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2′-O-methylations (2′-O-Me or Nm) are one of the most important layers of regulatory
control over gene expression. With increasing attentions focused on the characteristics,
mechanisms and influences of 2′-O-Me, a revolutionary technique termed Nm-seq were
established, allowing the identification of precise 2′-O-Me sites in RNA sequences
with high sensitivity. However, as the costs and complexities involved with this new
method, the large-scale detection and in-depth study of 2′-O-Me is still largely limited.
Therefore, the development of a novel computational method to identify 2′-O-Me
sites with adequate reliability is urgently needed at the current stage. To address the
above issue, we proposed a hybrid deep-learning algorithm named DeepOMe that
combined Convolutional Neural Networks (CNN) and Bidirectional Long Short-term
Memory (BLSTM) to accurately predict 2′-O-Me sites in human transcriptome. Validating
under 4-, 6-, 8-, and 10-fold cross-validation, we confirmed that our proposed model
achieved a high performance (AUC close to 0.998 and AUPR close to 0.880). When
testing in the independent data set, DeepOMe was substantially superior to NmSEER
V2.0. To facilitate the usage of DeepOMe, a user-friendly web-server was constructed,
which can be freely accessed at http://deepome.renlab.org.

Keywords: CNN, BLSTM, web service, RNA modification, 2′-O-methylation

INTRODUCTION

To date, hundreds of different RNA modifications have been identified in human transcriptome,
and found to be critical in the regulation of various transcriptional events (Behm-Ansmant et al.,
2011). Among those, 2′-O-methylation (2′-O-Me) is one of the most abundant RNA modifications,
presenting in transfer RNAs (tRNAs) (Somme et al., 2014), ribosomal RNAs (rRNAs) (Rebane and
Metspalu, 2002), small nuclear/small nucleolar RNAs (snRNAs/snoRNAs) (Darzacq et al., 2002),
microRNAs (miRNAs) (Li, 2005)/Piwi-interacting RNAs (piRNAs) (Yu et al., 2005), and some
messenger RNAs (mRNAs) (Dai et al., 2017). The addition of methyl groups on the ribose moiety
can affect sterical properties, hydrogen-bonding potential, and structural rigidity of the target RNA
(Kierzek et al., 2009; Hengesbach and Schwalbe, 2014), and orchestrating the biogenesis (Ojha et al.,
2020), metabolism (Salem et al., 2019), and functions (Choi et al., 2018) of these RNA molecules.
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Given its functional importance, the precise detection and
functional analysis of 2′-O-Me are important research topics
in the community.

Recently, several experimental techniques were developed
to pinpoint the precise 2′-O-Me sites. For example, perchloric
acid (HClO4) hydrolysis (Baskin and Dekker, 1967), periodate
oxidation hydrolysis (Trim and Parker, 1972), chromatography
and mass-spectrometry (Abbate and Rottman, 1972; Sardana and
Fuke, 1980; Fenghe and Mccloskey, 1999; Kirpekar et al., 2005).
At present, high-throughput techniques that established based on
deep sequencing were also reported. Typical examples included
RiboMethSeq (Krogh et al., 2016; Erales et al., 2017; Sharma et al.,
2017; Zhou et al., 2017), 2′-OMe-Seq (Incarnato et al., 2017),
RibOxi-Seq (Zhu et al., 2017), and Nm-seq (Dai et al., 2017;
Hsu et al., 2019).

Although the previous mentioned high-throughput
techniques can provide single-nucleotide mapping of 2′-O-
Me sites at transcriptome level, the experimental procedure
is still expensive and labor-exhausting. Therefore, there is
still an urgent need of a computational model to mine the
sequence feature of 2′-O-Me sites and identify the 2′-O-Me
sites in silico. So far, several computational methods such as
iRNA-2methyl (Qiu et al., 2017), Deep-2′-O-Me (Mostavi
et al., 2018), iRNA-2OM (Yang et al., 2018), NMSEER V2.0
(Zhou et al., 2019), and iRNA-PseKNC (Tahir et al., 2019)
have been developed. However, many issues remain in these
methods, leaving plenty of room for improvement. Firstly,
2′-O-Me can occur in all types of RNA nucleotides, resulting
an extremely imbalanced dataset between positive and negative
samples. The traditional classification algorithm, which aims
at the overall classification accuracy, pays too much attention
to the major class, leading to poor performances in minor
class and high false positives. Secondly, previous studies
have randomly sampled subsequences near experimentally
identified 2′-O-Me sites as negative sequences. This procedure
can produce a high degree of similarity between extracted
positive and negative sequences in training dataset, which
limits the accuracy of traditional sequence-based models.
Third, many tools lack a convenient webserver, hindering
their widespread use in biological scenario. Therefore, the
development of a reliable prediction tool that can not only
extract useful features from the primary mRNA sequences
but also produce high-precision results is still an important
problem to be solved.

The performance of traditional machine learning algorithms
relies heavily on data representations. However, features are
typically designed by human engineers with extensive domain
expertise, and identifying which features are more appropriate
for the given task remains difficult. Thanks to the ability of
deep learning architectures in automatically extracting high-
representation information in the raw data, the application of
deep learning framework is a promising way to address the above
issues. In recent years, many attempts have been made to apply
deep learning algorithms in biological research. For example,
DeepBind (Alipanahi et al., 2015) for predicting DNA- and RNA-
binding specificity, AlphaFold (Senior et al., 2020) for predicting
protein structure, scDeepCluster (Tian et al., 2019) for clustering

single cell RNA-seq data, DeepCpG (Angermueller et al., 2017)
for predicting single-cell DNA methylation state. Considering the
characteristics of 2′-O-Me, deep learning algorithms are more
suitable to analyses the patterns of 2′-O-Me and thus may greatly
improve the prediction performance.

In this article, we present DeepOMe, a web server based on a
hybrid deep learning architecture for predicting 2′-O-Me sites in
Human mRNA. To our best knowledge, our work is the first effort
to use the combination of CNN with RNN in the prediction of
mRNA modification sites under the sequence-to-sequence mode.
Moreover, a webserver was further developed and makes it easier
for researchers and experimenters to use our proposed model.

MATERIALS AND METHODS

Dataset Collection
The training and test dataset of DeepOMe was constructed
from the recently developed Nm-seq experiment (Dai et al.,
2017) which comprised of 4,481 2′-O-Me sites in human
transcriptome. The site data were first preprocessed and split into
training and independent test set using the scheme presented
in Supplementary Figure 1. Firstly, 2′-O-Me sites in intergenic
region were removed. Due to the reason that our collected data
had two coordinates versions (GRCh37 and GRCh38), we next
converted original GRCh37 coordinates to GRCh38 coordinates
using LiftOver and further mapped it to human transcripts for
better transcriptome annotation. Transcript sequences with at
least one mapped 2′-O-Me site were extracted according to
the corresponding gene set annotation. If the same 2′-O-Me
site located in multiple transcripts, the longest transcript were
retained in our dataset. Finally, we collected 2,285 RNA sequences
with 3,052 2′-O-Me sites as the final data set. We randomly
selected 10% of the collected RNA sequences as independent
testing set, and the remaining sequences were regarded as
training set. As the result, we assembled 2,046 sequences with
2,743 2′-O-Me sites as the training set, and 239 sequences with
309 2′-O-Me sites as the testing set.

Extract Features From Primary mRNA
Sequences
As mentioned above, previous studies extracted the flanking
region of specific length around each 2′-O-Me site as the positive
sequences for the training process. To create non-2′-O-Me
sites or negative sequences, they randomly selected the non-
modified RNA sites around known 2′-O-Me sites and captured
its surrounding nucleotide sequences as negative sequences. This
procedure suffers from several pitfalls.

First of all, the training set would contain overlapping
sequences if the randomly selected negative sites were adjacent
to 2′-O-Me sites. This would result in high similarity between
positive sequences and negative sequence. The similar sequences
would generate many redundant sequence-based features and
thus make sequence-based machine learning algorithms difficult
to train a validity predictor. To avoid such a scenario, a positive-
to-negative ratio (1:10 in NmSEER V2.0; 1:1 in iRNA-2OM; 1:4
in Deep-2′-O-Me) in training set should be manually set. Since
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in natural transcripts the number of 2′-O-Me sites and non-2′-
O-Me sites are highly imbalanced, this kind of operations may
always generate many false positives.

To solve these problems, the similar procedure from
Jaganathan et al. (2019) was chosen to extract input features
and output labels from primary mRNA sequences (as shown in
Figure 1). Firstly, the transcript sequence was one-hot encoded
as follows: A, C, G, T/U mapped to [1,0,0,0], [0,1,0,0], [0,0,1,0],
[0,0,0,1], respectively. Next, the one-hot encoded sequence was
zero-padded until the length became a multiple of 50 in order to
successfully split into non-overlapped blocks of 50 nt. To capture
sequence dependent features, such mRNA sequence was further
zero-padded at the 5′- and 3′-end with a flanking sequence of

length L. At last, the padded sequence was split into blocks in
such a way that the ith block consisted of nucleotide positions
from 50(i−1)−L + 1 to 50i + L. Therefore, the 50nt center
regions in the ith block and (i + 1)th block had no overlapping
sequence in original mRNA sequence. Similarly, the modification
output label sequence was one-hot encoded as follows: 2′-O-
Me modification and non-2′-O-Me modification were mapped to
[0,1] and [1,0] respectively. The one-hot encoded label sequence
was zero-padded until the length became a multiple of 50
and then further zero-padded at the start and the end with a
flanking sequence of length L. The padded label sequence was
split into blocks using the same procedure as described for
the inputted mRNA sequence. The extracted one-hot encoded

FIGURE 1 | The workflow of predicting 2′-O-Me sites from primary mRNA sequences. For splitting the input mRNA sequence into blocks, DeepOMe uses flanking
sequence length of 120 and then predicts whether each position in extracted blocks contains 2′-O-methylation.
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nucleotides sequences and the corresponding one-hot encoded
label sequences were used as inputs and the target outputs to train
and evaluate our model.

Architecture of the CNN-BLSTM Model
Figure 2A shows our proposed CNN-BLSTM architecture.
DeepOMe is composed of 10 layers of CNN and 2 layers of
B-LSTM (Schuster and Paliwal, 1997). The model structure
consists of input layer, CNN layers, BLSTM layers, fully
connected layer, and the output layer. The input layer can receive
one-hot encoded sequence data. In the CNN layers, we first
enriched the representation in the Stem Block (Supplementary
Figure 2A) by computing multiple feature maps with different
kernel sizes (Szegedy et al., 2015). Then, we stacked three
residual blocks (He et al., 2016) for local feature extraction.
The convolution operation in Stem block and ResBlock was
1D-convolution with kernel size of 10 and dilation rate of 2
(Supplementary Figure 2B). The CNN layers were used as
preprocessing step to extract the deep spatial features from the
input sequences. Then, these deep features were fed into two
BLSTM layers with 32 units for learning of sequence-dependent
features. The last layer in our model is a fully-connected layer
with softmax activation, which was used to generate the final
prediction score. The detailed architectural information was
listed in Supplementary Table 1.

Experimental Setup
The proposed model was implemented with the TensorFlow
library (Abadi et al., 2016) in Python and trained on an NVIDIA
GTX2080 GPU. The proposed model was trained through 100
epochs using batch size of 200. The categorical cross entropy
loss between the target and the predicted outputs was minimized
using Adam optimizer (Kingma and Ba, 2014). The initial
learning rate of 0.001 was used to train the model. Early-stopping
(Caruana et al., 2001) was used to control overfitting. We
monitored the validation loss at each epoch. When the validation
loss has not improved after ten epochs, training is interrupted.

Evaluation Metrics
Testing set was used to validate our proposed model comparing
with available prediction tools after cross-validation. The
performance was evaluated based on several metrics, namely
area under Precision-Recall Curve (AUPR), area under Receiver
Operating Characteristic Curve (AUC), sensitivity (Sn),
specificity (Sp), precision (Pr), accuracy (Acc), and Matthew’s
correlation coefficient (Mcc).

When evaluating model’s performance in full mRNA
sequence, an accuracy metric was largely ineffective since most
of the positions in mRNA sequence are not 2′-O-Me sites. The
prediction model was like the recommender systems which
was to suggest the most proper modification sites in mRNA
sequences. Thus, top-k accuracy was more appropriate in
such situation. When comparing among different methods, we
evaluated the top-k accuracy besides the AUC and AUPR metrics.
The top-k accuracy is defined as follows: Suppose the test set has
k positions that belong to the right class which is 2′-O-Me site.
We choose the threshold so that exactly k test set positions are

predicted as belonging to the right class. The fraction of these k
predicted positions that truly belong to the right class is reported
as the top-k accuracy.

RESULTS

Flanking Sequence Length Analysis
It is necessary to determine the optimal flanking sequence length
L of input sequences for identifying 2′-O-Me sites. Generally
speaking, if the flanking sequence around the known 2′-O-
Me site is too short, it may not carry enough information
for prediction and will lead to poor performance. Otherwise,
If the flanking sequence is too long, it may carry too much
redundant information, leading to poor generalization. Thus,
we first analyzed the averaged AUC and AUPR of the proposed
model with different flanking sequence length under 4-fold cross-
validation. As shown in Figures 2B,C the search step size for
flanking sequence length was 10 nt, with a range of 0 and 150.
According to the evaluation results, when the flanking sequence
length equals to 120 nt and block length equals to 290 nt, the
performance generated by our proposed model was the best
(AUC = 0.9975, AUPR = 0.8818). Therefore, we selected the
flanking sequence with length of 120.

Evaluation of the Prediction Performance
To evaluate the prediction performance of DeepOMe, we
performed 4-, 6-, 8-, and 10-fold cross-validation of the training
set. Figures 3A,B shows the ROC and PR curves of our
proposed CNN-BLSTM model under 4-, 6-, 8-, and 10-fold cross-
validations with flanking sequence length of 120. As a result,
DeepOMe showed an acceptable performance in n-fold cross-
validations with the area under the ROC curves (AUROC) close
to 0.998 and area under the PR curves (AUPR) close to 0.880.

To rigorously evaluate the prediction and generalizability
performance of DeepOMe, we next compared it with other
state-of-art predictors using the independent test set. Since only
iRNA-2OM, iRNA-2methyl, and NMSEER V2.0 provided web-
server or standalone package for usage, the comparison will only
perform between them. During the comparison, we further found
that there were no responses in the webservers of iRNA-2methyl,
hence, the final comparison only performs between DeepOMe,
NmSEER V2.0, and iRNA-2OM.

Figures 3C,D presented the comparison results in ROC
curves and PR curves. The results showed that the DeepOMe
achieved a better performance (AUROC = 0.993, 95%CI:0.993-
0.993; AUPR = 0.843) in the testing set than NmSEER
V2.0(AUROC = 0.5969, 95%CI:0.599-0.600; AUPR = 0.00066)
and iRNA-2OM (AUROC = 0.6065, 95%CI:0.601–0.612;
AUPR = 0.06538). When testing in full mRNA sequences,
we further compared the top-k accuracy between DeepOMe,
NmSEER V2.0, and iRNA-2OM. The comparison results in
Table 1 suggested that DeepOMe (Top-1 Acc = 0.8602, Top-100
Acc = 0.9563) was more sensitive and robust than NmSEER
V2.0(Top-1 Acc = 0.0, Top-100 Acc = 0.1004) and iRNA-2OM
(Top-1 Acc = 0.0, Top-100 Acc = 0.1087).
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FIGURE 2 | The construction of prediction model in DeepOMe. (A) Network architecture of the DeepOMe prediction model. Flanking sequence selection under
4-fold cross-validation by AUPR (B) and AUROC (C).
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FIGURE 3 | Performance evaluation and comparison. The ROC (A) and PR (B) curves in 4-, 6-, 8-,10-fold cross-validation. The ROC (C) and PR (D) curves in
testing set between DeepOMe, NmSEER V2.0 and iRNA-2OM.

To evaluate the sequence similarity between the predicted
sites and the detected sites in transcriptome, sequence logos
were generated using WebLogo (Crooks et al., 2004) in training
and testing set. Supplementary Figure 3 presented the graphical
representation of sequence similarity. The results showed that
the predicted sites under different thresholds were similar to the
detected sites both in training set and testing set, proving that our
proposed model could precisely identity 2′-O-Me sites.

Web-Server
To facilitate the use of our prediction models, we next developed
an online predictor called DeepOMe for the community.
The predictor is freely available at http://deepome.renlab.org.
DeepOMe only requires mRNA sequences to run a prediction.
Multiple mRNA sequences can be input into the text area or
uploaded as s single FASTA file. For users’ convenience, we

selected three thresholds based on the 10-fold cross-validation
results (Figure 4A), which correspond to the false discovery
rate of 0.10, 0.15, and 0.20. The detailed performance values
under these three thresholds are shown in Supplementary
Table 2. Besides, users can select the threshold by setting
the false discovery rate in advanced option menu. After the
query sequences are submitted to DeepOMe, users can check
its running status in the result panel in real time. When
the prediction is complete, the button that links out to the
result page will be clickable (Figure 4B). Figure 4C provides a
snapshot for the result page of the example mRNA sequence.
The prediction position, score and prediction threshold were
listed in an interactive table, which allows the users to easily
search and sort the results. Remarkably, to facilitate a further
analysis of the protein function and RNA structure, we also
implemented an automatic pipeline for visualizing the prediction
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TABLE 1 | Comparison of Top-k Accuracy between DeepOMe, NmSEER V2.0,
and iRNA-2OM in testing set.

Top-k Accuracy DeepOMe NmSEER V2.0 iRNA-2OM

Top-1 Accuracy 0.8602 0.0 0.0

Top-3 Accuracy 0.9039 0.0131 0.0

Top-5 Accuracy 0.9082 0.0175 0.0

Top-10 Accuracy 0.9126 0.0175 0.0043

Top-20 Accuracy 0.9257 0.0306 0.0130

Top-30 Accuracy 0.9344 0.0611 0.0130

Top-40 Accuracy 0.9476 0.0699 0.0261

Top-50 Accuracy 0.9520 0.0699 0.0478

Top-60 Accuracy 0.9520 0.0830 0.0696

Top-70 Accuracy 0.9520 0.0917 0.0739

Top-80 Accuracy 0.9563 0.0961 0.0826

Top-90 Accuracy 0.9563 0.1004 0.0870

Top-100 Accuracy 0.9563 0.1004 0.1087

results. By integrating IBS (Liu et al., 2015), InterProScan (Jones
et al., 2014), and ViennaRNA (Lorenz et al., 2011) into the web
server, DeepOMe can present the graphical representation of
the input mRNA sequence together with their predicted sites
in the visualization panel. Figures 4D,E provide snapshots for
the visualization results of RNA secondary structure and protein
domain organization. The diagrams can be saved as a vector
graphic (SVG) for further analysis.

DISCUSSION

2′-O-methylation plays critical roles in regulating gene
expressions at the post-transcriptional levels. Thus, proper

identification of the 2′-O-Me site is essential to understand the
mechanism of RNA metabolisms. 2′-O-Me can occur in any base
on the mRNA sequence. Given a mRNA sequence, we need to get
an output sequence with the same length of input sequence. The
score in each position of output sequence represents whether
this position in the input mRNA contains 2′-O-Me. Therefore,
the 2′-O-Me site prediction problem can be considered as a
many-to-many prediction problem.

However, previous studies tried to train the prediction model
based on a Many-to-One mode. They had to randomly select
non-2′-O-Me sites around the known 2′-O-Me sites as negative
samples, which resulted in high sequence similarity between
positive and negative sequences. Besides, to reduce the degree
of imbalance in their training data set, the negative sites were
manually down-sampled to obtain a relatively small positive-to-
negative ratio. However, in reality, the positive-to-negative ratio
in a given RNA sequence was always extremely high, and thus
caused their models to have poor generalization ability in unseen
data. These were the two main reasons why their models received
very poor performance in our testing set.

Unlike the previous works that use handcrafted features
for classification, DeepOMe could automatically extract the
deep features from primary mRNA sequences by CNN layers.
DeepOMe was proven to be more efficient than the available
method in terms of all evaluation metrics. We found several
factors that may explain the high performance achieved by
our proposed model. Firstly, the procedure we used to train
and test the models was the many-to-many mode. Thus, there
was no need to manually balance the training dataset in our
model, allowing to learn sufficient information between 2′-O-
Me and non-2′-O-Me sites and achieving lower false positives.
Secondly, the use of the dilated 1D CNN compared to the

FIGURE 4 | (A) The main interface of DeepOMe. mRNA sequences can be input into the text area or uploaded as a single FASTA file. Thresholds with high, medium,
and low stringencies are provided in the options panel. (B) The submitted task can be checked in the interactive table. (C) The result page of DeepOMe. Detailed
information for the predicted modification sites, such as modified position, flanking sequence, prediction score, and prediction threshold, is listed in the table. (D,E)
The visualization results of RNA secondary structure and protein domain organization for the input mRNA sequence using ViennaRNA, IBS, and InterProScan.
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traditional 1D CNN allowed our model to cover more relevant
information by increasing the receptive filed of the filters.
Additionally, the stacked Resblocks used in our model allowed
us to build a deeper network and take advantages of the
powerful representational ability of deep neural network. At
last, the application of bidirectional LSTM was able to exploit
meaningful representations from upstream and downstream
sequences. The comparison results suggest that the combination
of CNN and BLSTM can successfully capture the key features of
the entire mRNA sequences. Although promising performance
was obtained in DeepOMe, a number of future improvements
are expected. First of all, we have designed only a relatively
simple CNN-based neural network model in our current version.
Various deeper and wider CNN architectures were awaited
exploration in the future. Secondly, attention mechanism will
be introduced to achieve better representation for contextual
information in the future version. Last but not least, we have now
trained the model only based on the experimental 2′-O-Me data
for Homo sapiens. The prediction models for other species such
as Mus musculus will be established in the future
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