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Editorial on the Research Topic

Mitochondrial Remodeling and Dynamic Inter-Organellar Contacts in

Cardiovascular Physiopathology

Emerging evidence has shown that membranes of many subcellular organelles are dynamic
and engage in structural and functional communications, thereby creating new intracellular
compartments by either sharing proteins or by owning a distinct pool (Rizzuto et al., 1998; Giorgi
et al., 2018).

Membranes from different organelles do not fuse together, but preserve their integrity by
approaching not more than a few nanometers (usually 10 nm); this distance is enough to create
transient contacts which significantly impact physiological processes (e.g., lipid metabolism,
material exchange) (Simmen and Tagaya, 2017; Vance, 2020) and human diseases (van Vliet and
Agostinis, 2018; Simoes et al., 2020).

Growing advances in technologies, including cell fractionation (Wieckowski et al., 2009;
Montesinos and Area-Gomez, 2020), confocal (Chung et al., 2015; Galmes et al., 2016), and
transmission electron microscopy (Csordás et al., 2006), alongside new tools which combine
biochemistry and online databases (e.g., Contact-ID) (Kwak et al., 2020), have allowed the study
of contact sites in many types of living cells, in order to address new structural, functional, and
modulatory properties.

Contact sites in cardiomyocytes, especially those established between sarcoplasmic reticulum
(SR), and transverse tubules (TT) of the sarcolemma, and with mitochondrial membranes, are
necessary for excitation-contraction coupling (ECC) efficiency (Gambardella et al., 2018) and
suitable calcium signaling (Fearnley et al., 2011). The latter sustains cell survival by modulating
mitochondrial ATP generation to match cardiac workload and also cell death (Jouaville et al., 1999;
Traaseth et al., 2004; Bonora et al., 2019).
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Among the intracellular organelles, mitochondria play an
essential role in cardiomyocyte bioenergetics, because they
constitute 35% of the total cell volume to satisfy the high-energy
demand of heart (Elfering et al., 2004; Benard et al., 2007).
As such, it is not surprising that mitochondrial dysfunction
underlies several defects observed during heart development and
differentiation, participating actively in the pathogenesis of a
number of cardiovascular diseases (Santulli et al., 2015; Bravo-
Sagua et al., 2020). Hence, maintaining a healthy mitochondrial
population is an essential homeostatic requirement that the
cell retains by controlling multiple checkpoints including a
balanced ratio between mitophagy and biogenesis, including
mitochondrial fission and fusion (Morciano et al., 2020).

The present collection includes 11 reports subdivided in
the following categories: basic mechanisms, human diseases,
and therapies.

BASIC MECHANISMS

Five out of 11 reports belong to this category and are authored
by Rossini and Filadi, Lin et al., Gilkerson et al., Lynch et al., and
Piquereau et al.. The authors highlighted the importance of the
cytoarchitecture, especially SR-mitochondria contact sites and
spatio-temporal mitochondrial remodeling, in some molecular
pathways essential for cardiomyocyte function. These include
calcium signaling, one of the main players in mitochondrial
bioenergetics and cardiac contractility; in this context, organelles
and proteins involved in intracellular calcium fluxes have been
analyzed both in vitro and in vivo. Moreover, new insights have
been provided about reactive oxygen species (ROS) production,
mitochondrial dynamics, and quality control in the adaptation
of the heart to multiple stress conditions. Lastly, there is a
report highlighting the ability of sex hormones as factors able to
influence metabolism via mitochondrial remodeling.

DISEASES

Four manuscripts authored by Gao et al., Salazar-Ramírez
et al., Ramaccini et al., and Kumar et al. report compelling
evidence of how mitochondrial dysfunction and alterations
in organelle communication can impact cellular homeostasis
in cardiovascular diseases. Indeed, the rewiring of calcium
signaling at SR-mitochondria interface (but also at the
sarcolemma), the imbalance in mitophagy, defects in fusion-
fission machinery, lipid biosynthesis, ATP and ROS production
are analyzed in a wide range of pathologies including dilated
cardiomyopathy (DCM), heart failure, ischemia-reperfusion
injury, and cardiac arrythmia.

THERAPIES

In CVD, the altered mitochondrial remodeling and impaired
inter-organellar communications of cardiomyocytes may be
amenable to therapeutic interventions, especially considering
the dynamic and reversible nature of these interactions
(Ferrandi et al., 2013; Sabbah, 2016; Siasos et al., 2018;
Kerkhofs et al., 2019). In this sense, the last 2 reports
authored by Elorza et al. and Angebault et al. summarize
the currently available therapies targeting mitochondrial fitness
(e.g., maintaining the correct balance of biogenesis and the
control of mitochondrial heteroplasmy to prevent age-related
diseases) and report the beneficial effects of metformin in mice
affected by Duchenne muscular dystrophy (DMD)-associated
cardiomyopathy. In this preclinical model, metformin was
able to normalize SR-mitochondria interactions, and restore
the function of the electron transport chain (ETC) Complex
I and the expression of mitochondrial calcium-handling
protein complexes.
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