased as different phase transitions
(from normal cells to transformed cells, from non-invasive
tumor to cancer, and from drug-sensitive cancer cells to drug-
resistant cells) (Heng and Heng, 2020). Accordingly, it would
be interesting to investigate the ER homeostasis during these
various phase transitions. Such types of information, including
different ER stress response pathways, levels of overall stress,
and types of genomic information involved (gene, epigenetic,
and karyotype changes), are essential to understand the stress-
information relationship in somatic and organismal evolution
(Kültz, 2005, 2020; Heng, 2019). To initiate such an effort,
a model that illustrates the relationship between stress levels,
cellular responses, and types of evolution is proposed for future
study (Figure 1C).
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