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Background: The prognosis of patients with hepatocellular carcinoma (HCC) is
negatively affected by the lack of effective prognostic indicators. The change of tumor
immune microenvironment promotes the development of HCC. This study explored
new markers and predicted the prognosis of HCC patients by systematically analyzing
immune characteristic genes.

Methods: Immune-related genes were obtained, and the differentially expressed
immune genes (DEIGs) between tumor and para-cancer samples were identified and
analyzed using gene expression profiles from TCGA, HCCDB, and GEO databases. An
immune prognosis model was also constructed to evaluate the predictive performance
in different cohorts. The high and low groups were divided based on the risk score of
the model, and different algorithms were used to evaluate the tumor immune infiltration
cell (TIIC). The expression and prognosis of core genes in pan-cancer cohorts were
analyzed, and gene enrichment analysis was performed using clusterProfiler. Finally, the
expression of the hub genes of the model was validated by clinical samples.

Results: Based on the analysis of 730 immune-related genes, we identified 64
common DEIGs. These genes were enriched in the tumor immunologic related signaling
pathways. The first 15 genes were selected using RankAggreg analysis, and all the
genes showed a consistent expression trend across multi-cohorts. Based on lasso
cox regression analysis, a 5-gene signature risk model (ATG10, IL18RAP, PRKCD,
SLC11A1, and SPP1) was constructed. The signature has strong robustness and can
stabilize different cohorts (TCGA-LIHC, HCCDB18, and GSE14520). Compared with
other existing models, our model has better performance. CIBERSORT was used
to assess the landscape maps of 22 types of immune cells in TCGA, GSE14520,
and HCCDB18 cohorts, and found a consistent trend in the distribution of TIIC. In
the high-risk score group, scores of Macrophages M1, Mast cell resting, and T cells
CD8 were significantly lower than those of the low-risk score group. Different immune
expression characteristics, lead to the different prognosis. Western blot demonstrated
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that ATG10, PRKCD, and SPP1 were highly expressed in cancer tissues, while IL18RAP
and SLC11A1 expression in cancer tissues was lower. In addition, IL18RAP has a highly
positive correlation with B cell, macrophage, Neutrophil, Dendritic cell, CD8 cell, and
CD4 cell. The SPP1, PRKCD, and SLC11A1 genes have the strongest correlation with
macrophages. The expression of ATG10, IL18RAP, PRKCD, SLC11A1, and SPP1 genes
varies among different immune subtypes and between different T stages.

Conclusion: The 5-immu-gene signature constructed in this study could be utilized as
a new prognostic marker for patients with HCC.

Keywords: immune gene signatures, HCC, prognosis, tumor immune infiltration cell, pan-cancer

BACKGROUND

Hepatocellular Carcinoma (HCC) is the most common type
of liver cancer and one of the leading causes of cancer
death worldwide. In 2020, there were an estimated 42,810
new liver cancer cases and 30,160 related deaths in the
United States (Siegel et al., 2020). The major risk factors
for liver cancer include chronic Hepatitis B virus infection,
hepatitis C infection, obesity, and alcoholism (El-Serag and
Rudolph, 2007). At present, the treatment of HCC mainly
includes surgical resection, transvascular chemoembolization,
radiofrequency ablation, liver transplantation, molecular targeted
therapy, and systemic chemotherapy. However, due to the
concealed onset of HCC, more than 80% of patients are diagnosed
at an advanced stage. The above treatment methods are usually
insufficient, and the 5-year overall survival rate is less than 10%
(Forner et al., 2018). Therefore, new therapies with different
mechanisms are urgently needed to improve the prognosis of
HCC patients. Immunotherapy has gradually become another
milestone after traditional radiotherapy and chemotherapy.

The liver is a special immune tolerance organ which
can effectively escape the immune response. Immunotherapy
can enhance the immune response, stimulate tumor-specific
immunity, break immune tolerance, and reactivate immune cells,
for the purpose of recognizing and destroying tumor cells. In
patients with Liver Hepatocellular Carcinoma (LIHC), CTLA-
4 is often overexpressed in the liver’s dendritic cells, which
inhibits T cell activation and proliferation and reduces its ability
to recognize tumor antigens (Sangro et al., 2013). PD-1 can
inhibit the activation of antigen-specific T cells by binding with
its ligand PD-L1, which can decrease the immune response
of tumor microenvironment to T cells and lead to immune
escape (Yarchoan et al., 2019). Anti-PD-1/PD-L1 nivolumab and
pembrolizumab are currently used in the treatment of HCC.
Although immunotherapy has made progress in patients with
liver cancer, the response rate to immunotherapy varies from
patient to patient, even regarding drug resistance. Therefore,
sensitive and specific predictive biomarkers must be identified

Abbreviations: AIC, the Akaike information criterion; DEGs, differentially
expressed genes; DEIGs, differentially expressed immune genes; FDR, false
discovery rate; GEO, gene expression omnibus; GO, gene ontology; GSEA, gene set
enrichment analysis; HCC, hepatocellular carcinoma; KEGG, kyoto encyclopedia
of genes and genomes; LIHC, liver hepatocellular carcinoma; TIIC, Tumor
immune infiltration cell.

to maximize the efficacy of immunotherapy. It is necessary to
determine the role of tumor immune microenvironment and
immune-related genes in the diagnosis and prognosis of HCC.

In recent years, the rapid development of high-throughput
sequencing technology has caused the rapid emergence of
retrospective studies using public databases to provide new
guidance for prognosis prediction and clinical treatment
of tumors. An immune-related 7-microRNA signature was
constructed to predict the prognosis of patients with HCC
(Li et al., 2021). Zhang et al. (2020) used an immune-
associated lncRNA signature to predict the efficacy of immune
checkpoint therapy in patients with HCC. Zhao et al. (2020)
constructed a 4-gene signature using immune checkpoint-related
to guide the diagnosis and prognosis of HCC patients. A 5-
gene signature constructed by Tian et al. (2019) using tissue-
associated immune biomarkers can be used to predict the survival
outcome of patients with early/middle stage HCC. In this study,
we systematically described the immune characteristics and
immunophenotypes of HCC tumor microenvironment using 730
immune-related genes based on four data sets. 64 immune-
related genes were identified. These genes were closely related to
the immune pathways including NF–kappa B signaling pathway,
TNF signaling pathway, and Cytokine receptor interaction. A 5-
gene signature was constructed to predict the prognosis of
patients with HCC. The results of this study highlight how tumor
microenvironment promotes the prognosis of patients with HCC,
and can explain the complexity of immune microenvironment
of HCC and provide new ideas regarding immunotherapy
for HCC patients.

MATERIALS AND METHODS

Data Source and Preprocessing
RNA-Seq data and clinical follow-up data of LIHC data set and
HCCDB18 data set were downloaded from the TCGA database
and the HCCDB database1, respectively. GSE14520 data set with
survival data, in addition to GSE22058, GSE25097, GSE64041,
and GSE36376 data sets containing tumor and para-cancerous
samples without survival data, were downloaded from the Gene
Expression Omnibus (GEO) database.

1http://lifeome.net/database/HCCDB/home.html
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The RNA-seq data of TCGA-LIHC were processed in the
following steps: (1) removing samples with no clinical follow-
up information; (2) removing samples with no survival time;
(3) removing samples with no Status; (4) transforming ensemble
into gene symbols; and (5) taking the median with multiple
gene symbol expressions. GEO data sets were processed in the
following steps: (1) removing samples without clinical follow-
up information; (2) removing samples without survival time and
survival status; (3) converting probes into gene symbols; (4)
removing the probe when corresponding to multiple genes; and
(5) taking the median value of the expression of multiple gene
symbols. The RNA-seq data of HCCDB18 were processed in the
following steps: (1) removing samples without clinical follow-
up information; (2) removing samples without survival time;
(3) removing samples without status; and (4) removing samples
without expression spectrum data.

After data-preprocessing, there were 197 samples,
including 100 tumor samples and 97 para-cancerous
samples, in GSE22058; 511 samples, including 268 tumor
samples and 243 para-cancerous samples, in GSE25097;
120 samples, including 60 tumor samples and 60 para-
cancerous samples, in GSE64041; and 433 samples, including
240 tumor samples and 193 para-cancerous samples, in
GSE36376.The samples clinical statistics were shown in
Table 1.

There were 365 samples for TCGA-LIHC, 203 samples for
HCCDB18, and 221 samples for GSE14520 with survival data
after pre-processing. Clinical statistics of the sample are shown
in Table 2.

Identification of Differentially Expressed
Genes (DEGs) and Analysis of KEGG
Pathway and GO Enrichment
The limma package (Ritchie et al., 2015) was used to analyze
the differentially expressed immune genes of 730 immune
genes in tumor samples and para-cancerous samples from four
data sets, and filter with False discovery rate (FDR) < 0.05
and | FC | > 1.2 as the threshold. The differentially
expressed immune genes were analyzed by using the R package
WebGestaltR (v0.4.2) for Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis and Gene ontology (GO)
function enrichment analysis. Rankaggreg was used to identify

TABLE 1 | Clinical statistics of the sample.

Data Tumor Adjacent Total

GSE22058 100 97 197

GSE25097 268 243 511

GSE64041 60 60 120

GSE36376 240 193 433

GSE14520 225 220 445

HCCDB18 212 177 389

TCGA 365 50 415

2095

TABLE 2 | Samples with survival information.

Clinical features TCGA-LIHC HCCDB18 GSE14520

OS

0 235 168 136

1 130 35 85

T stage

T1 180

T2 91

T3 78

T4 13

TX 3

N stage

N0 248

N1 4

NX 113

M stage

M0 263

M1 3

MX 99

Stage

I 170

II 84

III 83

IV 4

X 24

Grade

G1 55

G2 175

G3 118

G4 12

GX 5

Gender

Male 246

Female 119

Age

≤60 173

>60 192

Recurrence

YES 167

NO 198

genes with the most significant variation in the differentially
expressed immune genes.

Random Grouping of Training Set
Samples
The 365 samples in the TCGA data set were divided into a
training set and a validation set. In order to prevent random
assignment bias from compromising the stability of subsequent
modeling, all samples were placed in random grouping 100 times
in advance. The grouping sampling was performed according to
the ratio of training set: validation set = 1:1. The most suitable
training sets and validation sets were selected according to the
following conditions: (1) the two groups were similar in age
distribution, sex, follow-up time, and patient mortality ratio;
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(2) the sample size of the two groups was close after randomly
clustering the gene expression profiling data sets. There were
182 samples in the final training set and 183 samples in the
validation set. The training set and validation set of the TCGA
data are shown in Table 3. The training set and validation
set were tested by chi-square test. The result showed that our
grouping is reasonable.

Univariate Cox Regression and Lasso
Regression Analysis
R package survival coxph function was used to conduct univariate
Cox proportional hazard regression analysis based on the survival
data of each immune gene in the training set data. P < 0.05
was selected as the threshold for filtering. Lasso regression

TABLE 3 | TCGA training set and validation set sample information.

Clinical features TCGA-LIHC train TCGA-LIHC test

OS

0 122 113

1 60 70

T stage

T1 93 87

T2 47 44

T3 32 46

T4 7 6

TX 3 0

N stage

N0 114 134

N1 0 4

NX 68 45

M stage

M0 122 141

M1 2 1

MX 58 41

Stage

I 87 83

II 42 42

III 33 50

IV 2 2

X 18 6

Grade

G1 29 26

G2 89 86

G3 54 64

G4 6 6

GX 4 1

Gender

Male 121 125

Female 61 58

Age

≤60 91 82

>60 91 101

Recurrence

YES 76 91

NO 106 92

(Kukreja et al., 2006) was further compressed using the R package
glmnet to reduce the number of genes in the risk model. Lasso
regression is a kind of compression estimation. A more refined
model is obtained by constructing a penalty function, which
compresses some coefficients and sets some to zero. This retains
the advantage of subset contraction, which is a kind of biased
estimation with complex collinear data. Consequently, one can
realize the selection of variables as well as parameter estimation
and better solve the problem of multicollinearity in regression
analysis. The Akaike information criterion (AIC) was further
used to reduce the number of model genes. The STEPAIC method
in the MASS package starts from the most complex model and
removes one variable, to reduce the AIC. The smaller the value,
the better the model is, as it demonstrates that the model can
obtain enough fitting degree with fewer parameters.

Expression and Prognosis Value of the
Five Genes in Pan-Cancer
The transcriptome data of 33 cancers and the normal tissue
data were downloaded from the UCSC Xena database and the
GTEX database, respectively. The box maps of ATG10, IL18RAP,
PRKCD, SLC11A1, and SPP1 in tumor tissues and normal tissues
of 33 cancer types were plotted using the ggplot2 package. The
prognosis forest map of each gene in 33 cancer types was also
drawn with the ggplot2 package.

Sample Collection and Western Blotting
Liver hepatocellular carcinoma and adjacent normal tissues were
collected from 4 patients, immediately placed in liquid nitrogen,
and preserved at −80◦C. Take the tumor tissue and normal
tissue adjacent to the cancer into small pieces and put them
into the tube, add lysis buffer RIPA (1% Triton X-100, 50 mM
Tris-HCl pH7.4, 150 mM Na Cl, 10 mM EDTA, 100 mM
Na F, 1 mM Na 3 VO 4, 1 mM PMSF, 2 µg/ml Aprotinin)
(1 ml lysate is added to 250mg tissue). Use a homogenizer to
homogenize at low speed for 30 s each time, and ice bath for
1 min between each time until the tissue is completely lysed.
Centrifuge at 13,000 rpm for 25 min, take the supernatant,
and quantify the protein by Coomassie brilliant blue method.
After mixing with 3 × sample buffer, boil for 5 min. The
sample (30–50 µg/lane) was electrophoresed in a 12% SDS-
polypropylene gel for 3 h, and then transferred to a nitrocellulose
membrane (voltage: 2 mV/cm2; time: 120 min). After sealing
with 5% skimmed milk for 1 h, cut the transfer film according
to the molecular weight marked by the pre-stained Marker, and
add the primary antibodies separately at 4◦C overnight. After
washing 4 times with TTBS, add secondary antibody (1:2000)
for 30 min at room temperature. After washing 4 times with
TTBS again, the color will be developed by ECL method. The
primary antibodies are as follows: ATG10 (1:1000, ab124711,
abcam), PRKCD (1:1000, SAB4300539, sigma), IL18RAP (1:1000,
AV42154, sigma), SLC11A1 (1:10000, SAB2108019, sigma), SPP1
(1:1000, ab214050, Sigma).

After rinsing 3 times (10 min each time) with tris-
buffered saline, the membrane was incubated with horseradish
peroxidase-conjugated secondary antibody against rabbit IgG
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(1:5000, Amersham Bioscience, Piscataway, NJ, United States)
for 1 h at room temperature. After washout, the membrane
was developed using enhanced chemiluminescence reagents
(Pierce, Rockford, IL, United States) and visualized using a
chemiluminescence system (PTC-200, Bio-Rad Laboratories,
Hercules, CA, United States). All Western blots were
repeated 3 times.

Immunologic Correlation of the Five
Genes in Pan-Cancer
The immune score and matrix score of each patient were assessed
using the estimate package, while the levels of ATG10, IL18RAP,
PRKCD, SLC11A1, and SPP1 in pan-cancer were analyzed. The
corrplot package was used to visualize the correlation between
each gene and the immune score and matrix score of each cancer
type. A timer database2 was used to analyze the association of five
genes with immune cells.

Clinical Correlation and Pathway
Enrichment of the Five Genes in HCC
The levels of the five genes in different clinical stages, tumor
grade, T stage, N stage, and M stage in HCC was further analyzed.

2https://cistrome.shinyapps.io/timer/

The patients with HCC were divided into high- and low-risk
groups according to levels of the five genes, and the single gene
Gene Set Enrichment Analysis (GSEA) of the five genes was
analyzed using the clusterProfiler package.

RESULTS

64 Differentially Expressed Immune
Genes Were Identified
A total of 443, 201, 184, and 205 differentially expressed immune
genes were identified in the GSE22058, GSE25097, GSE64041,
and GSE36376 data sets, respectively. The differentially expressed
immune genes were mapped by volcanoes and heatmaps
(Figures 1A–H, S2-S5.CSV). A total of 64 differentially
expressed immune genes were obtained from the intersection
of differentially expressed immune genes in four data sets
(Supplementary Figure 1A). The results of GO functional
enrichment analysis demonstrate that there were 277 items with
significant differences in BP, the top ten of which are shown in
Figure 1I. There were 15 items with significant differences in
CC, the top ten of which are shown in Figure 1J. There were 16
items with significant differences in MF, the top 16 of which are
shown in Figure 1K. The results of the first ten KEGG pathways

FIGURE 1 | (A,B) Volcano map and heat map of differentially expressed genes in GSE22058. (C,D) Volcano map and heat map of differentially expressed genes in
GSE25097. (E,F) Volcano map and heat map of differentially expressed genes in GSE64041. (G,H) Volcano map and heat map of differentially expressed genes in
GSE36376. (I) Bubble chart of differentially expressed genes in biological process. (J) Bubble chart of differentially expressed genes in cellular component.
(K) Bubble chart of differentially expressed genes in molecular function. (L) Bubble chart of differentially expressed genes in KEGG pathway.
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showed that the gene was significantly enriched in the NF–
kappa B signaling pathway, TNF signaling pathway, and Cytokine
receptor interaction (Figure 1L).

The Expression of Differentially
Expressed Immune Genes in HCC
Differed From That in Normal Tissues
The first 15 genes with the most significant differentially
expressed genes were identified including HAMP, C9, CXCL14,
MARCO, CXCL12, HSD11B1, C7, C8A, MBL2, C6, EGR1, CFP,
C8B, CXCL2, and CCL19. GSE22058, GSE25097, GSE64041,
GSE36376, TCGA, HCCDB18, and GSE14520 were used to
analyze the expression of these genes in tumor samples and
para-cancer samples. HAMP, C9, CXCL14, MARCO, CXCL12,
HSD11B1, C7, C8A, and MBL2 were differentially expressed, as
shown in Figure 2. The differentially expressed profile of the
other genes are shown in Supplementary Figure 1B. The results
demonstrated significant differences in the expression of these
hub genes between HCC and adjacent tissues, suggesting that
immune-related genes play an important role in HCC.

The Construction of Risk Model
A univariate cox regression model was used to analyze 730
immune-related genes, which produced 132 DEGs, as shown
in S8.csv. Lasso regression was used to further compress the
genes. The change track of each independent variable is shown
in Figure 3A, in which we can see that with the gradual increase
of lambda, the number of independent variable coefficients
gradually trends to 0. We used fivefold cross-validation to build

the model and analyzed the confidence interval under each
lambda, as shown in Figure 3B. The results showed that the
model is optimal when lambda = 0. 0904, and the 12 genes were
obtained when lambda = 0. 0904. The AIC regression further
compressed the number of the hub genes into five: ATG10,
IL18RAP, PRKCD, SLC11A1, and SPP1. The KM curve of the
five genes is shown in Supplementary Figure 2, which shows
that all the five genes could separate TCGA training set samples
significantly (p < 0.05). The 5-gene signature formula is as
follows: RiskScore = 0.841 ∗ ATG10-0.989 ∗ IL18RAP + 0.507 ∗
PRKCD + 0.437 ∗ SLC11A1 + 0.104 ∗ SPP1.

RiskScore was calculated for each sample based on level of
expression. The survival time of the high RiskScore sample
is significantly less than that of the low RiskScore sample,
suggesting that the former has a worse prognosis (Figure 3C).
timeROC was used to analyze the ROC of RiskScore. The
predictive classification efficiency of 1, 3, and 5 years is shown in
Figure 3D, which demonstrates that the model has a high AUC.
The samples greater than zero after zscore (85 samples) were
divided into the high-risk group (85 samples) and samples less
than zero after zscore were divided into the low-risk group (97
samples). The difference between the survival curves of the high-
and low-risk groups is shown in Figure 3E (p < 0.0001).

Verifying the Robustness of the Risk
Model
The robustness of the risk model was verified using internal
data sets (TCGA validation set and all data sets) and external
data sets (GSE14520 and HCCDB18), respectively. Using the
same model and coefficients as the training set, the risk score of

FIGURE 2 | Box map of DEGs expression in tumor and para-cancer samples in different data sets. The differences in the expression of (A) HAMP, (B) C9,
(C) CXCL14, (D) MARCO, (E) CXCL12, (F) HSD11B1, (G) C7, (H) C8A, and (I) MBL2 genes, respectively, in tumor and adjacent samples.
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FIGURE 3 | (A) For the changing trajectory of each independent variable, the horizontal axis represents the log value of the independent variable lambda, and the
vertical axis represents the coefficient of the independent variable. (B) The confidence interval under each lambda. (C) RiskScore, survival time, survival status, and
5-gene expression in TCGA training set. (D) ROC curve and AUC of 5-gene signature classification. (E) The KM survival curve distribution of 5-gene signature in
training set.

each sample was calculated according to the level of expression,
and the RiskScore distribution of the sample was plotted.
The RiskScore distributions of the TCGA validation set, all
TCGA data sets, independent validation data sets GSE14520,
and independent validation data sets HCCDB18 are shown in
Figures 4A, 5A and Supplementary Figures 3A, 4A, respectively.
The survival time of the high RiskScore sample is evidently
less than that of the low RiskScore sample, indicating that the
former has worse prognosis. The ROC curves of 1-year, 3-
year, and 5-year predictive classification efficiency are shown in
Figures 4B, 5B and Supplementary Figures 3B, 4B, respectively.
The samples whose RiskScore was greater than zero after
zscore were divided into the high-risk group and those with
less than zero after zscore were divided into the low-risk
group. In TCGA, 86 samples were divided into the high-risk
group and 97 samples were divided into low-risk group. The
survival curve indicated a difference between the two groups
(p < 0.01) (Figure 4C). In all TCGA data sets, 171 samples
were classified as high-risk and 194 were classified as low-
risk. The survival curve indicated a difference between the two
groups (p < 0.0001) (Figure 5C). In GSE14520, 110 samples
were divided into the high-risk group and 111 samples were
divided into the low-risk group. The survival curve indicated a
difference between the two groups (P = 0.0084) (Supplementary
Figure 3C). In the independent validation data set HCCDB18,
98 samples were divided into the high-risk group and 105

samples were divided into the low-risk group. The results
indicated a difference between the two groups (p < 0.01)
(Supplementary Figure 4C).

Prognostic Analysis of Clinical
Subgroups Based on RiskScore
A stratified analysis of clinical subgroups variables including Age,
Gender, TNM stage, Clinical Satge, and Grade were performed
based on the expression of RiskScore. The results showed that
RiskScore can classify Age≤ 60, Age > 60, Female, Male, T1 + T2,
N0, The M0, Stage I + II, Stage III + IV, Grade 1 + 2, Grade 3 + 4
groups into two groups with significant prognosis differences
(Figures 6A–L). Therefore, our prognostic score can be used as
a prognostic marker for clinical subgroups. Comparison of the
distribution of RiskScore among TCGA clinical feature groups
indicated that the RiskScore differed between T Stage, Stage,
Grade, and relapse groups (Figures 7A–D, P < 0.05).

The Expression of RiskScore on Different
Clinical Features and the Construction of
Nomogram
In the TCGA data set, univariate and multivariate regression
analysis showed a correlation between RiskScore and survival
time (p< 0.05), indicating that 5-gene signature was independent
in prognostic prediction (Figures 8A,B).
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FIGURE 4 | (A) RiskScore, survival time, survival status, and 5-gene expression in TCGA validation set. (B) ROC curve and AUC of 5-gene signature classification.
(C) The KM survival curve distribution of 5-gene signature in validation set.

Nomogram can display risk model results directly and
effectively. We constructed a nomogram according to the results
of univariate and multivariate regression analysis (Figure 8C).
Based on the results of RiskScore, as the RiskScore has the greatest
influence on the survival prediction, the 5-gene risk model can
predict the prognosis better. In addition, the accuracy of the 1-,
3-, and 5-year nomogram was corrected, which proved that the
method has good performance.

Comparison of Immune Cell Score
Between High-Risk and Low-Risk
Groups
The distribution of 22 types of immune cells in TCGA, GSE14520,
and HCCDB18 showed a consistent trend (Figures 9A–C).
To visualize the differences, we analyzed the expression of
StromalScore, ImmuneScore, ESTIMATE Score, and 22 types
of immune cells in different RiskScore groups in the TCGA
data set. Box plots showed that the high RiskScore group
had significantly lower scores of Macrophages M1, Mast cell
resting, and T cells CD8 than the low score group (Figure 9D).
ESTIMATE, Immune Score, and Stromal Score had significantly
higher immune scores in the low RiskScore group than the high

RiskScore group (Figure 9E), suggesting that different expression
characteristics of immune cells may promote prognosis in
different populations. The association of CIBERSORT score and
estimated scores of the high-risk and low-risk groups is shown in
Figure 9F.

Comparison of Risk Models
We selected four prognostic risk models including Ke et al.
(2018); Zheng et al. (2018), Liu et al. (2019), and Hu et al. (2020)
to compare with our 5-gene model. In order to make the model
comparable, we calculated the risk score of each OS sample in
TCGA using the same method according to the corresponding
genes in these four models. The samples greater than zero after
zscore were divided into the high-risk group and those less than
zero after zscore were divided into the low-risk group, after
which the differences in OS outcomes between the two groups
were calculated. The ROC and KM curves of the four models
are shown in Figures 10A–H. Although OS prognosis differed
between the high-risk and low-risk group samples among the
four prognostic models, the AUC values at 1-, 3-, and 5-year
are lower than those of our models. To compare the prediction
performance of these models in LIHC samples, the rms package
in R was used to calculate the concordance index (C-index) of
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FIGURE 5 | (A) RiskScore, survival time, survival status, and 5-gene expression in TCGA data sets. (B) ROC curve and AUC of 5-gene signature classification.
(C) The KM survival curve distribution of 5-gene signature in TCGA data sets.

the five models. The results showed that the C-index of our
model was the highest (Figure 10I), indicating that the overall
performance of our model is the best among the five models.

Clinical Expression and Prognostic Value
of the Five Genes in Pan-Cancer
The results showed that mRNA levels of ATG10, IL18RAP,
PRKCD, SLC11A1, and SPP1 differed between tumor tissues and
normal tissues in most of the 33 cancer types. ATG10, SPP1, and
PRKCD were overexpressed in HCC (Figures 11A,C,D), while
IL18RAP and SLC11A1 had low expression (Figures 11B,E).
Furthermore, IL18RAP had low expression in most tumors, while
SPP1 was overexpressed.

We measured the protein expression of the 5 genes in 4 pairs of
LIHC and normal samples. Compared with the normal samples,
ATG10, PRKCD, and SPP1 were highly expressed in the tumor
samples. Expression of IL18RAP and SLC11A1 were relatively
higher in the normal samples than LIHC samples. The results
were almost consistent with the database (Figure 11F).

The overall survival analysis showed that ATG10, PRKCD,
SPP1, and SLC11A1 were highly expressed in HCC with poor
prognosis (Figures 12A,C,D,E). Besides, SPP1 was a high-risk

gene in most tumors. The high expression of IL18RAP has a
good prognosis in HCC and it is a protective gene in most
tumors (Figure 12B).

The Relation Between Five Genes and
Tumor Microenvironment in Pan-Cancer
The results showed that IL18RAP, PRKCD, SLC11A1, and
SPP1 were positively correlated with the immune score
in most tumors, including LIHC. This indicates that
the immune score of most tumors increased with the
increase of these genes’ expression. IL18RAP was strongly
correlated with immune score in most tumors (Figure 13A).
IL18RAP, SLC11A1, and SPP1 were positively correlated with
StromalScore in most tumors, including LIHC. This indicates
that StromalScore increased with the increase of IL18RAP,
SLC11A1, SPP1 gene expression (Figure 13B). ATG10 was
weakly correlated with immune core and StromalScore in
tumors (Figure 13C). IL18RAP was highly correlated with B
cell, macrophages, Neutrophil, dendritic cell, CD8 cell, and
CD4 cell (Figure 13D). Both SPP1 and PRKCD were positively
correlated with various types of immune cells, and were
most strongly correlated with macrophages (Figures 13E,F).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 September 2021 | Volume 9 | Article 686664

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-686664 September 17, 2021 Time: 18:19 # 10

Xu et al. Immune Gene Signatures of Hepatocellular Carcinoma

FIGURE 6 | Prognostic analysis of clinical subgroups based on RiskScore. The horizontal axis represents survival time, and the vertical axis represents survival
probability. Blue represents low expression group; red represents high expression group. (A–L) Based on Riskscore, survival curves were analyzed for Age ≤ 60,
Age > 60, Female, Male, T1+T2, T3+T4, N0, M0, Stage I+II, Stage III+IV, Grade 1+2, and Grade 3+4 groups, respectively.

SLC11A1 also showed a high positive correlation with
macrophages (Figure 13G).

Potential Mechanism of Five Genes
Involved in HCC
Studies of more than 10,000 tumor samples from 33 cancer types
on the TCGA database have identified six immune subtypes:
C1 (wound healing), C2 (INF-r dominant), C3 (inflammation),
C4 (lymphocyte depletion), C5 (immunologically silent), and C6
(TGF-BETA predominates) (Thorsson et al., 2018). Since the C5
subtype is immunologically silent, we analyzed the association of
the five genes with C1, C2, C3, C4, and C6 subtypes.

We further analyzed whether there were significant
differences in the expression of these five genes among
different clinical characteristics, including immune subtypes,
clinical stages, tumor grades, and T stages of HCC. The
results showed that levels of ATG10, IL18RAP, PRKCD,
SLC11A1, and SPP1 varied among different immune
subtypes and T stages (Figures 14A,D). Levels of PRKCD
and SPP1 also varied among different clinical stages and
tumor grades (Figures 14B,C). Pathway enrichment analysis

showed that ATG10 was mainly enriched in HALLM
ARK_GLYCOLYSIS and G2M_CHECKPOINT. IL18RAP
was mainly enriched in EPITHELIAL_MESENCHYMAL_TRAN
SITION, TNFA_SIGNALING_VIA_NFKB pathway. SPP1 was
mainly enriched in HALLMARK_E2F_TARGETS, MTORC1_
SIGNALING pathway. PRKCD was mainly enriched in
HALLMARK_ALLOGRAFT_REJECTION, HALLMARK_MI
TOTIC_SPINDLE pathway. SLC11A1 was mainly enriched in
EPITHELIAL_MESENCHYMAL_TRANSITION, P53_PATH
WAY (Figures 14E–I).

DISCUSSION

Hepatocellular carcinoma is the most common type of primary
liver cancer and the sixth most common cancer worldwide (Desai
et al., 2019). Considered the second leading cause of cancer
deaths, it causes more than 700,000 deaths worldwide each year
and thus poses a serious threat to human health (Halegoua-De
Marzio and Hann, 2014). The liver is a quintessential immune
tolerance organ due to its unique immune microenvironment.
By blocking the immune escape of tumor cells and killing
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FIGURE 7 | (A) Comparison of RiskScore among T Stage grouping samples. (B) Comparison of RiskScore among stage grouping samples. (C) Comparison of
RiskScore among grade grouping samples. (D) Comparison of RiskScore between grouped samples with or without recurrence. * means P value < 0.05; ** means
P value < 0.01; *** means P value < 0.005; **** means P value < 0.001; ns, no significant.

liver cancer cells, immunotherapy may be the most promising
treatment for completely killing HCC cells. The response to
immunotherapy usually depends on the interaction between
tumor cells and their surrounding immune microenvironment.
Comprehensive and systematic analysis of immune-related genes
in HCC is therefore helpful for guiding immunotherapy and
prognosis for HCC patients.

In this study, we first analyzed the differentially expressed
immune genes of 730 immune-related genes in tumor and
para-cancer samples using four data sets: GSE22058, GSE25097,
GSE64041, and GSE36376. The results showed that 64 immune-
related genes were involved in the development and progression
of HCC through immune pathways such as NF–kappa B signaling
pathway, TNF signaling pathway, and Cytokine-cytokine

receptor interaction. The over-activation of NF-kappa B has
been found to be closely related to the pathogenesis of HCC
(Dai et al., 2017). PIGU (phosphatidylinositol glycan anchor
biosynthesis class U) can decelerate the malignant progression
of HCC by activating the NF-kappa B signaling pathway and
promoting immune escape (Wei et al., 2020). TNF-α is an
important component of the inflammatory microenvironment
of HCC: it can promote the expression of B7-H1 in HCC cells
induced by IFN-γ, thereby activating adaptive immune tolerance.
Using RankAggreg analysis, we selected the top 15 most closely
associated immune genes, including the chemokine families
CXCL14, CXCL12, and CXCL2. CXCL14 is responsible for the
recruitment and maturation of immune cells and promotes
the movement of epithelial cells, which helps to establish
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FIGURE 8 | (A) Univariate Cox analysis. (B) Multivariate Cox analysis. (C) Nomogram model. (D): 1-, 3-, and 5- year correction curve of the model.

immune surveillance in normal epithelium (Westrich et al.,
2020). In addition, CXCL14 suppresses human papillomavirus-
associated head and neck cancer through up-regulation of
MHC-1 expression and antigen-specific CD8T cell response
(Westrich et al., 2019). DNA methyltransferase 1 (DNMT1) can
impair the homing ability of cytotoxic T cells to tumor cells by
down-regulating CXCL12 (Li B. et al., 2018). High expression
of CXCL2 enhances neutrophil recruitment and activation in an
autocrine and/or paracrine manner (Li et al., 2016).

Lasso regression analysis and AIC analysis were used to
further compress the target gene and construct five immune
gene prognostic models: ATG10, IL18RAP, PRKCD, SLC11A1,

and SPP1. To explore the potential mechanism of five genes
in the malignant progression of HCC, we further analyzed
the expression and prognosis value of five genes in pan-
cancer. The results suggested that IL18RAP and SLC11A1
genes had low expression in HCC, while SLC11A1 with high
expression had poor prognosis. IL18RAP is a member of the
interleukin receptor family and facilitates IL-8-influenced signal
transduction by producing IFN-γ (Cheung et al., 2005). In renal
cell carcinoma, the high expression of IL18RAP suggests a poor
prognosis (Yamada et al., 2018). The IL18RAP polymorphism
may be associated with malignant progression of esophageal
carcinoma (Zhu et al., 2016), suggesting that IL18RAP may
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FIGURE 9 | (A–C) Landscape of immune cell infiltration score in high-risk and low-risk groups of TCGA, HCCDB18, and GSE14520 data sets. (D) Comparison of
CIBERSORT immune score between high-risk and low-risk groups in TCGA data set. (E) Comparison of estimate immune score between high-risk and low-risk
groups in TCGA data set. (F) Heat map of correlation between CIBERSORT immune score and estimate immune score in high-risk and low-risk groups. *P < 0.05,
**P < 0.01, ***P < 0.005, and ****P < 0.001; ns, no significant.

have tissue specificity in different types of cancer. ATG10 is
an autophagic E2-like enzyme which has been found to be
overexpressed in colorectal cancer (Jo et al., 2012) and lung
cancer (Xie et al., 2016). The overexpression of ATG10 is also
associated with lymphatic invasion and lymph node metastasis
in colorectal cancer (Jo et al., 2012). ATG10 promotes the
proliferation and migration of lung and colon cancer cells (Xie
et al., 2016; Jo et al., 2017). Functional variation of ATG10
rs10514231 may be associated with malignant progression of

HCC (Shen and Lin, 2019). PRKCD is a member of serine
and threonine-specific protein kinase C family. It is not only
a tumor suppressor, but also promotes the cell cycle. PRKCD
was inhibited in HCC, and activation of PRKCD could decrease
the viability of HCC cells (Nambotin et al., 2011). SLC11A1
is a phagocyte membrane protein expressed in monocytes
(Bauler et al., 2017). As a pro-inflammatory factor, SLC11A1
is closely related to the occurrence and development of many
inflammatory diseases and susceptibility to infectious diseases
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FIGURE 10 | (A,B) The ROC curve of Hu’s risk model and the KM curve of high-risk and low-risk groups. (C,D) The ROC curve of Liu’s risk model and the KM curve
of high-risk and low-risk groups. (E,F) The ROC curve of Ke’s risk model and the KM curve of high-risk and low-risk groups. (G,H) The ROC curve of Zheng’s risk
model and the KM curve of high-risk and low-risk groups. (I) C-index comparison of different prognostic risk models.

(Braliou et al., 2019; Xu and Yang, 2020). SLC11A1 has been
shown to be associated with esophageal cancer susceptibility
in South African populations (Zaahl et al., 2005). SPP1, also

known as osteopontin, acts as a cytokine to promote the
expression of interferon and IL-12 (Wu et al., 2019). SPP1 is
thought to be an oncogene in tumors, and the high expression
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FIGURE 11 | Differential box diagram of 5-gene expression in pan-cancer. (A) ATG10, (B) IL18RAP, (C) SPP1, (D) PRKCD, (E) SLC11A1, and (F) the protein
expression of the 5 genes in 4 pairs of LIHC and normal samples. *P < 0.05, **P < 0.01, ***P < 0.005, and ****P < 0.001.

FIGURE 12 | Survival curve of five genes in pan-cancer. (A) ATG10, (B) IL18RAP, (C) SPP1, (D) PRKCD, and (E) SLC11A1.

of SPP1 in HCC suggests a poor prognosis (Chen et al.,
2010). The polymorphism of SPP1 may be one of the genetic
factors of HBV clearance and HCC (Shin et al., 2007). When

identifying M1 macrophage-related modules related to the
prognosis of thyroid cancer by WGCNA, it was found that
the 4-gene signature including SLC11A1 and SPP1 could be
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FIGURE 13 | The correlation between five genes and tumor microenvironment. (A) The correlation between genes and immune core. (B) The correlation between
genes and StromalScore. (C–G) The correlation between ATG10, IL18RAP, SPP1, PRKCD, SLC11A1, and immune cells.

used to predict the prognosis of patients with thyroid cancer
(Zhuang et al., 2020). By analyzing the correlation between five
genes and tumor microenvironment, we found that SPP1,
PRKCD, and SLC11A1 were highly positively correlated with
macrophages. The results further confirmed our conjecture that
SLC11A1 and SPP1 may promote the malignant progression
of HCC by regulating M1 macrophages to M2 macrophages.
The results of enrichment analysis showed that both IL18RAP
and SLC11A1 were closely related to EMT signal pathway,
which suggested that IL18RAP and SLC11A1 might promote
the metastasis of HCC by regulating HCC cells. ATG10 gene is

closely related to glycolysis signal pathway, and PRKCD gene is
enriched in graft rejection-related pathway. Our study provides a
new direction for the study of the mechanism of these five genes
involved in the malignant progression of HCC. M1 macrophages
can exert their anti-tumor and immune-enhancing effects by
secreting inflammatory factors, chemokines, effector molecules,
and TNF- molecules. Under the action of Lmur4 and IL-13, M1
macrophages can be polarized into M2 macrophages to inhibit
immune response. The high infiltration of M1 macrophages is
usually related to the increase of tumor survival (Edin et al., 2012;
Jackute et al., 2018).
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FIGURE 14 | The potential mechanism of five genes in HCC. (A) Correlation between five genes and immune subtypes of pan-cancer. (B) Correlation between five
genes and clinical stage. (C) Correlation between five genes and clinical grade. (D) Correlation between five genes and T stage. (E–I) GSEA enrichment analysis of
ATG10, IL18RAP, SPP1, PRKCD, and SLC11A1. *P < 0.05, **P < 0.01, and ***P < 0.001.

The 5-gene signature is robust in both internal and external
data sets. Further analysis indicates that the high infiltration of
Mast cell resting is associated with increased survival time in lung
adenocarcinoma (Wang et al., 2020). The higher the CD8 level
of T cells, the better the prognosis of HCC patients (Gabrielson
et al., 2016). All the above studies confirmed that the high-
risk score group with low Macrophages M1, Mast cell resting,

and T cells CD8 scores had poorer survival outcomes, which
confirmed our analysis. Additionally, the changes in immune
cells provided insights into the molecular mechanism of the
5-gene signature in HCC.

However, first of all, as our study is a retrospective study based
on public databases, lacking clinical validation of the prognostic
value of the signature.
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Secondly, based on the results of pathway enrichment analysis,
prospective verification of the underlying biological mechanism
of core genes is required.

And the population ethnicities in the TCGA database
are mainly confined to White people and Black people,
and extrapolating our findings to other ethnic groups
needs to be substantiated. Finally, we will also explore the
possibility of containing more variables to further improve
prognostic performance.

CONCLUSION

In conclusion, this study systematically described the immune
features of HCC based on 730 immune-related genes, identified
the genes associated with prognosis, and constructed a 5-
gene prognostic risk model. Thus, it can provide a good
prognosis evaluation for the HCC samples. Our study further
elucidates the relationship between immune microenvironment
and prognosis of patients with HCC and provides new insights
for immunotherapy of HCC.
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Supplementary Figure 2 | The KM curve of the five genes.

Supplementary Figure 3 | (A) RiskScore, survival time, and 5-gene expression in
GSE14520. (B) ROC curve and AUC of 5-gene signature classification. (C) KM
survival curve distribution of 5-gene signature in independently validated
data set GSE14520.

Supplementary Figure 4 | (A) RiskScore, survival time, and 5-gene expression in
HCCDB18. (B) ROC curve and AUC of 5-gene signature classification. (C) KM
survival curve distribution of 5-gene signature distribution in HCCDB18.
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