
fcell-09-684322 August 2, 2021 Time: 13:34 # 1

ORIGINAL RESEARCH
published: 06 August 2021

doi: 10.3389/fcell.2021.684322

Edited by:
Chuan-Xing Li,

Karolinska Institutet, Sweden

Reviewed by:
Shunrong Ji,

Fudan University, China
Mariateresa Giuliano,

Università degli Studi della Campania
“Luigi Vanvitelli”, Italy

*Correspondence:
Shasha Zhao

zhaosha2012@126.com
Zhongchen Liu

liuzhongchen_10th@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular and Cellular Pathology,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 25 March 2021
Accepted: 12 July 2021

Published: 06 August 2021

Citation:
Cui Z, Sun G, Bhandari R, Lu J,

Zhang M, Bhandari R, Sun F, Liu Z
and Zhao S (2021) Comprehensive

Analysis of Glycolysis-Related Genes
for Prognosis, Immune Features,

and Candidate Drug Development
in Colon Cancer.

Front. Cell Dev. Biol. 9:684322.
doi: 10.3389/fcell.2021.684322

Comprehensive Analysis of
Glycolysis-Related Genes for
Prognosis, Immune Features, and
Candidate Drug Development in
Colon Cancer
Zhongqi Cui1†, Guifeng Sun1†, Ramesh Bhandari1,2†, Jiayi Lu1, Mengmei Zhang1,
Rajeev Bhandari3, Fenyong Sun1, Zhongchen Liu4* and Shasha Zhao1*

1 Department of Clinical Laboratory, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China, 2 Department
of Pathology, Universal College of Medical Sciences, Bhairahawa, Nepal, 3 Department of General Surgery, Universal College
of Medical Sciences, Bhairahawa, Nepal, 4 Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital
Affiliated to Tongji University, Shanghai, China

The dysregulated expression of glycolysis-related genes (GRGs) is closely related to
the occurrence of diverse tumors and regarded as a novel target of tumor therapy.
However, the role of GRGs in colon cancer is unclear. We obtained 226 differential
GRGs (DE-GRGs) from The Cancer Genome Atlas (TCGA) database. Cox regression
analysis was used to construct a DE-GRG prognostic model, including P4HA1, PMM2,
PGM2, PPARGC1A, PPP2CB, STC2, ENO3, and CHPF2. The model could accurately
predict the overall survival rate of TCGA and GSE17536 patient cohorts. The risk score
of the model was closely related to a variety of clinical traits and was an independent
risk factor for prognosis. Enrichment analysis revealed the activation of a variety of
glycolysis metabolism and immune-related signaling pathways in the high-risk group.
High-risk patients displayed low expression of CD4+ memory resting T cells and resting
dendritic cells and high expression of macrophages M0 compared with the expression
levels in the low-risk patients. Furthermore, patients in the high-risk group had a higher
tumor mutation load and tumor stem cell index and were less sensitive to a variety of
chemotherapeutic drugs. Quantitative reverse transcription polymerase chain reaction
and immunohistochemistry analyses validated the expression of eight GRGs in 43
paired clinical samples. This is the first multi-omics study on the GRGs of colon cancer.
The establishment of the risk model may benefit the prognosis and drug treatment
of patients.

Keywords: glycolysis, colon cancer, prognosis model, immune microenvironment, tumor mutation burden,
chemotherapy response

INTRODUCTION

Colon cancer is the most prevalent gastrointestinal malignancy. It is the third-ranked malignancy-
related death globally (Arnold et al., 2020). According to the National Cancer Institute and
GLOBOCAN data, over one million new cases of colorectal cancer (CRC) are diagnosed annually,
and the estimated death rate is 33%. Colon cancer is a multifactorial disease, and its causes could
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include genetic predisposition, lifestyle changes, and diet
(Pilleron et al., 2019; Vuik et al., 2019). Despite recent
advancements in medicine, diagnostics tools, and surgical
techniques, the annual incidence and mortality rates of colon
cancer continue to increase appreciably, and the 5-year survival
rate is less than 15% (Kalyan et al., 2018; Ladabaum et al.,
2020). Therefore, it is crucial to discover new biomarkers and
therapeutic drug targets for the rapid diagnosis and treatment
of colon cancer.

Increasing evidence on cellular metabolism has revealed the
alteration in energy metabolism from oxidative phosphorylation
(OXPHOS) to aerobic glycolysis that occurs in response to
the increased bioenergetic demands of rapidly proliferating and
invading cancerous cells. This altered cellular energy metabolism
is an important hallmark for cancer development (Cairns et al.,
2011; Hanahan and Weinberg, 2011). Unlike normal cells,
tumor cells also derive the energy from glucose glycolysis,
which is termed as the Warburg effect (Gatenby and Gillies,
2004; Vander Heiden et al., 2009). Lactate produced by the
Warburg effect creates a suitable acidic tumor microenvironment
(TME) that facilities tumor progression, invasion, and immune
response (Corbet and Feron, 2017). Therefore, targeting the
glycolysis pathway could be beneficial for tumor prognosis and
effective cancer treatment (DeBerardinis et al., 2008; Martinez-
Outschoorn et al., 2017).

Glycolysis can alter the biological function of immune cells
within the TME and can help cancer cells escape the host
body defense mechanism, facilitating cancer progression (Gill
et al., 2016). However, only a few comprehensive analyses have
explored the role and relationship of tumor glycolysis and
immune cell infiltration in colon cancer development.

In the current study, we systematically analyzed the glycolysis-
related genomic expression profile in colon adenocarcinoma
(COAD) samples from The Cancer Genome Atlas (TCGA)
database. The 226 differential glycolysis-related genes (DE-
GRGs) that were identified included 17 survival-related GRGs.
A risk model incorporating eight GRGs (P4HA1, STC2,
PPARGC1A, PPP2CB, ENO3, CHPF2, PMM2, and PGM2) was
constructed. The model displayed a high predictive value for the
overall survival (OS) rate of colon cancer in both the training
and validation groups. Furthermore, the risk model was closely
related to a variety of clinical risk factors and could be used as
an independent prognostic index for patients with colon cancer.
This model may also reflect the dysregulation of immune cell
infiltration, the change of gene copy number, and the increase of
tumor mutation load and stem cell index. The findings indicate
the utility of the model as a powerful tool for the prognosis and
treatment of colon cancer.

MATERIALS AND METHODS

Data Collection and Acquisition of
Glycolysis-Related Genes
The expressed gene RNA-sequencing dataset (fragments
per kilobase of transcript per million [FPKM] value) and
corresponding TCGA clinical information of 473 COAD and

71 non-tumor tissue samples were extracted1. A total of 298
GRGs, of which 226 were DE-GRGs, were identified by gene
set enrichment analysis (GSEA) of glycolysis-related pathways
(Supplementary Figure 1).

Identification of Differential
Glycolysis-Related Gene and Function
Analyses
Differential glycolysis-related genes in TCGA COAD tumor
tissues and adjacent non-tumor tissues with a false discovery
rate (FDR) < 0.05 were identified using the limma R package.
The 226 DE-GRGs identified were displayed by Venn diagram
(Supplementary Table 4). Biological process (BP) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses
were performed by the clusterProfiler R package (Liao et al., 2019)
to identify the functionally enriched genes and classify the gene
clusters. A q-value < 0.05 was considered statistically significant.

Construction and Visualization of
Protein–Protein Interaction Network
Module
The PPI of the 226 DE-GRGs was analyzed in the String online
database2 as previously described (Szklarczyk et al., 2019). The
network was visualized by Cytoscape 3.7.2 software3. The key
modules in the PPI network were filtered according to the score
and the criterion of node counts >5 (Bader and Hogue, 2003)
using the MCODE plug-in in Cytoscape. A p-value ≤ 0.05
denoted a significant difference.

Construction of Prognostic Model
Key GRGs identified using the survival R package were further
subjected to univariate Cox regression analysis to screen and
identify significant prognosis candidates. The candidate genes
were incorporated into the multivariate Cox risk model. Eight
GRGs associated with significant prognosis potential were
retained in the process of multiple calculations. The risk score for
each patient was calculated as follows:

Risk score =
∑

regression coefficient(genei)×

expression value(genei)

Colon adenocarcinoma patients in the training group were
categorized into the low- and high-risk groups based on their
median risk score. The OS rates of the two subgroups were
compared by the Kaplan–Meier method and the log-rank test.
A receiver operating characteristic (ROC) curve was constructed
by SurvivalROC R package to evaluate the prognosis ability of the
aforementioned model. In addition, 177 COAD patient samples
from the GSE17536 dataset (Li et al., 2018) were used to validate
the predictive ability of this prognostic model. Finally, the RMS-R
package was used to construct a nomogram with calibration plots
to show the likelihood OS rate.

1https://portal.gdc.cancer.gov/repository
2https://string-db.org/
3http://apps.cytoscape.org/apps/iregulon
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Patients and Tissue Sampling
A total of 43 pairs of colon tumor tissues and adjacent non-
tumor tissues were collected from patients who underwent
colon cancer surgery at Shanghai Tenth People’s Hospital from
September 2019 to June 2020. After surgical resection, the
colon cancer tissue samples were immediately cleaned in normal
saline and cryopreserved. Prior to the surgery, none of the
patients had received radiation and chemotherapy. This study
was sanctioned by the Institutional Research Ethical Committee
(IREC) of Shanghai Tenth People’s Hospital of Tongji University
of Medicine, Shanghai. All patients provided their verbal and
written consent.

RNA Extraction and Quantitative Reverse
Transcription Polymerase Chain
Reaction Analysis
Total RNA from the colon cancer tissue and CRC cell lines was
extracted using TRIzol reagent (Invitrogen, Thermo Scientific,
Shanghai, China). Total mRNA was reverse-transcribed
into cDNA using the prime script Reverse Transcription
reagent kit (TaKaRa Bio, Shiga, Japan). Relative expression
of eight potentially prognostic GRG markers was determined
by qRT-PCR using the SYBR Green reagent kit (TaKaRa
Bio) in an ABI 7500 PCR system (Applied Biosystems).
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used
to normalize gene expression. Primer sequences are listed in
Supplementary Table 1.

Immunohistochemistry Staining of Colon
Cancer Tissue Sections
Paraffin-embedded colon cancer tissue was cut into 5-µm-
thin sections. The sections were deparaffinized and rehydrated.
Antigen retrieval was performed by exposure of the sections to
3% hydrogen peroxide along with normal goat serum. Antigen
retrieval tissue sections were initially treated with antibody
to stanniocalcin-2 (STC2, 1:200 dilution), prolyl 4-hydroxylase
subunit alpha 1 (P4HA1, 1:200), protein phosphatase 2 catalytic
subunit beta (PPP2CB, 1:200 or 1:250), peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PPARGC1A,
1:250), enolase 3 (ENO3, 1:200), chondroitin polymerizing
factor 2 (CHPF2, 1:500), phosphoglucomutase 2 (PGM2,
1:200), and phosphomannomutase 2 (PMM2, 1:200) (all
from Abcam, Cambridge, United Kingdom). The sections
were subsequently treated with biotinylated secondary rabbit
antibodies conjugated with streptavidin–horseradish peroxidase
(1:200). The binding of secondary antibody was revealed by
reaction with added 3,3’-diaminobenzidine (DAB) followed
by counterstaining with hematoxylin. The stained slides were
visualized and photographed by optical microscopy (Leica,
Tokyo, Japan). Image-Pro Plus 6.0 Software (Media Cybernetics,
Rockville, MD, United States) was used to analyze protein
expression in the stained tissue sections.

Cell Culture and Transient Transfection
HCT116 and SW480 human CRC cell lines were cultured
at 37◦C in a 5% CO2 incubator in Roswell Park Memorial

Institute (RPMI) 1,640 medium or Dulbecco’s modified Eagle’s
medium (both from Gibco, Grand Island, NY, United States)
supplemented with 10% fetal bovine serum (FBS). For transient
transfection, prior to the day of transfection 2.5 × 105/ml of
HTC116 and SW480 cells were seeded in six-well plates and
incubated overnight to allow development of 40 to 60% confluent
growth. These cells were transfected with small interfering
RNA (siRNA) to STC2 (Gene Pharma, Shanghai, China) using
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, United States)
and incubated further for 48 h. Target sequences for siRNAs were
as follows:

STC2-si1: GCGUGUUUGAAUGUUUCGATT and STC2-
si2: GGGUGAUAGUGGAGAUGAUTT.

Cell Proliferation and Colony Formation
Assay
Proliferation of STC2-siRNA-treated HCT116 and SW480 cells
was determined using the Cell Counting Kit-8 (Dojindo
Molecular Technologies, Inc., Rockville, MD, United States) as
previously described (Liu et al., 2019). A clonogenic assay was
performed to measure and the monitor the colony-forming
capabilities of STC2-siRNA CRC cell (Zhen et al., 2019).

Cell Invasion and Migration Assay
Matrigel precoated Transwell inserts were placed into 24-well
plate filled with 500 µl of culture medium supplemented with
10% FBS. Aliquots (400 µl containing 5× 104 SW480 or HCT116
cells) of STC2-siRNA-treated cell suspensions were added to
the upper chamber of Transwell units and incubated at 37◦C
for 20–24 h in a 5% CO2 incubator. Cells that traversed the
membrane separating the upper and lower chambers of each
unit (i.e., invading cells) were fixed with 4% paraformaldehyde
(PFA) for 15 min at room temperature and stained with 0.1%
crystal violet. Cells that did not invade were gently removed from
the membrane surface exposed to the upper chamber using a
wet cotton swab. Each Transwell unit was allowed to dry and
examined by inverted microscopy (Leica). Quantitative analysis
of invaded cell was performed using ImageJ software (NIH,
Bethesda, MD, United States).

For the cell migration assay, SW480 and HCT116 cells were
transfected with STC2-siRNA and cultured on solid medium.
Twenty-four hours later, a wound was created horizontally by
gently pressing a 200-µl sterile micropipette tip on the surface
of the confluent cell monolayer on six-well plates. Each well
was washed twice with serum-free medium. Photographs were
taken with an inverted microscope (Leica) at 0 and 24 h. The
cell migration rate was determined by time-lapse analysis using
ImageJ software.

Evaluation of Immune Cell Infiltration
The CIBERSORT4 online bioinformatics analytical tool was used
to estimate and distinguish 22 commonly infiltrating immune
cells that included B cells, B memory cells, plasma cells, CD8+ and
naïve CD4+ T cells, natural killer cells, macrophages, dendritic

4https://cibersort.standford.edu/
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cells, and mast cells in COAD patients with low- and high-risk
scores (Newman et al., 2015).

Estimation of Tumor Mutation Burden,
Copy Number Variation, and Tumor
Stemness
Tumor mutation burden (TMB) on the target gene was calculated
by dividing the total number of mutations by the size of the
coding region of the target gene. The GenVisR R package was
used for the evaluation and analysis of the top 30 frequently
mutated genes among the low- and high-risk groups (Skidmore
et al., 2016). The copy number variation (CNV) in these
groups of patients was calculated using chi-square test (Feng
et al., 2020). The Rcircos R package was used to construct
Circos plots to determine the CNV in chromosomes (Zhang
et al., 2013). Utilization of the mRNA expression-based stemness

index (mRNAsi) and epidermal growth factor receptor (EGFR)-
mRNAsi data obtained from Tathiane Malta, University of São
Paulo, was used to estimate the tumor stemness index to assess the
dedifferentiation potential of oncogenic cells (Malta et al., 2018).

Prediction of Responses of
Antineoplastic Drugs and Small
Candidate Molecules
Based on the Genomics of Drug Sensitivity in Cancer (GDSC)5,
the efficacy of distinct antineoplastic drugs on COAD TCGA
samples was determined using the pRRophetic R package.
The half-maximal inhibitory concentration (IC50) of a specific
chemotherapeutic drug was obtained by ridge regression analysis.
The prediction accuracy was measured by the 10-fold cross-
validation of the GDSC cell line expression profile data. In

5https://www.cancerrxgene.org

FIGURE 1 | Schematic diagram of the comprehensive analysis of glycolysis-related genes (GRGs) for prognosis prediction and drug selection in colon
adenocarcinoma (COAD) patients.
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addition, the Broad Institute Connectivity Map (CMap6) was
used to predict the small candidate molecules based on the top
1,000 differentially expressed genes (Subramanian et al., 2017).

Statistical Analyses
All statistical analyses were performed using R software (version
3.6.1). The Wilcoxon test was used for the comparison of two
independent non-parametric samples. The Kruskal–Wallis test
was used for multiple independent samples. The Kaplan–Meier
survival curves were compared with the log-rank test. Univariate
and multivariate Cox proportional hazard regressions were
performed to identify independent prognostic factors associated
with OS. A p-value < 0.05 was considered statistically significant.

RESULTS

As increased aerobic glycolysis activity plays a significant role
in cancer development, we explored the prognostic importance
of GRGs in colon cancer (Figure 1). TCGA data of a total
of 473 COAD patients and 177 patients from the Gene

6https://clue.io/query

TABLE 1 | Clinical characteristics of the colon cancer patients used in this study.

TCGA cohort GSE17536

Number of patients 473 177

Age in years (median, range) 69 (31–90) 66 (26–92)

Gender (%)

Female 215 (45.5%) 81 (45.8%)

Male 258 (54.5%) 96 (54.2%)

Grade (%)

1 NA 16 (9.1%)

2 NA 133 (75.7%)

3 NA 27 (15.3%)

4 NA 0 (0%)

Stage (%)

I 76 (16.1%) 24 (13.6%)

II 177 (37.4%) 57 (32.2%)

III 125 (26.4%) 57 (32.2%)

IV 62 (13.1%) 39 (22.0%)

T

I 10 (2.11%) NA

II 77 (16.3%) NA

III 307 (64.9%) NA

IV 56 (9.72%) NA

M

M0 333 (70.4%) NA

M1 62 (13.1%) NA

MX 49 (10.4%) NA

N

N0 268 (56.7%) NA

N1 103 (21.8%) NA

N2 80 (16.9%) NA

NA, not applicable; TCGA, The Cancer Genome Atlas.

Expression Omnibus (GEO) (GSE17536) cohort were included.
The demographics and clinical details of the patients are
summarized in Table 1.

Identification of Differential
Glycolysis-Related Genes and Functional
Annotations
The primary screening and analysis of TCGA samples by GSEA
identified 226 DE-GRGs in COAD samples compared with
normal tissues (Figure 2A). Of these, 154 were overexpressed and
72 were underexpressed (Figures 2B,C; Supplementary Table 2).
The DE-GRGs were significantly augmented in BP terms
related to carbohydrate metabolism, nucleotide metabolism,
AMP-activated protein kinase, and hypoxia-inducible factor
signaling pathway (Figure 2D and Supplementary Table 2).
KEGG pathway analysis shows that DE-GRGs are involved
in HIF-1 signaling pathway, glycolysis/gluconeogenesis, AMPK
signaling pathway, and galactose metabolism (Figure 2E and
Supplementary Table 3).

Establishment of Protein–Protein
Interaction Network and Selection of
Prognosis-Related Glycolysis-Related
Genes
To investigate the role of GRGs in COAD, a PPI network with
177 nodes and 1,216 edges was constructed using Cytoscape
String software (Figure 3A). In addition, a co-expression
network with 69 nodes and 701 edges was created using the
MCODE tool (Figure 3B) to identify the key modules of GRGs.
To explore the prognostic value of these GRGs, univariate
Cox regression analysis was performed. Seventeen prognostic-
associated candidate hub GRGs were revealed (Figure 3C). These
candidate hub GRGs were analyzed by multiple stepwise Cox
regression to investigate their impact on patient survival and
clinical outcomes. Eight hub GRGs were independent predictors
in COAD patients (Figure 3D and Table 2).

Prognosis-Related Glycolysis-Related
Genes Risk Score Model Construction
and Validation
A prediction model incorporating a prognosis-related signature
of the eight hub GRGs was determined with the following
calculation of the risk score:

Risk score=(−0.5826 ∗ ExpPPP2CB)+ (−0.4192 ∗ ExpPGM2)

+(−0.4322 ∗ ExpPPARGC1A)+ (0.5911 ∗ ExpENO3)+

(−0.735 ∗ ExpPMM2)+ (0.7924 ∗ ExpP4HA1)+

(0.2715 ∗ ExpSTC2)+ (0.5578 ∗ ExpCHPF2)

Survival analysis in the low- and high-risk groups was
determined using the Kaplan–Meier survival plot. The analysis
revealed a relatively low OS rate in patients with high-risk
score compared with the rate in the low-risk group of patients
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FIGURE 2 | Differential glycolysis-related genes (DE-GRGs) in The Cancer Genome Atlas (TCGA) patients. (A) Venn diagram of DE-GRGs among tumor and
non-tumor TCGA samples. (B) Heatmap of expression of DE-GRGs in colon adenocarcinoma (COAD) sample. (C) Volcano plot of DE-GRG expression in tumors
and normal tissue samples. Green and red dots indicate downregulated and upregulated GRGs, respectively. (D) Biological process (BP) analysis of DE-GRGs.
(E) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DE-GRGs.

(Figure 4A). The risk scores, survival scores, and heatmap of
GRG expression among the low- and high-risk patients are
presented in Figure 4B. In addition, the area under the curve
(AUC) analysis of COAD patients at 1, 3, and 5 years revealed
respective OS rates of 73.4, 74.2, and 78.8% (Figure 4C). To verify
the effectiveness of this model, a risk score was calculated in the
GSE17536 cohort of patients, and they were classified into the
high-risk group (n = 71) and low-risk group (n = 106) based
on median risk score. Surprisingly, the results obtained from
the GSE17536 cohort revealed that the high-risk score patients
had lower OS rates than the patients with low-risk score, which
was identical to the results obtained in TCGA cohort analysis
(Figures 4D–F).

The Glycolysis-Related Gene Signature
Confers Additional Prognostic Power for
Colon Adenocarcinoma Patients
Considering the importance of glycolysis in the prognosis of
colon cancer, we further analyzed the relationship between the
eight GRGs and the clinical characteristics of colon cancer,
including age, sex, tumor stage, and TMN stage. The heatmap
(Figure 5A) indicated that the expression of CHPF2, ENO3,
STC2, and P4HA1 was upregulated in the high-risk group,
whereas that of PPP2CB, PGM2, PMM2, and PPARGC1A was

downregulated in the high-risk group. Furthermore, a substantial
difference in risk scores was evident for the different T, N, and
M grades and tumor stages. The risk score increased with tumor
progression (Figure 5B and Supplementary Figure 2A). To
better predict the prognosis of the model, stratification analysis
was used to confirm whether the model retained the ability to
predict OS in different clinical subgroups. The OS rate of colon
cancer patients with high-risk score, compared with patients in
the low-risk group, was worse in the T3 + T4 and M0 groups
(Figure 5C). Similarly, the risk model was good at predicting
the OS rate of patients >65 or ≤65 years of age, male or female
patients, stage I + II or III + IV, grade 1 or grade 2 + 3, and N0
or N1 (Figure 5C and Supplementary Figure 2B). The collective
data indicate that the model may be a good prognostic index for
patients with COAD.

Gene Set Enrichment Analysis
Enrichment and Immune Cell Infiltration
Analysis in the Cancer Genome Atlas
and Gene Expression Omnibus Datasets
Gene set enrichment analysis of the GEO and TCGA databases
revealed the aberrant activation of multiple signaling pathways.
These included oxidative phosphorylation, chemokine receptor
interaction, glycerol metabolism, chemokine signal pathway,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 August 2021 | Volume 9 | Article 684322

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-684322 August 2, 2021 Time: 13:34 # 7

Cui et al. GRGs in Colon Cancer

FIGURE 3 | Protein–protein interaction (PPI) network construction and selection of prognosis–related glycolysis-related genes (GRGs). (A) PPI network of differential
GRGs (DE-GRGs). (B) Critical module constructed from PPI network. Green circles indicate downregulation with more than two-fold change. Yellow circles indicate
upregulation with more than two-fold change. (C) Univariate Cox regression analysis with preliminary identified prognostic related GRGs. (D) Multivariate Cox
regression analysis with prognosis-related GRGs.

TABLE 2 | Glycolysis related genes Multivariate Cox regression results.

Multivariate cox analysis

GRGs HR P value

PPP2CB 0.558(0.338–0.924) 0.023

PGM2 0.658(0.384–1.125) 0.126

PPARGC1A 0.649(0–430-0.979) 0.039

EN03 1.806(1.037–3.146) 0.037

PMM2 0.480(0.253–0.910) 0.025

P4HA1 2.209(1.593–3.063) <0.001

STC2 1.312(1.057–1.628) 0.014

CHPF2 1.747(0.975–3.130) 0.061

metabolism or exogenous substances through cytochrome P450,
and transforming growth factor-beta signaling pathways in high-
risk COAD patients (Figures 6A,B).

CIBERSORT along with the LM22 matrix was used to assess
immune cell infiltration in the low- and high-risk groups of
COAD patients. The GEO and TCGA and dataset analyses
indicated that CD4+ and CD8+ T cells, macrophages, and

mast cells were the predominant infiltrating immune cells in
COAD (Figures 6C,D). Furthermore, infiltrations of resting
CD4+ memory T cells, resting dendritic cells, and activated
dendritic cells were significantly downregulated in the high-
risk patients. In contrast, the distributions of M0 macrophages
and eosinophils were opposite in the low- and high-risk TCGA
groups (Figure 6E). Similarly, in the GSE17536 dataset, the
infiltrating immune cells comprised significantly low proportions
of CD4+ memory resting T cells and resting dendritic cells
and high infiltration of M0 macrophages compared with
those in the low-risk group (Figure 6F). However, there
was no significant difference in the infiltrations of activated
dendritic cells and eosinophils between the low- and high-
risk groups.

Estimation of Mutational Load, Genetic
Variation, Stemness Index, and
Sensitivity to Antineoplastic Drugs
To explore the underlying reasons for the difference in prognosis
of patients in the low- and high-risk groups, we analyzed the
TMB, CNV, and tumor stemness among the low- and high-risk
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FIGURE 4 | Risk model construction and validation. (A) Kaplan–Meier plots illustrating the worse overall survival (OS) rate in the high-risk group compared with the
low-risk group patients in The Cancer Genome Atlas (TCGA) cohort. (B) Expression heatmap, risk score distribution, and survival status in TCGA cohort.
(C) Time-dependent area under the curve (AUC) of the receiver operating characteristic (ROC) curve of the 1-, 3-, and 5-year OS rates of TCGA patients.
(D) Kaplan–Meier plots of worse OS in the high-risk patients compared with low-risk patients in the GSE17536 cohort. (E) Expression heatmap, risk score
distribution, and survival status in the GSE17536 cohort. (F) Time-dependent AUC ROC curve of 1-, 3-, and 5-year OS rates of patients in the GSE17536 cohort.

groups. Waterfall plots were constructed to demonstrate the
TMB and to differentiate TMB among the two risk groups. As
shown in Figures 7A,B, most genes displayed higher mutation
frequencies in the high-risk group. These genes included TP53,
TTN, and KRAS. We calculated the TMB for each patient
in both risk groups. The mean TMB was not significantly
different between the two groups (p > 0.05; Figure 7C). In
addition, distinct variations in CNV were evident in 920 genes
predominantly located in chromosomes 1, 11, 14, 17, 18, and
19 (Figure 7D). A one-class logistic regression analysis was
performed to calculate (mRNAsi) and epigenetic regulation-
based stemness index (EREG-mRNAsi). The high-risk group
had higher stemness indices compared with the low-risk group
(Figures 7E,F). To evaluate the therapeutic effect of the risk
model, the pRRophetic R package was used to analyze data
downloaded from the GDSC database for the prediction of
the sensitivity of distinct chemotherapeutic drugs on GRGs.
Estimated IC50 values indicated that the low-risk patients
were more sensitive to the anticancer drugs olaparib, veliparib,
axitinib, metformin, and rapamycin (p < 0.05; Figure 7G).

Glycolysis-Related Gene Prognostic
Model Is an Independent Prognostic
Factor for Colon Adenocarcinoma
Patients
To further judge whether the GRG model can be used as an
independent factor to predict the prognosis of patients with

colon cancer, Cox regression analysis was performed to reveal an
association between risk score and OS of the patients.

Univariate Cox regression analysis revealed the significant
association of risk score with OS in both TCGA cohort (hazard
ratio [HR] = 1.382, 95% confidence interval [CI] = 1.284–1.488,
p < 0.001) and GSE17536 cohort (HR = 1.252, 95% CI = 1.125–
1.393, p < 0.001); Figures 8A,B). Multivariate Cox regression
analysis with correction for distinct confounding parameters still
revealed the risk score as an independent predictor for OS (TCGA
cohort: HR = 1.382, 95% CI = 1.261–1.515, p < 0.001; GSE
17536 cohort: HR = 1.246, 95% CI = 1.104–1.406, p < 0.001;
Figures 8C,D). Subsequently, ROC analysis was used to explore
whether the risk score model was more accurate in predicting OS
than clinical characters. As shown in Figures 8E,F, the predictive
ability of the risk score model was stronger than that of other
clinical characteristics. To establish a quantitative tool capable of
predicting the clinical application of OS in patients with colon
cancer, we established a nomogram integrating the risk score
and clinical characters to calculate 1-, 3-, and 5-year OS rates
of patients (Figures 8G,H). Calibration plots indicated that the
nomogram versus an ideal model showed high consistency in
TCGA and GSE17536 cohorts (Figures 8I,J).

Identification of Potent Drugs Targeting
Glycolysis-Related Genes in the CMap
Database
Sixty potential small molecule drugs targeting genes for GRGs
were identified by CMap database analysis (Figure 9). The
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FIGURE 5 | Relationship of the GRG signature with clinicopathological characteristics in The Cancer Genome Atlas (TCGA) data. (A) Heatmap of the differential
expression of the eight GRGs. (B) Box plots showing risk score distribution of different clinical characteristics of the colon adenocarcinoma (COAD) tumors. (C) The
GRG risk model predicts the overall survival (OS) rate of patients with colon cancer in multiple clinical subgroups.

mechanisms of the drugs were distinct. Among the 60 drugs,
three (bicuculline, NCS-382, and pentylenetetrazol) are gamma
aminobutyric acid (GABA) receptor antagonists and three
other drugs (prednisolone, diflorasone, and fluocinonide) are
glucocorticoid receptor agonists. The findings indicated that
drugs targeting the signature GRGs might have therapeutic
importance in the treatment of colon cancer.

Validation of the Expression and the
Prognosis of Eight Glycolysis-Related
Genes
qRT-PCR was performed from RNA extracted from 43 pairs
of colon cancer and adjacent normal tissues to observe the

relative expression levels of eight GRGs (P4HA1, STC2, CHPF2,
PMM2, PGM2, ENO3, PPARGC1A, and PPP2CB). P4HA1,
STC2, CHPF2, PMM2, PGM2, and ENO3 were expressed at
higher levels in COAD tissues, with lower expression of PPP2CB
and PPARGC1A (Figure 10A). The findings were consistent
with the results of analyses of the Gene Expression Profiling
Interactive Analysis (GEPIA) and UALCAN online databases
(Supplementary Figure 3).

Similarly, immunohistochemistry (IHC) staining of colon
cancer tissue with antibodies to P4HA1, STC2, CHPF2, PMM2,
PGM2, ENO3, PPARGC1A, and PPP2CB had higher expression
of the P4HA1, STC2, PMM2, CHPF2, and ENO3 GRGs in COAD
tissue and lower expression of the PPP2CB, PPARGC1A, and
PGM2 GRGs in the same tissues (Figures 10B,C). In addition,
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FIGURE 6 | Gene set enrichment analysis (GSEA) and immune cell infiltration analyses in low- and high-risk patients. (A,B) Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment of low- and high-risk groups by GSEA in The Cancer Genome Atlas (TCGA) cohort (A) and GSE17536 cohort (B). Only gene sets with
false discovery rate (FDR) q < 0.05 were considered significant. (C,D) Relative proportion of infiltrating immune cells in low- and high-risk colon adenocarcinoma
(COAD) patients in TCGA cohort (C) and GSE17536 cohort (D). (E,F) Comparative demonstration of the distinct infiltrating immune cells in low- and high-risk COAD
patients in TCGA cohort (E) and GSE17536 cohort (F).

there were significant differences in the expression of STC2 in
the COAD tissues at different stages of COAD (I, II, III, and IV;
Figure 10D). These findings suggest that the expression level of
STC2 changes with the progression of tumors.

To further explore the potential prognostic value of eight
GRGs in COAD patients, we performed the Kaplan–Meier
survival analysis to determine the effect of the eight GRGs on
OS in TCGA COAD patients. Overexpression of STC2, ENO3,
P4HA1, and CHPF2 and low expression of PPP2CB, PPARGC1A,
PMM2, and PGM2 are associated with lower OS rate in COAD
patients (Supplementary Figure 4).

Knockout of STC2 Protein Inhibits the
Proliferation and Invasion of Colorectal
Cancer Cells
Considering the potential role of STC2 in CRC progression, we
performed in vitro proliferation, colony formation, migration,
and invasion assays. The high expression of STC2 was associated

with poor outcomes of CRC patients. We further evaluated
the effect of STC2 depletion on the cellular process and
BP in the CRC cells. Functionally, knockdown of STC2 by
siRNA resulted in decreased cellular proliferation and colony
formation by HCT116 and SW480 cells (Figures 11A,B).
Similarly, knockdown of STC2 in HCT116 and SW480
cells using short hairpin RNA decreased cellular migration
and invasion compared with control cells (Figures 11C,D).
The findings confirmed the potential role of STC2 in the
progression or CRC.

DISCUSSION

The present analyses revealed 226 DE-GRGs in TCGA COAD
patients. In addition, gene ontology and KEGG analyses of
DE-GRGs revealed their involvement in regulating the distinct
functions and pathways involved in abnormal energy metabolism
during tumor development and metastasis. Furthermore, eight
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FIGURE 7 | Relationship of glycolysis-related gene (GRG) risk group with tumor mutation burden, copy number variation, tumor stemness, and chemotherapy
response. (A,B) Waterfall plots demonstrating the higher frequency of mutated genes in the high-risk and low-risk groups. (C) Difference in total tumor mutation
burden in low- and high-risk colon adenocarcinoma (COAD) patients. (D) Distinct genes with different copy number variations due to gains or loss of nucleotides
mainly on chromosomes 1, 11, 14, 17, 18, and 19 (E,F). Difference in tumor stemness by the mRNAsi (E) and EGFR mRNAsi (F). (G) Estimated IC50 indicating the
efficiency of chemotherapy to GRGs in low- and high-risk patients of olaparib, veliparib, axitinib, metformin, and rapamycin.

GRGs were identified as the most robust glycolysis-related
prognostic signature. This signature was used to categorize
the colon cancer patients into the low- and high-risk groups
with significant differences in survival outcomes. Similarly,
univariate and multivariate Cox regression analyses of eight
GRGs demonstrated the independent ability to predict patient
prognosis. The results further indicate that the signature GRGs
are closely related to many clinical characteristics, such as
the increased risk score with tumor development and distant
metastasis. This discovery could aid in the dynamic monitoring
of colon cancer patients. In addition, we further confirmed the

expression of eight GRGs in colon cancer by qRT-PCR and IHC
analyses. Surprisingly, the expression of protein increased with
increased disease stage. Cell cloning and invasion experiments
further confirmed the tumor-promoting function of STC2.

To explore the underlying mechanisms of the GRGs model,
GSEA was performed to explore KEGG pathways among
the two risk groups. Aberrant activation of distinct signaling
pathways, including the notch signaling pathway, mitogen-
activated protein kinase signaling pathway, regulation of actin
cytoskeleton, phosphatidylinositol, and the transforming growth
factor-beta signaling pathway, among the high-risk score patients
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FIGURE 8 | Prediction of overall survival (OS) by risk score and clinical characteristics. (A,B) Forest plot of risk scores and other clinical factors based on a univariate
Cox regression analysis in The Cancer Genome Atlas (TCGA) (A) and GSE17536 cohort (B). (C,D) Forest plot of risk scores and other clinical factors based on a
multivariate Cox regression analysis in TCGA (C) and GSE17536 (D) cohort. (E,F) Comparison of specificity and sensitivity of 5-year overall survival rate between
different clinical traits and GRG risk models in TCGA (E) and GSE17536 (F) cohort. (G,H) Nomogram with a combination of risk score and different clinical traits in
TCGA (G) and GSE17536 (H) cohort. (I,J) A calibration plot for predicting the accuracy of the nomogram in TCGA (I) and GSE17536 (J) cohort.

FIGURE 9 | CMap database analysis identifies novel candidate drugs targeting the glycolysis-related gene (GRG)-related signature.
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FIGURE 10 | Eight glycolysis-related gene GRG expression in clinical samples. (A) mRNA expression of eight GRGs in clinical samples. (B) Protein expression
analysis of eight GRGs in tumor and normal samples using immunohistochemistry analysis. Scale bar represents × 100, × 400, or 100 µm. (C) Eight GRG protein
scores in tumor and normal samples. (D) GRG protein expression at the distinct stage of tumor. One-way analysis of variance used for statistical analysis, *p < 0.05,
**p < 0.01 versus stage I. All data are expressed as mean ± SEM.

is associated with poor prognosis of COAD (Meng et al., 2009;
Lähde et al., 2020).

Considering the heterogeneity and complexity in tumor
development, we comprehensively analyzed glycolysis-related
models, including the TME, epigenetics, and tumor stemness
index, to better understand the potential underlying mechanism
among the low- and high-risk groups of COAD patients. Analysis
of immune cell infiltration revealed a significant difference
between the risk groups, suggesting that abnormal glycolysis
metabolism could alter the immune microenvironment, which
could affect prognosis and treatment. A prior study (Song and

Wu, 2020) reported an association between decreased infiltration
of CD4+ memory resting T cells and poor prognosis. Other
studies reported a rapid transformation of resting dendritic cells
to activated dendritic cells under in vivo stimulation and their
participation in adaptive immune responses (Joffre et al., 2009).
The number of infiltrating dendritic cells has been positively
associated with survival in colon cancer and pancreatic ductal
adenocarcinoma (Nagorsen et al., 2007; Wu et al., 2020). In
addition, the increase of M0 macrophages can lead to decreased
immune activity and poor prognosis in digestive system tumors
(Nagorsen et al., 2007; Nie et al., 2020). Considering the
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FIGURE 11 | STC2 knockdown inhibits cell proliferation, migration, and invasion in vitro. (A) STC2 expression in STC2-siRNA HCT-116 and SW-480 cells.
(B) Growth curves for HCT-116 and SW-480 cells after transfection with STC2 siRNA determined by Cell Counting Kit-8 (CCK-8) analysis. (C) Clonogenic assay on
STC2-siRNA knockdown HCT-116 and SW-480 cell lines showing decreased colony formation compared with the negative control. (D) Decreased cell migration
and Transwell invasion activity in STC2-siRNA knockdown HCT-116 and SW-480 cells. Results are expressed as mean ± SEM. Significance difference was tested
by one-way ANOVA: ***p < 0.001 versus mock, ****p < 0.0001 versus mock.

significant role of GRGs in the development and prognostic of
colon cancer, we analyzed the differences between TMB, CNV,
and mRNAsi in the low- and high-risk groups of COAD patients.
Patients with high-risk score had higher TMB; however, there was
no significant difference in total TMB. Higher tumor stem cell
index and abnormal CNV were observed in the high-risk group,
strongly implicating GRGs as the genetic alteration.

Similarly, scrutiny of the GDSC database determined
the effectiveness of different chemotherapeutic drugs in the
treatment of low- and high-risk COAD patients. Based on
the IC50 values, olaparib, veliparib, axitinib, metformin, and
rapamycin displayed a better response in treating the low-risk
score COAD patients. These drugs have been reported to be
important in the treatment of colon cancer patients (Faller
et al., 2015; Arena et al., 2020; Guo et al., 2020). Additionally,
using the CMap database, we identified 60 small molecule
drugs with therapeutic potential. These drugs may have
pronounced efficacy in COAD treatment. The drugs include
glucocorticoid receptor agonist (prednisolone, diflorasone,
and fluocinonide), GABA receptor antagonists (bicuculline,
NCS-382, and pentylenetetrazol), inhibitors of angiogenesis
(roquinimex and tiabendazole), and EGFR inhibitors (tyrphostin
and RG-14620). Identification of distinct candidate drugs might
be useful in the treatment of COAD patients by targeting GRGs.
Together, the findings clearly indicate the significant importance
of the eight GRG genes in COAD prognosis and treatment.

CONCLUSION

This comprehensive multi-database study is the first to
investigate the expression profile of GRGs and their clinical
significance in patients with colon cancer. The formulated risk
model may provide an effective clinical tool in the prognosis and
optimization of treatment for patients with colon cancer.
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in TCGA and GTEx.
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