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Autophagy is a highly conserved catabolic process induced under various stress
conditions to protect the cell from harm and allow survival in the face of nutrient-
or energy-deficient states. Regulation of autophagy is complex, as cells need to
adapt to a continuously changing microenvironment. It is well recognized that the
AMPK and mTOR signaling pathways are the main regulators of autophagy. However,
various other signaling pathways have also been described to regulate the autophagic
process. A better understanding of these complex autophagy regulatory mechanisms
will allow the discovery of new potential therapeutic targets. Here, we present a brief
overview of autophagy and its regulatory pathways with emphasis on the epigenetic
control mechanisms.
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INTRODUCTION

Macroautophagy (hereafter called autophagy), derived from a Greek term that refers to “self-
eating,” is an evolutionary conserved and precisely regulated multi-step process that involves
the engulfment of organelles and proteins into a double-membrane structure called the
autophagosome, followed by fusion with a lysosome for degradation. Autophagy thus recycles
cellular contents to provide necessary nutrients and molecular building bricks to the cell, serving as
a powerful booster of metabolic homeostasis. A growing body of evidence indicates the importance
of autophagy in various physiologic and pathologic processes and its implications in human health
and diseases, such as cancer, neurodegenerative disease, and the immune system (Choi et al., 2013;
Baek and Kim, 2017, Amaravadi et al., 2019). However, a clear understanding of the role epigenetics
plays within these processes as it relates to autophagy is not known. Here we focus on some of the
known epigenetic mechanisms involved in the regulation of autophagy.

AUTOPHAGY REGULATORY SIGNALS

The process of autophagy has been drawing increasing attention owing to its complexity and its
function in the control of many different diseases and processes. Primarily, autophagy acts as a
powerful booster for the cellular metabolic homeostasis, as it constitutes the main mechanism of
cellular degradation triggered by nutrient deprivation and maintains not only the cellular amino
acid pool, but also the recycling of other types of nutrients, such as lipids and carbohydrates (Lum
et al., 2005; Onodera and Ohsumi, 2005, Lecker et al., 2006; Poillet-Perez et al., 2018). In addition,
autophagy is a well-known but paradoxical determining factor in cell survival and cell death.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 June 2021 | Volume 9 | Article 675599

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.675599
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.675599
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.675599&domain=pdf&date_stamp=2021-06-14
https://www.frontiersin.org/articles/10.3389/fcell.2021.675599/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-675599 June 14, 2021 Time: 11:8 # 2

Shi et al. Epigenetic Control of Autophagy

The nutrient-recycling function of autophagy serves as a pro-
survival mechanism, especially under starvation or energy-
deprivation conditions (Onodera and Ohsumi, 2005; Shen and
Codogno, 2011, Amaravadi et al., 2019). This pro-survival role
has been validated using various animal models deficient in
specific autophagy-related genes, such as autophagy-related gene
3 (Atg3), Atg5, Atg7, and Atg16 (Kuma et al., 2004; Komatsu
et al., 2005, Saitoh et al., 2008; Sou et al., 2008, Saitoh et al.,
2009). However, under certain circumstances, autophagy is also
able to mediate cell death. For instance, autophagy is reported to
contribute to developmental cell death of the Drosophila salivary
gland, midgut, and reproductive tissues (Berry and Baehrecke,
2007; Hou et al., 2008, Denton et al., 2010; Nezis et al., 2010).

Similar to other diseases and processes, autophagy and
its function in cancer development remains highly debated.
Autophagy has been shown to play both tumor-suppressive
and promoting roles in cancer development, and accumulating
evidence supports this duality (White, 2012; Amaravadi
et al., 2019). In the initiation of tumorigenic and oncogenic
transformation, autophagy plays a suppressive role. Depletion
of several genes essential for autophagy in various mouse
tissues, including Beclin1, Atg5, and Atg7, leads to tissue-specific
tumor formation (Liang et al., 1999; Qu et al., 2003, Yue et al.,
2003; Ding et al., 2008, Takamura et al., 2011), suggesting
that autophagy functions as a tumor suppressor in the early
stages of tumorigenesis. It is also believed that autophagy
plays an important role in preventing DNA damage and
maintaining genome stability, thereby suppressing tumorigenesis
(Rabinowitz and White, 2010; Guo et al., 2013a). It also
contributes to tumor suppression by helping reduce the
harmful accumulation of reactive oxygen species and other
damaged proteins (Mathew et al., 2007, 2009). For instance,
deficiency of autophagy leads to p62 accumulation, induction
of chronic tissue damage and inflammation, transcription of
antioxidant-defense genes, and increased tumorigenesis of
benign liver hepatomas (Komatsu et al., 2010; Lau et al., 2010,
Takamura et al., 2011).

However, during the late stages of cancer development,
autophagy is a known cancer promoter, especially in solid tumors.
Under nutrient starvation or other stress conditions, such as
oxidative stress or DNA damage, the pro-survival mechanism
of autophagy serves to promote tumor growth (White, 2012).
For instance, in Ras-driven tumors, autophagy promotes tumor
cell proliferation and tumorigenesis by maintaining cellular
metabolism (Guo et al., 2011, 2013b). Thus, targeting autophagy
is a potential alternative anti-cancer therapy for certain tumor
types. This tumor promoter role has been supported in various
animal models where essential Atg genes have been depleted.
For instance, depletion of Atg5 and Atg7 in lung cancer reduced
progression from adenomas to adenocarcinomas (Strohecker
et al., 2013; Rao et al., 2014). Other features of autophagy that
can benefit tumor cells under harmful environmental conditions
include the promotion of genome stability and cellular control of
reactive oxygen species or other damaged proteins (White, 2012).
Therefore, inhibition of autophagy under these conditions may
be a valuable tool as anti-cancer therapy, especially when used in
combination with standard therapeutic approaches.

Overall these different functions of the autophagy process
rely on specific known and not well known regulatory
mechanisms. Below we will give and overview of the regulatory
signals that control autophagy with particular emphasis on the
epigenetic control.

mTORC1 and AMPK as the Main
Regulators of the Autophagy Process
Autophagy is controlled by a group of proteins encoded by the
Atg genes, most of which are essential for autophagy in yeast
as well as in humans (Meijer et al., 2007, Rubinsztein et al.,
2012; Choi et al., 2013). These genes regulate the autophagy
process during: (1) the early stage, involving the formation of a
complete double-membrane structure, the autophagosome and
(2) the late stage, which involves the maturation, formation
of the autolysosome via fusion with a lysosome and the
degradation process.

The initiation/nucleation and elongation steps constitute
early autophagic steps. Briefly, autophagy is initiated with the
formation of a phagophore structure, controlled by the Unc-
51 like autophagy activating kinase 1 (ULK1)-Atg1 complex
(Mizushima, 2010). This complex is controlled mainly by
two kinases: the mammalian target of rapamycin complex 1
(mTORC1) and the adenosine monophosphate-activated protein
kinase (AMPK; Hosokawa et al., 2009; Mizushima, 2010,
Rabinowitz and White, 2010). mTORC1 is well-known as a
key positive regulator of cell growth and protein synthesis
(Jewell et al., 2013). Inhibition of mTORC1 using the specific
inhibitor rapamycin or through deprivation of amino acids
induces autophagy by changing the phosphorylation of ULK1,
Atg13 and other proteins in the complex including FIP200,
stimulating ULK1 kinase activity, required for the initiation
of autophagy (Wang et al., 2017). The AMPK signaling
pathway is critical for the glucose starvation/energy deprivation
response. Under such conditions, AMPK induction leads to
autophagy initiation via the following pathways: (1) direct
activation of the ULK1-Atg1 complex and Beclin1 through
phosphorylation and (2) suppression of mTORC1 by tuberous
sclerosis complex 2 (TSC2) and Raptor phosphorylation
(Gwinn et al., 2008; Shaw, 2009, Kim et al., 2011; Zhang
et al., 2016). Table 1 summarizes the phosphorylation sites
of autophagy related genes induced by the AMPK/mTOR
signaling pathway.

The nucleation and elongation steps are mediated by the
class III phosphatidylinositol 3-kinase (PI3K)-Beclin1 complex
(Wong et al., 2011; Choi et al., 2013). The Beclin1 membrane-
binding domain participates in the nucleation process (Huang
et al., 2012), where the nucleated membrane structures are further
elongated and completed. This step is mediated by two ubiquitin-
like conjugation systems: Atg12-Atg5 and microtubule-associated
protein 1 light chain 3 (LC3)-phosphatidylethanolamine (Xie
and Klionsky, 2007). These two highly conserved conjugation
systems are similar in nature and are interconnected. The two
systems function via attachment of small molecules to proteins
through a ubiquitin-like system that involves Atg12-Atg5-Atg16L
conjugation, which in turn facilitates the lipidation of LC3,
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TABLE 1 | Phosphorylation sites of autophagy related genes induced by the AMPK/mTOR signaling pathway.

Autophagy
related genes

PTM Activation
dependent on

Function References

ULK1 Phosphorylation (Ser 317/Ser777) AMPK mTORC1 inhibition-autophagy induction under starvation Kim et al., 2011

ULK1 Phosphorylation (Ser555) AMPK ULK1 binding to 14-3-3 Bach et al., 2011

ULK1 Phosphorylation (Ser555, 637;Thr659) AMPK Localization of ATG9 to perinuclear clusters Mack et al., 2012

ULK1 Phosphorylation (Ser638,Ser758) mTORC1 Inhibits autophagy-blocks binding of ULK1 to AMPK Shang et al., 2011

BECN1 Phosphorylation (Ser91,Ser94) AMPK Enhances PtdIn3K complex activity Fogel et al., 2013;
Kim et al., 2013

ATG13 Phosphorylation (unknown) TORC1 Blocks autophagy and interaction between ATG13 and ATG1 Kamada et al., 2010

thus promoting the attachment of LC3 to the autophagosome
membrane (Xie and Klionsky, 2007).

The late stage, which includes the maturation and
degradation step, involves fusion of the outer membrane of
the autophagosome with the late endosome or lysosome to form
the autolysosome, where the acidic lysosomal hydrolases degrade
the inner membrane of the autophagosome and its luminal
contents for further recycling and reuse (Choi et al., 2013).

Nuclear Signals in Autophagy Regulation
Historically, autophagy was believed to be an exclusively cytosolic
process. For instance, previous reports demonstrated the ability
of enucleated cells to still form an autophagosome and maintain
a complete autophagy process (Morselli et al., 2011; Feng
et al., 2014). However, recent studies uncovered several nuclear
events as essential for the autophagy process and outlined the
importance of these events in autophagy regulation.

Transcription factors directly mediating autophagy and
lysosome gene expression are now being recognized as
essential nuclear regulatory events in the autophagy process
(Di Malta et al., 2019). Bioinformatics analysis demonstrated that
many lysosomal genes that share one or more coordinated
lysosomal expression and regulation (CLEAR) motifs
(GTCACGTGAC) are specifically recognized by members
of the Microphthalmia family of bHLH-LZ transcription
factors (MiT/TFE; Sardiello et al., 2009; Settembre et al.,
2011). Activation of these transcription factors is crucial in
the regulation of autophagy and lysosomal biogenesis. More
specifically, the MiT/TFE member transcription factor EB
(TFEB), considered a master gene for lysosomal biogenesis,
was reported to promote the expression of many genes
involved in different autophagy steps, including BECN1,
WD repeat domain phosphoinositide-interacting protein
1 (WIPI1), and Atg9B, involved in the initiation step, as
well as LC3B, gamma-aminobutyric acid receptor-associated
protein (GABARAP), and Atg5, involved in the autophagosome
maturation and elongation step (Sardiello et al., 2009; Palmieri
et al., 2011, Settembre et al., 2011; Martina et al., 2014). The
role of MiT/TFE members in the regulation of autophagy
and lysosome biogenesis is largely dependent on mTORC1
activity, which also coordinates the cytoplasmic autophagic
signaling process. mTORC1 directly phosphorylates TFEB,
and the phosphorylated TFEB is retained in the cytosol via
binding to protein 14-3-3, whereas under nutrient deprivation

conditions and/or mTORC1 inhibition, TFEB and various other
MiT/TFE members are dephosphorylated and translocated into
the nucleus, leading to lysosomal biogenesis and autophagy
induction (Peña-Llopis et al., 2011; Settembre et al., 2012).

Additional nuclear transcription factors that play a role
in autophagy regulation, include Forkhead box O proteins
(FOXOs), p53, cAMP response element-binding protein
farnesoid X receptor (CREB-FXR), and sterol regulatory element
binding transcription factor 2 (SREBP2; Seo et al., 2011; Calkin
and Tontonoz, 2012, Webb and Brunet, 2014). Like TFEB,
these transcription factors induce the expression of several
genes responsible for autophagy induction and can be directly
controlled by similar upstream signaling molecules involved in
the regulation of cytoplasmic autophagy, such as AKT, mTORC1,
AMPK, and PI3K (Seo et al., 2011; Calkin and Tontonoz, 2012,
Webb and Brunet, 2014).

Furthermore, many proteins important for the cytoplasmic
autophagic signaling process were, surprisingly found to also
locate into the nucleus and play a role in the regulation
of autophagy. These proteins include LC3, glyceraldehyde 3-
phosphate dehydrogenase (GAPDH), and VPS34 (Chang et al.,
2015; Huang et al., 2015, Su et al., 2017). The translocation of
these proteins is highly dependent on environmental signals that
directly affect autophagic responses. For example, for decades,
LC3 has been recognized as a cytoplasmic protein that functions
as a marker of autophagosome formation. However, recent
reports clearly show its nuclear location under normal/basal
autophagy. Within the nucleus, LC3 maintains a highly acetylated
state. Upon starvation, LC3 is deacetylated by Sirtuin 1 (SIRT1)
and translocated into the cytoplasm, where it interacts with
Atg7, leading to autophagosome formation (Huang et al., 2015).
Lastly, nuclear regulation of autophagy is linked to epigenetic
regulation, which ties transcription factors with autophagic
proteins, enabling more precise complex regulation of the
autophagy process (Bhol et al., 2019).

Epigenetic Factors in Autophagy
Regulatory Signaling
Genetic information contained in the DNA is shared by every
cell in the body. Epigenetics determines how the genome is
read and transcribed in response to different environmental
signals by controlling the chromatin structure and regulating
its accessibility to gene transcription. Epigenetic modifications
include modifications of both DNA and histones, such as
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methylation and acetylation (Sharma et al., 2010; Dawson and
Kouzarides, 2012).

DNA methylation is a stable gene-silencing mechanism
catalyzed by DNA methyltransferases (Dawson and Kouzarides,
2012; Smith and Meissner, 2013). DNA methyltransferases
can methylate DNA cytosine residues to 5-methylcytosine
(5mC), while ten-eleven translocation (TET) family members
demethylate 5mC residues by oxidation and subsequent loss of
the methyl group (Tahiliani et al., 2009). Histone proteins can
also be post-translationally modified via acetylation, methylation,
phosphorylation, ubiquitylation, SUMOylation, glycosylation
and ADP-ribosylation (Peterson and Laniel, 2004). Histone
acetyltransferases (HATs) acetylate histone proteins, and histone
deacetylases (HDACs) deacetylate them (You and Jones, 2012).
The histone tail and the nucleosomal DNA are tightly
associated and maintain a positively charged compact chromatin.
Acetylation at lysine residues on histone tails neutralizes the
positively charged chromatin, decreases the association, opens it
up, and allows gene transcription (You and Jones, 2012; Roberti
et al., 2019). In contrast, the function of histone methylation
is dependent upon different regulatory signals and the gene
expression status. Histone methylation occurs by the addition of
a methyl group to the side-chain nitrogen atoms of both lysine
and arginine residues. Methylation causes different transcription
outcomes depending upon changes in chromatin structure,
transcription factor recruitment, and association with initiation
and elongation factors (Roberti et al., 2019). How some of these
processes interconnect with autophagy will be reviewed in the
following sections.

Table 2 summarizes the epigenetic factors known to play a role
in autophagy regulation.

Epigenetic Factors and AMPK Signaling
Adenosine monophosphate-activated protein kinase plays a
major role in bioenergetics and energy balance by inducing direct
phosphorylation of metabolic enzymes and nutrient transporters
such as adipose triglyceride lipase (ATGL), glucose transporter 1
(GLUT1), and acetyl-CoA carboxylase 1 (ACC1; Fullerton et al.,
2013; Herzig and Shaw, 2018). AMPK also acts as a key regulator
of epigenetic events by direct phosphorylation of histones, DNA
methyltransferases, and histone post-translational modifiers
(Bungard et al., 2010; Marin et al., 2017, Wan et al., 2018). It
influences HAT and HDAC function through phosphorylation
of their cofactors or by interfering with substrate availability.
Activation of AMPK increases the nicotinamide adenine
dinucleotide (NAD+):NADH ratio, thus increasing the activity
of one of the class III HDACs, SIRT1, which induces autophagy
by enhancing deacetylation of Atgs and FOXO1 (Cantó et al.,
2009). Another mechanism of AMPK-mediated SIRT1 activation
occurs through GAPDH (Figure 1). When phosphorylated by
AMPK, GAPDH translocates to the nucleus and interacts with
SIRT1, which releases SIRT1 from its repressor and activates
its function (Chang et al., 2015). Despite the function of
SIRT1 in deacetylation of LC3 and induction of autophagy,
AMPK-mediated SIRT1 activation leads to histone deacetylation
and release of the epigenetic acetylation reader bromodomain-
containing protein 4 (BRD4) from the promoter regions

of autophagy and lysosomal genes leading to transcriptional
activation of autophagy. This process occurs under nutrient
deprived conditions. Under nutrient rich conditions, BRD4 binds
to promoter regions of autophagy and lysosomal-related genes
recruits the methyltransferase G9a, which in turn represses
the transcriptional program by histone demethylation leading
to suppression of autophagy and lysosomal gene expression
(Sakamaki et al., 2017), thus demonstrating the importance
of the BRD4/G9a interaction in the induction/repression of
autophagy (Artal-Martinez de Narvajas et al., 2013; Li et al., 2015,
Park et al., 2016; An et al., 2017).

Several reports also indicate that AMPK directly
phosphorylates two class IIa HDACs, HDAC4 and HDAC5,
increasing their cytoplasmic translocation and interaction with
14-3-3 proteins (McGee et al., 2008; Chen et al., 2015). HDAC4
and HDAC5 lost interaction with 14-3-3 proteins leads to their
nuclear translocation and further interaction with HDAC 3 leads
to repression of gene expression. Thus HDAC 4 and HDAC5
when localized to the nucleus can function to inhibit autophagy.
Inhibition of HDAC 5 have been shown to induce autophagy
(Peixoto et al., 2012). HDAC 6 independently of AMPK has been
shown to control autophagolysosome fusion. HDAC 6 deficiency
leads to failure of autophagosome maturation and build up of
protein aggregates (Lee et al., 2010).

Adenosine monophosphate-activated protein kinase
environmental conditions determine its role in the HAT activity.
For example, p300 HAT functions as a histone acetyltransferase
that regulates transcription via chromatin remodeling (Lee
and Finkel, 2009). p300 phosphorylation by AMPK leads to
acetylation and transcriptional activation of target genes some
of them components of the autophagy machinery (Yang et al.,
2001; He et al., 2009, Lee and Finkel, 2009; Zhang et al., 2011,
Lim et al., 2012). Further studies also demonstrated that HAT1
contains the AMPK consensus phosphorylation sequence,
hence HAT1 function could be promoted by AMPK, which
acetylates histones to favor transcription of genes related to
mitochondrial biogenesis (Marin et al., 2017). In addition,
AMPK can regulate acetylation by modulating availability of
acetyl-CoA, the main acetyl donating group of acetylation.
Acetyl-CoA level can be changed (1) by AMPK activation
through its direct phosphorylation of ACC1, which prevents
its role in the conversion of acetyl-CoA to malonyl-CoA
and thus increases the acetyl-CoA level (Fullerton et al.,
2013) and (2) through the acetyl-CoA synthetase short-
chain family member 2 (ACSS2), also a substrate of AMPK,
which converts acetate to acetyl-CoA (Li et al., 2017). When
phosphorylated by AMPK, ACSS2 translocates to the nucleus
and interacts with TFEB, producing acetyl-CoA locally for
histone H3 acetylation, leading to induction of autophagy and
lysosomal gene biogenesis (Bulusu et al., 2017; Li et al., 2017,
Zhang et al., 2018).

Adenosine monophosphate-activated protein kinase also
plays direct and indirect roles in histone methylation. Directly,
AMPK negatively regulates gene silencing by phosphorylating
the histone methyltransferase enhancer of zeste homolog 2
(EZH2) and disrupting the polycomb repressive complex 2
(PRC2) mediating methylation on H3 at Lys27 (H3K27me3;
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TABLE 2 | Epigenetic factors involved in autophagy signaling.

Epigenetic modification Epigenetic factor Modification site Effect on autophagy Transcription factors
involved

References

Involved in AMPK signaling

Histone acetylation SIRT1 H4K16 + FOXO1, TFEB Cantó et al., 2009;
Chang et al., 2015;
Sakamaki et al., 2017

BRD4 – Sakamaki et al., 2017

HDAC4/5 H4K16 – McGee et al., 2008;
Chen et al., 2015

p300 – Yang et al., 2001; Zhang
et al., 2011

HAT1 H5K5/K12 + Marin et al., 2017

Histone methylation EZH2 H3K27 – Wan et al., 2018

G9a H3K9 – Artal-Martinez de Narvajas
et al., 2013; Li et al., 2015;
Park et al., 2016;
An et al., 2017;
Sakamaki et al., 2017

KDM2A H3K9 – Tanaka et al., 2015;
Wang et al., 2017

CARM1 H3Arg17 + TFEB Shin et al., 2016

DNA methylation DNMT1 H3K27 + Marin et al., 2017;
Yang et al., 2018

Histone phosphorylation H2B Ser36 + Bungard et al., 2010;
Marin et al., 2015

Involved in mTORC signaling

Histone acetylation GCN5 K274/K279 + TFEB Laboucarié et al., 2017;
Wang et al., 2020

p300 – Wan et al., 2017

hMOF H4K16 – Fullgrabe et al., 2013

Histone methylation EZH2 H3K27 – Wei et al., 2015

+, promotes autophagy; –, inhibits autophagy.

Wan et al., 2018). Interestingly, EZH2-induced increase of
H3K27me3 is known to repress the expression of TSC2,
subsequently activating mTORC1 and inhibiting autophagy
(Wei et al., 2015). Indirectly, AMPK increases the cellular
fumarate level by phosphorylation and inhibition of the enzyme
responsible in the conversion of fumarate to malate (Figure 2).
An increase in fumarate leads to inhibition of lysine-specific
demethylase 2A (KDM2A) and generation of H3K36me2
(Tanaka et al., 2015; Wang et al., 2017). KDM2A deficiency is
reported to suppress mTOR activity via PI3K/AKT pathway
(Lu et al., 2019), which indicates a potential indirect effect of
the AMPK-KDM2A-mTOR signaling pathway on autophagy
regulation (Lu et al., 2019).

Additionally, AMPK can regulate histone methylation
by AMPK-mediated autophagy induction under nutrient
starvation conditions (Figure 2). Starvation-induced
activation of AMPK leads to FOXO3a phosphorylation and
transcriptional repression of S-phase kinase-associated protein
2 (SKP2) expression. Decreased SKP2 levels reduce SKP2-
containing SCF (SKP1–cullin1–F-box protein) E3 ubiquitin
ligase and nuclear translocation of coactivator-associated
arginine methyltransferase 1 (CARM1) (Shin et al., 2016).
CARM1 is essential for autophagy in mammals, promoting

TFEB-mediated induction of autophagy and lysosome gene
expression. These observations highlight the interconnection
between energy sensing and transcriptional and epigenetic
regulation of autophagy.

Adenosine monophosphate-activated protein kinase has
also been shown to play a role in DNA methylation and
hence, indirectly, in autophagy regulation. For instance, DNA
methyltransferase 1 (DNMT1) is a phosphorylation substrate
of AMPK; AMPK-mediated DNMT1 phosphorylation inhibits
its function and thus reduces DNA methylation, enhances the
accessibility of DNA to promoters, and induces mitochondrial
gene expression (Marin et al., 2017). More specifically, DNMT1
induces DNA methylation on the cystic fibrosis transmembrane
conductance regulator (CFTR) promoter and inhibits its
expression. CFTR is known to enhance autophagosome
formation via induction of Beclin1, LC3, and Atg12 expression
(Yang et al., 2018).

Adenosine monophosphate-activated protein kinase’s effect
on histone phosphorylation has also been linked to regulation
of autophagy. Bioinformatics analysis has recently demonstrated
the AMPK phosphorylation consensus sequence to be found in
various histone proteins (Marin et al., 2015). Experimental proof
of the histone phosphorylation by AMPK has also been reported.
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FIGURE 1 | AMPK-SIRT1-autophagy signaling pathway. Adenosine monophosphate phosphorylates GAPDH which in turn translocates to the nuclei, activates Sirt1
through direct interaction allowing LC3 and histone deacetylation, Brd4 release, recruitment of the methyltransferase G9a and induction of autophagy. Ac,
acetylation; P, phosphorylation; Me, methylation.

FIGURE 2 | AMPK regulates autophagy through interaction with regulators of histone. AMPK inhibits H3K27me3 via direct phosphorylation of EZH2, which was
reported to release TSC2 expression and then induce autophagy via inhibition of mTORC1. Under starvation conditions, AMPK can indirectly increase fumarate
levels, leading to KDM2A repression, mTOR inhibition, and induction of autophagy. In addition, starvation-induced AMPK can regulate histone methylation through
induction of autophagy via FOXO3 phosphorylation, transcriptional repression of SKP2, and nuclear translocation of CARM1, which directly interacts with TFEB,
leading to induction of autophagy and lysosomal gene expression. P, phosphorylation; Me, methylation.

Bungard et al. found that activation of AMPK by glucose
starvation or ultraviolet radiation leads to its direct translocation
to the chromatin and phosphorylation of histone H2B at serine
36 (Bungard et al., 2010). H2B serine 36 phosphorylation is
essential for cell survival in response to glucose- or energy-
limited conditions. Phosphorylation of H2B was also shown
by Liu et al. to increase autophagy in colon cancer cells via
enhancement of Atg genes transcription (Liu et al., 2020), which

might indicate an additional indirect effect of AMPK signaling on
autophagy induction.

Epigenetic Factors and mTOR Signaling
Mammalian target of rapamycin protein controls the translation
process in response to nutrient stress signals; under nutrient-
limited conditions, mTOR is inhibited and autophagy is induced.
Recent studies link mTOR/TOR to the histone acetyltransferase
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FIGURE 3 | mTOR regulates autophagy via targeting acetyltransferases. mTOR can enhance activity of acetyltransferases including p300, GCN5, and hMOF.
Phosphorylation of p300 directly acetylates several important autophagy-related proteins and inhibits their function; GNC5 acetylates TFEB and inhibits its
downstream autophagy and lysosome gene expression; hMOF acetylates histone proteins directly and inhibits autophagy gene expression; mTOR also increase
Foxk1 nuclear location, then the Foxk1 recruits Sin3A-HDAC1/2 complex to chromatin and subsequently decreases autophagy gene expression. Ac, acetylation; P,
phosphorylation.

GCN5 and to nutrient response (Laboucarié et al., 2017; Wang
et al., 2020). In fission yeast, starvation-mediated TORC1–
protein phosphatase 2A (PP2A) signaling and TORC2-AKT
signaling induced phosphorylation of a key component of the
Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, transcription
initiation factor TFIID subunit 12 (Taf12). In turn, activation
of SAGA downstream of TORC1 led to yeast response to
nutrient starvation (Laboucarié et al., 2017). Consistently, in
mammalian and Drosophila models, induction of autophagy
led to inhibition of the histone acetyltransferase GCN5, which
led to decreased TFEB acetylation and increased lysosome and
autophagic gene expression (Wang et al., 2020). Further evidence
suggests that mTORC1 inhibition by Torin1 or amino acid–
starvation treatments leads to decreased GCN5 activity and
inhibition of autophagy (Wang et al., 2020). GCN5 is also known
to inhibit autophagy through direct acetylation of Atg7 in yeast
(Zhang et al., 2017). Perhaps, the mTOR/TOR regulatory effect
on GCN5 and its downstream acetylation targets highlights the
potential relevance of this pathway in the epigenetic regulation of
autophagy and lysosome gene expression.

As shown in Figure 3, several other acetyltransferases are
involved in mediating mTOR-regulated autophagy. An important
link established between mTOR and p300 HAT has revealed
the pivotal role of mTOR in cell metabolism through regulation
of autophagy and lipogenesis (Wan et al., 2017). p300 inhibits
autophagy through acetylation of some important autophagy
proteins, including LC3, Beclin1/VPS34, Atg5, Atg7, and Atg12
(Lee and Finkel, 2009; Sun et al., 2015, Su et al., 2017). mTOR
can phosphorylate and activate p300 directly, thereby inhibiting
autophagy (Wan et al., 2017). Furthermore, the promotion of

autophagy through rapamycin-mediated inhibition of mTORC1
activity has been associated with a reduction in histone H4
lysine 16 acetylation (H4K16ac) and the human ortholog of
Drosophila males absent on the first (hMOF). Rapamycin-
induced mTOR inhibition enhances deacetylation of H4K16 and
decreases Atg gene expression and this effect was dependent
upon a balance between hMOF and SIRT1 (Fullgrabe et al.,
2013). This effect can be bypassed by the addition of the HDAC
inhibitor valproic acid, which in the presence of rapamycin
increases H4K16 acetylation and induction of autophagic flux.
Thus, a novel negative feedback network exists between mTOR,
hMOF, H4K16ac, and autophagy outcome (Fullgrabe et al.,
2013). Aside from the effect of mTORC1 on specific histone
acetylation enzymes, Shi et al. recently showed that mTORC1
can also directly affect fatty acid synthesis, a major source of
acetyl-CoA for histone acetylation, thus causing an additional
selective effect on gene expression specifically in dendritic cells
(Shi et al., 2019).

Not much is known about mTORC1 and histone methylation.
However, there is some evidence of a relationship between
mTORC1, histone methylation, and regulation of autophagy.
Starvation-induced mTORC1 inhibition and autophagy
induction is linked to a decrease in H3K4me2 and an increase
in H3K4me3 (Lee et al., 2017). Studies in yeast showed the
importance of TORC1 and histone methylation during the
nutrient stress response (McDaniel et al., 2017). In that study,
H3K36 methylation and its specific methyltransferase, SET
domain containing 2 (Set2), are required for the transcriptional
response to nutrient stress. Set2 has been found to interact
with TORC1 and TORC2. Although the mechanism is unclear,
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TORC1 signaling appears to be disrupted in Set2-deficient cells,
suggesting a potential role of Set2-H3K36 methylation in TORC1
regulation (McDaniel et al., 2017). In addition, mTOR is also
reported to limit basal autophagy via the well-conserved mTOR-
Foxk1-Sin30HDAC1/2 axis. Under nutrient full conditions,
mTOR enhances the nuclear entry of Foxk1, which recruits the
Sin3-HDAC1/2 complexes to reduce the acetylation of H4 and
essential autophagy genes expression (Bowman et al., 2014).
Lastly, in mammalians, the key methyltransferase EZH2, which
mainly causes trimethylation of H3K27, was found to silence a
series of negative regulators of mTORC1, especially the TSC2,
leading to activation of mTORC1 and subsequent inhibition of
autophagy (Wei et al., 2015).

In summary, we provide an overview of various published
concepts that suggest a potential relationship between epigenetic
modifications and the mTOR signaling pathway. Further studies
are needed to better understand this relationship.

Epigenetic Factors Involved in Other
Autophagy-Regulatory Pathways
Alongside the mTOR-related and AMPK-related epigenetic
processes that play a role in the regulation of autophagy,
substantial evidence demonstrates the involvement of several
other epigenetic factors that modulate autophagy and various
other downstream metabolic events. For instance, under
starvation conditions, the deubiquitinase USP44 decreases H2B
monoubiquitination (H2Bub1), decreasing H4K16ac and the
activity of its acetyltransferase hMOF, which in turn changes the
transcription of various autophagy-regulatory genes to initiate
autophagy (Chen et al., 2017).

Interestingly, reducing expression of some Atg genes by
methylation of their promoter regions down-regulates autophagy
directly, and these epigenetic reprogramming occurs in tumor or
aging cells. For instance, hyper-methylation of Beclin1 promoter
regions has been found in breast tumors cells (Li et al., 2010). In
childhood Acute Lymphatic Leukemia derived cells, expression of
LC3B and Atg5 was found to be reduced due to methylation on
the promoter regions (Hassen et al., 2017). Lastly, in macrophages
from aged mice, the activity of DNA methyltransferase 2
(DNMT2) appeared to be increased due to methylation of Atg5
and LC3 promoter regions (Khalil et al., 2016).

Most recently, the histone demethylase Jumonji-D3
(JMJD3/KDM6B) was found to mediate Fibroblast Growth
Factor-21 (FGF21) induced autophagy and lipid degradation
through a mechanism that involves activation of protein kinase
A (PKA) and subsequent phosphorylation and activation of
JMJD3. Active JMJD3 demethylates histone H3K27-me3, which
leads to global autophagy genes expression (Tfeb, Atg7, LC3, and
Ulk1) (Byun et al., 2020).

Additionally, the histone demethylase lysine-specific
demethylase 1 (LSD1) is reported to be involved in the regulation
of autophagy, in particular the autophagic degradation of
intracellular lipid droplets, known as lipophagy. LSD1 is
recruited to TFEB by the small heterodimer partner (SHP), a
key transcriptional regulator responsible for maintaining bile
acid homeostasis and responses to a late fed-state hormone.
LSD1 recruitment causes demethylation of H3K4me2/3,

leading to suppression of gene transcription. Under these
conditions, activation of the FGF19-SHP-LSD1 pathway triggers
a nutrient-rich postprandial signal response to inhibit autophagy,
particularly lipophagy in liver tissue (Byun et al., 2017). LSD1
has also been shown to decrease p62—also termed sequestesome
1(SQSTM1)—protein stability in a demethylation-independent
manner and inhibit autophagy in gynecologic malignancies.
Combination LSD1 inhibitor and autophagy blockade decreases
tumor growth(Chao et al., 2017).

Finally, histone activation of the epigenetic marks H3K4me3,
H3K27ac, and H3K56ac increases transcription of autophagy-
related genes under nutrient-deprived conditions (Peeters et al.,
2019). Supporting this finding is a study demonstrating that,
in autophagy induced by Epstein-Barr virus nuclear antigen 3C
(EBNA3C), EBNA3C can recruit several HATs and HDACs and
disrupt various histone modifications, leading to activation of
some histone epigenetic marks, including H3K4me1, H3K4me4,
H3K9ac, and H3K27ac, and transcriptional activation of Atg
genes, such as Atg3, Atg5, and Atg7 (Bhattacharjee et al., 2018).
Overall, these studies provide direct evidence of the global
epigenetic changes that influence autophagy induction. Further
understanding of the mechanisms underlying these epigenetic
changes might provide meaningful information on potential
novel epigenetic targets that can be used to modulate the
autophagy process.

CONCLUSION

The two master regulators of autophagy, AMPK and mTORC1,
are the main sensors of the cellular environmental changes that
determine an autophagy response. Epigenetic modifications play
a crucial role in the regulation of gene expression. Despite the
evolving significance given to the transcriptional regulation of
autophagy, the role for epigenetic control is mostly unknown.
Here we give an overview of the epigenetic events that influence
the autophagy process by altering the activity of transcription
factors that lead to changes in autophagy and lysosomal related
gene expression. Since epigenetic processes are reversible, a better
understanding of the link between epigenetics and autophagy
might offer therapeutic opportunities.
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