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Circular RNAs (circRNAs) are implicated in various human cancers, including colorectal
cancer (CRC). The objective of this study was to investigate the function and regulatory
mechanism of a novel circBRNA, circFAM120B, in CRC development. The expression
of circFAM120B, miR-645 and TGF-beta receptor Il (TGFBR2) mRNA was detected by
quantitative real-time polymerase chain reaction. Cellular biological functions, including
cell proliferation, migration/invasion, and glycolysis metabolism, were assessed using
CCK-8 assay, colony formation assay, transwell assay, and glycolysis stress test,
respectively. Glycolysis progression was also monitored by lactate production and
glucose consumption. The expression of glycolysis-related markers and TGFBR2 at
the protein level was detected by western blot. The interaction between miR-645 and
circFAM120B or TGFBR2 was predicted by bioinformatics analysis and verified by pull-
down assay, dual-luciferase reporter assay and RIP assay. /In vivo animal experiments
were performed to further explore the function of circFAM120B. The expression of
circFAM120B was decreased in CRC tissues and cells. CircFAM120B overexpression
blocked CRC cell proliferation, migration/invasion, and glycolysis metabolism. MiR-
645 was a target of circFAM120B, and miR-645 restoration reversed the effects of
circFAM120B overexpression. In addition, TGFBR2 was a target of miR-645, and miR-
645 inhibition-suppressed CRC cell proliferation, migration/invasion and glycolysis were
restored by TGFBR2 knockdown. Moreover, circFAM120B activated the expression
of TGFBR2 by targeting miR-645. TGFBR2 also blocked tumor growth in vivo by
targeting the miR-645/TGFBR2 axis. CircFAM120B inhibited CRC progression partly
by mediating the miR-645/TGFBR2 network, which explained the potential mechanism
of circFAM120B function in CRC.

Keywords: circFAM120B, miR-645, TGFBR2, colorectal cancer, mechanism

INTRODUCTION

It is estimated that more than one million people worldwide suffer from colorectal cancer (CRC)
every year worldwide (Torre et al., 2015; Testa et al., 2018). As one of the most common malignant
tumors, CRC has gradually become the third cancer-related disease in males and second in
females (Kuipers et al., 2015). Most CRC is defined as adenocarcinoma, which is subdivided into
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low-grade and high-grade according to the grade of the tumor
(Testaetal., 2018). Recently, the development of targeted therapy
and molecular markers has received great attention in metastatic
CRC (Peluso et al, 2017; Price et al., 2018), benefiting to
disease detection, tumor staging, patients’ response and outcomes
after treatment (Taieb et al., 2019). This provides a beneficial
strategy for the treatment and survival of patients. However, the
pathogenesis of CRC is complex and needs further exploration.

Circular RNAs (circRNAs) are a group of the non-coding
RNAs. CircRNAs are more stable compared to linear mRNA
due to their closed-loop structures (Memczak et al., 2013).
Besides, circRNAs can be easily checked in liquid biopsy of
clinical specimens, including blood, serum, urine, and saliva
(Zhang et al, 2018). With the bloom of RNA sequencing
technology, dozens of circRNAs are shown to be differently
expressed in tumor tissues relative to normal tissues, including
CRC (Li et al., 2018), which hints that circRNAs are associated
with cancer development. Increasing research has identified
the biological functions of certain circRNAs on tumor growth
and metastasis in CRC (Zhu et al., 2017; Ruan et al,
2019), but the literature of circRNA in CRC is still limited,
remaining numerous functionally unknown circRNAs. CircRNA
expression profile on Gene Expression Omnibus (GEO) database
from a previous study provides several candidates that are
dysregulated in CRC (Chen Z. et al, 2019). CircFAM120B,
derived from the exon2-exon4 of FAM120B mRNA, is such
a circRNA whose expression was notably decreased in CRC
tissues. However, the function of circFAM120B in detail in CRC
is not explored.

MicroRNAs (miRNAs) are also a class of non-coding
RNAs. MiRNAs are well known for their regulatory potential
by binding to 3'untranslated regions (3’UTRs) of mRNAs
(Wolter et al, 2014). In addition, specific circRNAs harbor
miRNA response elements (MREs) to target miRNAs and
suppress miRNA expression (Cesana and Daley, 2013).
Throughout the circRNA literature, the circRNA-miRNA-
mRNA axis was constantly mentioned to enrich the regulatory
networks in cancer progression (Chen L. Y. et al., 2019; Chen
Z. et al, 2019; Li Y. et al, 2019). MiR-645 was reported
to promote the oncogenesis of CRC (Guo et al, 2017),
suggesting that miR-645 was a crucial regulator in CRC
progression. More mechanisms of miR-645 function in CRC
need to be explored.

The transforming growth factor-beta (TGF-beta) signaling
pathway has indispensable effects on multiple cellular
processes, such as cell proliferation, differentiation, cycle
and apoptosis (Moustakas and Heldin, 2009). TGF-beta
signaling pathway is implicated in the development of
various types of cancer (Dong et al, 2012; Guo et al,
2012). TGF-beta receptor II (TGFBR2) was proved as a
tumor suppressor in CRC (Li et al, 2015). The functional
mechanism of TGFBR2 associated with miR-645 is
not illustrated.

In this study, we validated the expression of circFAM120B and
firstly investigated its function and mechanism in CRC, aiming to
clarify the role of circFAM120B in CRC and broaden the insights
into understanding CRC progression.

MATERIALS AND METHODS

Specimen Collection

All specimens were collected from Chongqing Bishan People’s
Hospital. A total of 50 CRC patients were recruited as subjects
for this study. Tumor tissues and adjacent normal tissues were
excised and used with the informed consent of each subject. All
specimens were exposed to liquid nitrogen and stored at -80°C
conditions. This study got the approval of the Ethical Committee
of Chonggqing Bishan People’s Hospital.

Cell Lines

Colorectal cancer cell lines, including LoVo and HCTI5,
were purchased from ProCell Co., Ltd. (Wuhan, China) and
maintained in matched special medium (ProCell Co., Ltd.).
Normal colonic epithelial cells (NCM460) were purchased from
BeNa Culture Collection (Beijing, China) and maintained in
90% Roswell Park Memorial Institute (RPMI-1640; Invitrogen,
Carlsbad, CA, United States) containing 10% fetal bovine
serum (FBS). All cells were cultured at 37°C conditions
containing 5% CO,.

Quantitative Real-Time Polymerase

Chain Reaction

For circFAM120B and TGFBR2, total RNA isolated using Trizol
reagent (Invitrogen) was then subjected to reverse transcription
reaction using a High-Capacity cDNA Reverse Transcription
Kit (Invitrogen) followed by qRT-PCR amplification reaction
using the SYBR Green Master Mix (Invitrogen). For miR-
645, reverse transcription and qRT-PCR amplification were
conducted using a Bulge-Loop miRNA qRT-PCR Starter Kit
(Ribobio Co., Ltd., Guangzhou, China). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) or U6 was used as an
internal reference for circFAM120B and TGFBR2 expression or
miR-645 expression, respectively. The final data were calculated
using the 27AA€t method. The primers used were listed in
Table 1.

Actinomycin D Treatment

To test the stability of circFAM120B, LoVo, and HCT15 cells
were probed with 2 pg/mL actinomycin D (Sigma, St. Louis,
MO, United States) treatment for 4, 8, 12, and 24 h and then
harvested at different time points. The stability of linear mRNA
and circRNA was analyzed by qRT-PCR.

Oligonucleotides, Plasmids, and Cell

Transfection

CircFAM120B was overexpressed using pLO5-ciR vector, and
pLO5-ciR-circFAM120B plasmid (oe-circFAM120B), which was
constructed by Genepharma (Shanghai, China) with single vector
(vector) as a control. MiR-645 mimics and inhibitors (miR-645
and anti-miR-645) were purchased from Ribobio Co., Ltd., with
miR-NC or anti-miR-NC as a negative control. TGFBR2 was
downregulated using small interference RNA targeting TGFBR2
(si-TGFBR2) (Genepharma) with si-NC as a negative control.
The oligonucleotides and plasmids were transfected into LoVo
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TABLE 1 | The primer sequences for quantitative real-time polymerase chain
reaction (QRT-PCR).

Name Sequences (5'-3')
CircFAM120B F: 5-CAGGCCTTCATTTACCGTCC-3'
R: 5'-GAAAGGATCTGGAATGGTCATCT-3
FAM120B F: 5-AATCCAGCCAATGCCATCCA-3
R: 5'-GAGAGCCAGATCCTCTGCG-3
TGFBR2 F: 5-GTAGCTCTGATGAGTGCAATGAC-3
R: 5'-CAGATATGGCAACTCCCAGTG-3
GAPDH F: 5-TGGAAGGACTCATGACCACA-3
R: 5'-TTCAGCTCAGGGATGACCTT-3
ue F: 5-CTCGCTTCGGCAGCACAT-3
R: 5’-AACGCTTCACGAATTTGCGT-3
miR-645 F: 5’-CGCGCGTCTAGGCTGGTAC-3'
R: 5'-AGTGCAGGGTCCGAGGTATT-3'
miR-561 F: 5-GCGCGATCAAGGATCTTAAAC-3
R: 5'-AGTGCAGGGTCCGAGGTATT-3'
miR-576-5p F: 5-GCGCGATTCTAATTTCTCCAC-3'
miR-578 F: 5-AGTGCAGGGTCCGAGGTATT-3
F: 5-GCGCGCTTCTTGTGCTCTAG-3
F: 5-AGTGCAGGGTCCGAGGTATT-3
miR-602 F: 5-GACACGGGCGACAGCTG-3'
F: 5-AGTGCAGGGTCCGAGGTATT-3

and HCT15 cells for functional analyses using Lipofectamine
3000 (Invitrogen).

CCK-8 Assay

Colorectal cancer cells with diverse transfection were planted into
96-well plates (2,000 cells/well). At the indicated time points (24,
48, and 72 h), 10 pL CCK-8 reagent (Sangon Biotech, Shanghai,
China) was pipetted into each well, incubating for another 2 h.
The absorbance at 450 nm was detected using iMark microplate
reader (Bio-Rad, Hercules, CA, United States).

Colony Formation Assay

Colorectal cancer cells with diverse transfection were planted into
six-well plates (1,000 cells/well) and cultured in an incubator
at 37°C, to allow colony growth. Colonies were observed
every 3 days, and after 2 weeks, colonies were fixed with
paraformaldehyde and stained with 0.1% crystal violet and
investigated under a microscope (Olympus, Tokyo, Japan).

Transwell Assay

Transwell chambers (BD Bioscience, San Jose, CA, United States)
were used to monitor cell migration and invasion. CRC cells
with diverse transfection were collected and resuspended 100 L
culture medium. Subsequently, cells in fresh culture medium
were added into the upper chambers for migration analysis or
added into the upper chambers pre-coated with Matrigel (BD
Bioscience) for invasion analysis. At the same time, the lower
chambers were supplemented with culture medium to induce cell
migration or invasion. After 24 h, cells in the lower surface were
fixed with paraformaldehyde and stained with 0.1% crystal violet.
The results were monitored under a microscope (Olympus) with
magnification of 100x.

Extracellular Acidification Rate Test
Extracellular Acidification Rate Test (ECAR) was detected by
Seahorse Bioscience XF-24 Extracellular Flux Analyzer (Seahorse
Bioscience, North Billerica, MA, United States) to monitor
metabolic alternations in vitro. In brief, CRC cells with diverse
transfection were cultured in XF24-well microplates (20,000
cells/well) (Seahorse Bioscience) for 24 h. Then, cells were
incubated with unbuffered medium followed by sequential
addition of 10 mM glucose, 1 WM oligomycin (OM), and 80 mM
2-deoxyglucose (2-DG) from a Seahorse XF glycolysis stress test
Kit (Seahorse Bioscience) according to the directions. ECAR was
shown as mpH/min. Each sample was tested in triplicate.

Lactate Production and Glucose

Consumption Detection

Lactate assay Kit (colorimetric; ab65330) and Glucose Assay
Kit (colorimetric; ab136955) were purchased from Abcam
(Cambridge, MA, United States). All experimental procedures
were performed following the protocols to examine lactate
production and glucose consumption.

Western Blot

Total proteins were isolated by 12% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
into polyvinylidene difluoride (PVDF) membranes (Bio-Rad).
After blocking by non-fat milk, the membranes were probed
with the primary antibodies, including anti-Hexokinase 2 (HK2)
(ab104836; Abcam), anti-Lactate dehydrogenase A (LDHA)
(ab92903; Abcam), anti-TGFBR2 (ab204100; Abcam) and anti-
GAPDH (ab8245; Abcam) at 4°C overnight, followed by the
incubation of the secondary antibodies (ab205719; Abcam) at
room temperature for 1 h. The protein signals were viewed using
the enhanced chemiluminescence kit (Sangon Biotech).

Bioinformatics Analysis
Bioinformatics tool Circular RNA Interactome' was employed to
predict the potential target miRNAs of circFAM120B. Another
bioinformatics tool Targetscan® was employed to predict the
potential target mRNAs of miR-645.

RNA Pull-Down Assay

Biotinylated-circFAM120B probe and oligo probe (negative
control) were synthesized by Ribobio Co., Ltd., and incubated
with Streptavidin Cl-conjugated Dynabeads (Invitrogen). CRC
cells (1 x 107) were harvested and lysed using lysis buffer
(Thermo Fisher Scientific, Waltham, MA, United States). Cell
lysates were incubated with probe-coated beads at 4°C overnight.
The RNA complexes bound to the beads were eluted, purified and
subjected to qRT-PCR.

Dual-Luciferase Reporter Assay
The information of luciferase reporter vector
Promega, Madison, WI, United States) was

(PGL4;
shown in

"https://circinteractome.nia.nih.gov/
Zhttp://www.targetscan.org/vert_72/
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Supplementary Figure 3C. PGL4 containing circFAM120B
wild-type sequence (harboring miR-645 binding sites) or
circFAM120B mutant-type sequence (harboring mutated miR-
645 binding sites) were constructed by Genepharma, and fusion
plasmids were named as circFAM120B WT and circFAM120B
MUT. In the same way, fusion plasmids, TGFBR2 3'UTR
WT and TGFBR2 3'UTR MUT, were also constructed. To
validate the interaction between circFAMI120B and miR-645,
LoVo, and HCT15 cells were transfected with miR-645 and
circFAM120B WT or circFAM120B MUT, with miR-NC as
a control. To validate the interaction between TGFBR2 and
miR-645, LoVo, and HCT15 cells were transfected with miR-645
and TGFBR2 3’'UTR WT or TGFBR2 3’UTR MUT, with miR-NC
as a control. Luciferase activity in cells with cotransfection was
examined at 48 h post-transfection using the dual-luciferase
assay system (Promega).

RIP Assay

The Magna RIP Kit (Millipore, Billerica, MA, United States) was
applied here for RIP assay. In brief, LoVo and HCT115 cells were
lysed and nexted exposed to Ago2 antibody-conjugated or IgG
antibody-conjugated magnetic beads. RNA complex on magnetic
beads was eluted to isolate total RNA. Finally, QRT-PCR assay was
conducted to detect the expression of indictors.

Animal Experiments
The experimental procedures were approved by the Animal Care
and Use Committee of Chongqing Bishan People’s Hospital.

BALB/c nude mice (n = 12; male; weight: 20-25 g; 4-6 weeks-
old) were purchased from Shanghai SLAC Laboratory Animal
Co., Ltd. (Shanghai, China) and assigned into two groups (n = 6
per group). LoVo cells were transfected with oe-circFAM120B or
vector and then subcutaneously implanted into the right groin
of mice. All mice were regularly kept and observed 1 week
after implant. Subsequently, tumor volume was measured and
recorded once a week. After 5 weeks, all mice were sacrificed, and
tumor tissues were collected for further experiments.

Immunohistochemical Staining Analysis
Tumor tissues were fixed, embedded in paraffin and cut
into 5-pm-thick sections. Afterward, the sections were
deparaffinized, rehydrated and received antigen retrieve.
The sections were incubated with the primary antibody targeting
Ki67 (ab92742) at 4°C overnight and then incubated with the
secondary antibody (ab205718). Tissue staining was performed
using 3,3’-diaminobenzidine (DAB) Substrate Kit (Solarbio,
Beijing, China).

Statistical Analysis

All statistical analyses were performed using GraphPad Prism
5.0 (GraphPad Software, La Jolla, CA, United States). Student’s
t-test was utilized to evaluate the differences between two groups,
and analysis of variance was utilized to analyze the differences
among multiple groups. All experiments were repeated at least
three times, and the final data were presented as mean =+ standard
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FIGURE 1 | CircFAM120B was downregulated in colorectal cancer (CRC) tissues and cells. (A,B) A microarray profile revealed that circFAM120B was a differently
expressed circRNA that was significantly downregulated in CRC tissues (n = 10). (C) The expression of circFAM120B in tumor tissues (n = 50) and normal tissues
(n = 50) was detected by quantitative real-time polymerase chain reaction (QRT-PCR). (D) The expression of circFAM120B in LoVo, HCT15, and NCM460 cells was
detected by gRT-PCR. (E,F) LoVo and HCT15 cells were exposed to actinomycin D to test the stability of circFAM120B. *P < 0.05.
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deviation. Differences were considered to be significant when
P < 0.05.

RESULTS

CircFAM120B Was Downregulated in
CRC Tissues and Cells

The data of circRNA expression profile were obtained from
the GEO dataset (GEO accession: GSE126094°). Heat map
was depicted to observe the top 10 circRNAs which were
significantly upregulated or downregulated in CRC tissues
(n = 10) compared to adjacent normal tissues (n = 10), and
circFAM120B (has_circRNA_104270) was shown to be notably
downregulated in CRC tissues (Figures 1A,B). CircFAM120B
was generated from the exon2-4 of precursor FAM120B mRNA
in a “back-splicing” way, and the schematic was depicted to
illustrate the formation of circFAM120B in Supplementary
Figure 1A. In collected clinical specimens, the expression of

*https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE126094

circFAM120B was significantly declined in CRC tumor tissues
(n = 50) compared with that in normal tissues (n = 50)
(Figure 1C). Meanwhile, the expression of circFAM120B was
also decreased in several CRC cell lines (LoVo, HCT15, SW620,
HCT116, HCTS8, and CACO2) compared to normal colonic
epithelial cells (NCM460) (Supplementary Figure 1B and
Figure 1D), and circFAM120B showed lower expression in
LoVo and HCT15 cells compared to other cell lines. In stability
test, the data showed that circFAM120B was more stable than
FAM120B abundance in LoVo and HCT15 cells treated with
actinomycin D (Figures 1E,F). In short, these data indicated that
circFAM120B was aberrantly downregulated in CRC and might
regulate CRC growth.

Enhanced Expression of circFAM120B
Blocked CRC Cell Proliferation,
Migration/Invasion, and Glycolysis

Metabolism
For functional analyses, we explored the role of circFAM120B
on proliferation, migration/invasion and metabolism. The
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(magnification: 100x). (F,G) Extracellular acidification rate (ECAR) was measured by glycolysis stress test to evaluate glycolysis metabolism. (H,l) Lactate production
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examination of circFAM120B overexpression construct showed
that circFAM120B expression was markedly enhanced in LoVo
and HCT15 cells transfected with oe-circFAM120B compared to
vector transfection or no-transfection (control) (Supplementary
Figure 2A). Cell proliferation was assessed by CCK-8 assay
and colony formation assay. The results displayed that the OD
value at 450 nm and the number of colonies were markedly
impaired in LoVo and HCTI15 cells transfected with oe-
circFAM120B (Figures 2A-C), suggesting that cell proliferation
was suppressed by circFAMI120B overexpression. Transwell
migration and invasion assay introduced that the number of
migrated and invaded cells was notably reduced by circFAM120B
overexpression (Figures 2D,E). Cellular energy metabolism was
monitored by ECAR value of glycolysis stress test. The data
exhibited that the value of ECAR was prominently declined
in LoVo and HCT15 cells transfected with oe-circFAM120B
compared to vector with the ordinal addition of glucose,
OM and 2-DG (Figures 2E,G). Besides, the production of
lactate and the consumption of glucose were suppressed by
circFAM120B overexpression (Figures 2H,2I). In addition,
the expression of glycolysis-related proteins, including HK2
and LDHA, was also weakened in cells with circFAM120B
overexpression (Figures 2J,K). These data suggested that
circFAM120B blocked the malignant development of CRC
via suppressing CRC cell proliferation, migration/invasion and
glycolysis metabolism.

MiR-645, a Target of circFAM120B, Was

Upregulated in CRC Tissues and Cells

To validate whether circFAM120B exerted functions by targeting
downstream miRNAs, we screened and verified the potential
miRNAs targeted by circFAM120B. A biotinylated-circFAM120B
probe was designed to screen the putative target miRNAs, and the
probe was able to substantially pull-down circFAM120B in LoVo
and HCT15 cells. Besides, the pull-down efficiency was increased
in cells with circFAM120B overexpression (Supplementary
Figures 3A,B). MiR-645 was richly pulled down by circFAM120B
probe in both LoVo and HCT15 cells (Figures 3A,B). Besides,
the expression of miR-645 showed the greatest decrease in LoVo
and HCT15 cells with circFAM120B overexpression compared to
other putative target miRNAs of circFAM120B (Supplementary
Figures 3D,E). Hence, miR-645 was chosen for the following
assays. To perform dual-luciferase reporter assay, circFAM120B
mutation sequence (binding site mutation) was designed
according to its wild sequence (Figure 3C). The efficiency of
miR-645 mimic was checked, and the data exhibited that miR-
645 expression was strikingly elevated in LoVo and HCT15 cells
with miR-645 transfection (Supplementary Figure 2B). Dual-
luciferase reporter assay presented that the luciferase activity was
pronouncedly decreased in LoVo and HCT15 cells cotransfected
with circFAM120B WT but not circFAM120B MUT and miR-
645 (Figures 3D,E). RIP assay showed that both circFAM120B
and miR-645 could be abundantly enriched in the Ago2-RIP
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group compared with that in the IgG-RIP group (Figure 3F).
The expression of miR-645 was notably reinforced in CRC tumor
tissues (n = 50) compared to normal tissues (n = 50) (Figure 3G).
Also, the expression of miR-645 was elevated in LoVo and HCT15
cells compared to NCM460 cells (Figure 3H). Moreover, the
expression of miR-645 was significantly declined in LoVo and
HCT15 cells with circFAM120B overexpression (Figure 3I). All
findings pointed out that miR-645 was a target of circFAM120B.

MiR-645 Overexpression Reversed the
circFAM120B Overexpression-Induced
Inhibition of CRC Development in vitro
To figure out whether circFAMI120B-mediated inhibition of
CRC progression was dependent on the regulation of miR-
645, we used oe-circFAM120B 4 miR-645 to transfect CRC
cells. QRT-PCR analysis indicated that the expression of miR-
645 impaired by oe-circFAM120B transfection was notably
recovered by oe-circFAM120B + miR-645 transfection in LoVo

and HCT15 cells (Figure 4A). OD value and colony number were
lessened by oe-circFAM120B transfection alone, and miR-645
reintroduction largely recovered OD value and colony number
in cells transfected with oe-circFAM120B (Figures 4B-D). Cell
migration and invasion were inhibited by oe-circFAM120B
transfection alone but partly reinforced in cells transfected with
oe-circFAM120B + miR-645 (Figures 4E,F). Glycolysis rate and
glycolysis capacity were blocked by circFAM120B overexpression,
and miR-645 restoration partly promoted glycolysis rate and
glycolysis capacity in cells with circFAM120B overexpression
(Figures 4G,H). Lactate production and glucose consumption
impaired in cells transfected with oe-circFAM120B alone
were substantially strengthened in cells cotransfected with oe-
circFAM120B + miR-645 (Figures 41,]). The expression levels of
HK2 and LDHA were lessened by oe-circFAM120B transfection
but largely enhanced in cells by oe-circFAM120B + miR-645
cotransfection in LoVo and HCT15 cells (Figures 4K,L). Our
results suggested that circFAM120B blocked the progression of
CRC by targeting miR-645.
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TGFBR2 Was a Direct Target of miR-645

To further clarify the mechanisms by which circFAM120B
regulated CRC progression, we analyzed the potential target
mRNAs of miR-645. As displayed in Figure 5A, miR-645
combined with the 3'UTR of TGFBR2 mRNA through several
binding sites (Figure 5A). TGFBR2 3'UTR mutant fragment
was designed according to its wild fragment. As displayed in
Figures 5B,C, luciferase activity of LoVo and HCT15 cells
transfected with TGFBR2 3'UTR WT was decreased when miR-
645 was overexpressed in cells. RIP assay indicated that both miR-
645 and IGFBR2 could be significantly enriched in the Ago2-RIP
group compared to IgG (Figure 5D). The expression of TGFBR2
was strikingly impaired in miR-645-overexpressed LoVo and
HCT15 cells at both mRNA and protein levels (Figures 5E,F).
Besides, the expression of TGFBR2 was aberrantly declined
in CRC tumor tissues at both mRNA and protein levels
(Figures 5G,H). Likewise, the expression of TFGBR2 was also
decreased in LoVo and HCT15 cells compared to NCM460
cells at both mRNA and protein levels (Figures 5LJ). In short,
TGFBR2 was a target of miR-645, and it was poorly expressed in
CRC tissues and cells.

TGFBR2 Knockdown Reversed the
miR-645 Inhibition-Induced Inhibition of

CRC Progression in vitro

Subsequently, we functionally investigated the interaction
between miR-645 and TGFBR2. The efficiency of miR-645
inhibitor and si-TGFBR2 was checked. The data displayed
that miR-645 expression was notably declined in LoVo and
HCT15 cells transfected with anti-miR-645 (Supplementary
Figure 2C), and TGFBR2 expression was strikingly lessened in
cells transfected with si-TGFBR2 at both mRNA and protein
levels (Supplementary Figures 2D,E). LoVo and HCT15 cells
were transfected with anti-miR-645 or anti-miR-645 + si-
TGFBR2, with anti-miR-NC or anti-miR-645 + si-NC as the
separate control. The expression of TGFBR2 was promoted
in cells transfected with anti-miR-645 compared to anti-miR-
NC but was weakened in cells transfected with anti-miR-
645 + si-TGFBR2 compared to anti-miR-645 + si-NC at
the protein level (Figures 6A,B). CCK-8 assay and colony
formation assay showed that cell proliferation was remarkably
suppressed by miR-645 inhibition, while TGFBR2 knockdown
largely recovered cell proliferation in cells treated with miR-645
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inhibition (Figures 6C-E). Besides, the capacities of migration
and invasion were repressed in cells transfected with anti-
miR-645, while these capacities were partly enhanced in cells
transfected with anti-miR-645 + si-TGFBR2 (Figures 6F,G). The
value of ECAR was depressed in cells transfected with anti-miR-
645, while ECAR value was strengthened in cells transfected
with anti-miR-645 + si-TGFBR2 (Figures 6H,I). As expected,
the production of lactate and the consumption of glucose
were impaired in cells with miR-645 inhibition but heightened
in cells with miR-645 inhibition and TGFBR2 knockdown
(Figures 6],K). The expression of HK2 and LDHA suppressed
by miR-645 inhibition was also recovered by miR-645 inhibition
plus TGFBR2 knockdown (Figures 6L,M). Collectively, miR-645
promoted the development of CRC in vitro by targeting TGFBR2.

CircFAM120B Suppressed the
Expression of miR-645 to Upregulate
TGFBR2

Interestingly, the expression of TGFBR2 was predominantly
enhanced in LoVo and HCTI5 cells transfected with

oe-circFAM120B compared to vector, while the expression
of TGFBR2 was substantially decreased in cells transfected with
oe-circFAM120B + miR-645 compared to circFAM120B + miR-
NC at both mRNA and protein levels (Figures 7A-C). These data
highlighted that circFAM120B regulated TGFBR2 expression by
targeting miR-645.

Enhanced Expression of circFAM120B
Inhibited CRC Tumor Growth in vivo

Animal experiments were performed to explore the role
of circFAM120B in vivo. LoVo cells transfected with oe-
circFAM120B or vector were implanted into the right groin
of nude mice. As shown in Figures 8A,B, overexpression
of circFAM120B led to decreased tumor volume and tumor
weight, hinting that circFAM120B overexpression blocked tumor
growth. Moreover, qRT-PCR data suggested that the expression
of circFAM120B and TGFBR2 mRNA was reinforced, while the
expression of miR-645 was lessened in the oe-circFAM120B mice
group compared with that in the vector mice group (Figure 8C).
Western blot data showed that the protein level of TGFBR2
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was also elevated in the oe-circFAM120B group (Figure 8D).
Moreover, IHC staining assay displayed that the abundance of
Ki67 in tumor tissues was notably decreased by circFAM120B
overexpression (Figure 8E). We obtained that circFAM120B
regulated the miR-645/TGFBR2 pathway to limit tumor growth
in vivo.

DISCUSSION

In our present study, we detected that circFAM120B expression
was aberrantly declined in CRC tissues and cells. CircFAM120B
overexpression inhibited several malignant cell behaviors,

including cell proliferation, migration, invasion, and glycolysis
metabolism. Further mechanism analyses illustrated that
circFAMI120B played these functions in CRC partly through
circFAM120B-mediated miR-645/TGFBR2 network. These
findings enriched the role of circFAM120B in CRC and
broadened insights into understanding CRC pathogenesis.
Currently, the understanding of circRNAs in cancer provides
new opportunities in cancer-related therapy (Su et al, 2019).
To date, numerous CRC-involved circRNAs are functionally
identified. For instance, circ_0003906 was downregulated in
CRC tissues and cells, and low expression of circ_0003906
was linked to lymphatic metastasis (Zhuo et al, 2017).
High-throughput sequencing uncovered that circVAPA was

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10

July 2021 | Volume 9 | Article 682543


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Yu and Lei

CircFAM120B Inhibits CRC Progression

overexpressed in CRC tissues, and downregulated circVAPA
repressed CRC cell proliferation, metastasis and invasion (Li
X. N. et al, 2019). Circ_0002138 held a weak level in CRC
tissues, and enriched circ_0002138 blocked CRC cell proliferation
and viability (Ruan et al, 2019). These circRNAs in CRC
could function as either oncogene or tumor suppressor. In
our views, we reported a circRNA, circFAM120B, which was
insufficiently expressed in CRC tissues by a previous circRNA
expression profile analysis (Chen Z. et al., 2019). Interestingly,
circFAM120B was also identified to be downregulated in
breast cancer tissues by microarray analysis (Afzali and Salimi,
2019), implying that circFAM120B might be widely deficiently
expressed in various cancers. Our expression data by qRT-
PCR were consistent with these consequences, exhibiting that
circFAM120B was strikingly downregulated in CRC tissues and
cells. For functional analysis, we demonstrated that forced
expression of circFAMI120B inhibited CRC cell proliferation,
migration/invasion and glycolysis metabolism in vitro, and
blocked tumor growth in vivo. For mechanism analysis, we
proposed that circFAM120B targeted miR-645 to play its anti-
tumor effects.

MiR-645 was located at chromosome 20q13.13 and was highly
expressed in CRC tissues, and miR-645 deficiency suppressed
CRC cell proliferation and drug sensitivity (Guo et al., 2017).
Besides, miR-645 enrichment induced CRC cell migration,
invasion and epithelial-mesenchymal transition (EMT) (Li et al.,
2020). Similarly, our data presented that miR-645 expression
was also highly elevated in CRC tissues and cells. Inhibition
of miR-645 restrained cell proliferation, migration/invasion and
glycolysis metabolism of CRC in vitro. Moreover, miR-645
restoration reversed the anti-tumor effects of circFAM120B
overexpression, suggesting that circFAM120B blocked CRC
malignant behaviors by targeting miR-645. The carcinogenesis
of miR-645 was also reported in osteosarcoma, renal clear cell
carcinoma, and head and neck cancer (Sun et al., 2015; Chen
et al,, 2017; Jiao et al,, 2018), indicating that miR-645 was an
oncogenic driver in diverse cancers.

Additionally, our data disclosed that miR-645 directly bound
to TGFBR2 3'UTR. Previous studies also stated that miR-645
bound to downstream target mRNAs (EFNA5) to regulate CRC
development (Li et al., 2020), and TGFBR2 could also be acted
as a target of miR-135b and involved in CRC cell proliferation
and apoptosis through the miR-135b/TGFBR2 pathway (Li et al.,
2015). In addition, the inactivation of TGFBR2 promoted CRC
carcinogenesis, such as proliferation (Miguchi et al., 2016).
Previous findings all maintained that TGFBR2 played an anti-
tumor role in CRC. Our present data proved that the expression
of TGFBR2 was decreased in CRC tissues and cells. TGFBR2
function as a target of miR-645, and its knockdown abolished the
functional effects of miR-645 inhibition.

CONCLUSION

Collectively, circFAM120B, aberrantly downregulated in CRC
tissues and cells, might mediate the development and aggravation
of CRC. CircFAM120B overexpression suppressed CRC cell

proliferation, migration/invasion and glycolysis metabolism and
also blocked tumor growth in vivo by targeting the miR-
645/TGFBR2 axis. Our study enriches the role and functional
mechanism of circFAM120B in CRC and provides potential new
strategies for CRC treatment. However, there are still limitations
in our present study. For example, the miR-645/TGFBR2 axis
is the only one of the regulatory networks of circFAM120B in
CRC, and more related pathways should be identified in further
work. Besides, the canonical oncogenic signaling pathway that
is involved in the circFAM120B/miR-645/TGFBR2 axis should
be investigated. In this way, the role of circFAM120B in CRC
will be clearer.
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