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Metastatic disease represents the major cause of death in oncologic patients worldwide.
Accumulating evidence have highlighted the relevance of a small population of cancer
cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as
cancer recurrence and metastasis. Standard anti-cancer treatments are not always
conclusively curative, posing an urgent need to discover new targets for an effective
therapy. Kinases and phosphatases are implicated in many cellular processes, such as
proliferation, differentiation and oncogenic transformation. These proteins are crucial
regulators of intracellular signaling pathways mediating multiple cellular activities.
Therefore, alterations in kinases and phosphatases functionality is a hallmark of cancer.
Notwithstanding the role of kinases and phosphatases in cancer has been widely
investigated, their aberrant activation in the compartment of CSCs is nowadays being
explored as new potential Achille’s heel to strike. Here, we provide a comprehensive
overview of the major protein kinases and phosphatases pathways by which CSCs can
evade normal physiological constraints on survival, growth, and invasion. Moreover, we
discuss the potential of inhibitors of these proteins in counteracting CSCs expansion
during cancer development and progression.

Keywords: phosphatase, kinase, cancer stem cell, phosphatase and kinase inhibitors, targeted therapies

INTRODUCTION

The main role of kinases and phosphatases is to regulate post-translational modifications of
proteins, which are essential to govern cellular signaling networks (Sacco et al., 2012). Mutations
in kinases (Irby et al., 1999; Zhang et al., 2009) or phosphatases (Stebbing et al., 2014; Zhao
et al., 2015) that lead to either a loss-of-function or gain-of-function are likely to cause cancer.
Moreover, oncogenes can influence the balance between kinases and phosphatases activity, causing
cell malignant transformation (Qi et al., 2018). The uncontrolled activation of kinases and the
suppression of phosphatases has been frequently observed in cancer with consequent induction
of cell proliferation, migration and survival to anti-cancer therapies. Failure in the balance between
kinases and phosphatases activity has been shown in several types of solid cancer, such as colorectal,
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gastric, liver and breast cancer (BC) (Martellucci et al., 2020).
Thus, it is plausible that a better understanding of how kinases
and phosphatase enzymes function and how they are regulated
can aid the development of new anticancer agents.

Cancer recurrence and relapse are attributed to a small
subpopulation of cancer cells, named cancer stem cells (CSCs)
(Turdo et al., 2020). CSCs are also able to self-renewal
and multilineage differentiation, as well as an ability to
initiate and support tumorigenesis and metastasis formation
(Veschi et al., 2020b).

This review focuses on dysregulation of kinase and
phosphatase activity, since they represent the major players
that sustain CSCs persistence in a variety of cancers. Moreover,
herein we will discuss novel therapeutic compounds that inhibits
kinase and phosphatase proteins involved in carcinogenesis.

THE ROLE OF KINASES AND
PHOSPHATASES IN CANCER

Kinases and phosphatases carry out essential roles in a plethora
of biological functions and regulatory network of cells (Ostman
et al., 2006; Ventura and Nebreda, 2006; Malumbres and
Barbacid, 2009; Bononi et al., 2011; Otto and Sicinski, 2017).
Kinases catalyze the transfer of phosphate groups, released by
ATP, to molecules while phosphatases remove phosphate groups
from their substrate proteins.

Kinase phosphorylation can modify the function of a
protein by increasing or decreasing its activity, enhancing its
stabilization, marking it for destruction, localizing it within
a specific cellular compartment, and initiating or disrupting
its interaction with other proteins. Protein kinases often
act on multiple substrates and different proteins can serve
as substrates for more than one specific kinase. Kinases
mediate most of the signal transduction of the cell, and
consequently, control many cellular processes, including
transcription, proliferation, apoptosis, metabolism, interplay
with the immune systems, migration, cytoskeletal rearrangement
and differentiation (Rubin et al., 2000; Lander et al., 2001; Venter
et al., 2001). The largest group of kinases is composed by protein
kinases, which phosphorylate proteins at serine/threonine,
tyrosine or all three residues (dual-specificity kinases)
(Krupa et al., 2004).

The family of protein tyrosine kinases consists of the
receptor tyrosine kinases (RTKs) proteins and the non-
receptor tyrosine kinases (nRTKs). Besides regulating several
cellular processes in normal cells, RTKs are implicated in the
development and progression of cancer. Indeed, mutations
in RTKs lead to the constitutive activation of the receptor
and uncontrolled activation of multiple signal transduction
pathways (Schmidt-Arras and Bohmer, 2020). Almost 20
different RTKs classes have been described, which include
EGFR, insulin R, PDGFR, VEGFR, FGFR, HGFR and RET
(Blume-Jensen and Hunter, 2001). Differently from RTKs, the
nRTKs are cytosolic enzymes, in some cases anchored to the
cell membrane. Janus kinase (JAK) and Src families are the
most important nRTK families involved in cancer. The JAK

proteins transduce signals that are mediated by cytokines in
the JAK-STAT pathway while Src, when activated, is known to
phosphorylate PI3K, RAS and STAT to promote proliferation,
survival and invasion of cancer cells (Kisseleva et al., 2002;
Ishizawar and Parsons, 2004).

Among the protein serine/threonine kinases, PKA, MAPKs,
RAF, PKB (also known as Akt), GSK-3, mTOR and cyclin-
dependent kinases (CDKs) are among the most frequently
occurring drivers of human cancer.

The major function of PKA in the cell include regulation of
carbohydrate and lipid metabolism (Turnham and Scott, 2016).
The MAPK is a complex series of signal transduction pathways
connecting extracellular signals to intracellular responses, whose
function is the regulation of important processes such as cell
proliferation, differentiation, and death (Raman et al., 2007).
During the last decades, the insight of each main MAPK
signaling modules and their role in tumorigenesis has grown
remarkably (Wagner and Nebreda, 2009). The four main MAPK
signaling modules are (i) ERK1/2, (ii) JNK, (iii) p38, and (iv)
ERK5 pathways, which are induced by specific extracellular
signaling. RAF kinase is activated by growth factors, forms
part of the RTKs/RAS/RAF/MEK/ERK pathway and its leading
function is to stimulate cell division and growth (Chang and
Karin, 2001). Moreover, the majority of solid tumors are
explicitly characterized by their overall mutations along all the
RTKs/RAS/RAF/MEK genes of the signaling pathway (Stern,
2018). Interestingly, MEK kinase is a component of the MAPK
pathway which acts on both serine/threonine and tyrosine
kinase residues.

GSK-3 is considered to be at the crossroads of
various cancer pathways and a major component of the
RTKs/RAS/PI3K/PTEN/Akt/GSK-3/mTORC1 axis. Upon Akt-
mediated phosphorylation, GSK-3 is inactivated and targeted
for proteasome degradation (Cross et al., 1995). As Akt is often
active in human cancer, GSK-3 is consequently often inactivated.
GSK-3 can also regulate NF-κB and WNT/β-catenin pathway
activity (Gotschel et al., 2008).

Cyclin-dependent kinases are intracellular serine/threonine
protein kinases whose central activity is the regulation of the
cell cycle. Therefore, they are responsible for the progress of
the cell through its various checkpoints (Harper and Adams,
2001). Dysregulation of CDKs, such as CDK1, CDK2, CDK3,
CDK4 and CDK6, is a well-known hallmark of cancer. Several
studies have focused on trying to establish a strategy to inhibit
specific CDKs proteins involved in cell cycle progression, leading
to uncontrolled cell proliferation in many solid cancer types
(Asghar et al., 2015).

Lipid kinases are a smaller group of kinases that add
phosphate groups to lipids causing a change in the reactivity and
localization of the lipid with a consequent modulation of signal
transmission (Whitman et al., 1988). Phosphoinositide 3 kinase
(PI3K) is the main player of the PI3K/Akt pathway, which is the
most common activated signaling in human’s cancer (Lawrence
et al., 2014). This signaling network is activated downstream
of RTKs and regulates cell survival, growth, transcription
and protein synthesis (Fruman et al., 2017). Phosphatases are
known to exert dephosphorylation on RTKs, whose activity
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can be modified in both a positive and negative manner
(Volinsky and Kholodenko, 2013). Consequently, phosphatase
dysregulation can hamper RTK regulation, emphasizing their
critical implication in the onset and progression of cancer
(Yao and Stagljar, 2017).

A total of 211 phosphatase domains have been characterized
and then assigned to six different families, defined by catalytic
domain sequence similarity (Sacco et al., 2012). The major
categories include the phosphoprotein phosphatase (PPP)
and the protein phosphatase Mg2+- or Mn2+- dependent
(PPM) families that dephosphorylate phosphoserine and
phosphothreonine residues, the haloacid dehalogenase (HADS),
and the most dominant group of Cys-dependent protein
tyrosine phosphatase (PTP) family that dephosphorylate
phosphotyrosine amino acids. Notably, a subfamily of the PTPs,
the dual-specificity phosphatises (DUSPs), dephosphorylate all
three phosphoamino acids (Alonso et al., 2016).

The PPM family component PPM1D, also termed WIP1, is
nowadays considered as an oncoprotein because of its negative
regulation of target anti-cancer proteins such as p53, ATM,
H2AX and p16. Amplifications and mutations of PPM1D
has been frequently observed in cancer, and linked to the
progression of the disease and therapy resistance phenomena
(Deng et al., 2020b).

The phosphatase PP2A, belonging to the PPP family, is the
most expressed serine/threonine phosphatase in mammalian
cells and plays a fundamental role in the control of normal
kinases activity (Westermarck and Hahn, 2008). PP2A has been
primarily described as a tumor suppressor involved in diverse
signaling networks regulating cancer progression (Mumby,
2007). The main PP2A function is to inhibit the RAF-MEK-
ERK pathway (by reducing activity of both ERK and RAF),
and to dephosphorylate and inhibit Akt, c-Myc, and RalA
(Zhang and Claret, 2012).

Among the classical PTPs, the receptor-type T PTP (PTPRT)
and the receptor-type D PTP (PTPRD) have been reported to
be involved in the negative regulation of the JAK/STAT pathway
and in particular of STAT3 (Veeriah et al., 2009). Both PTPRT
and PTPRD have been described as tumor suppressors in a
variety of cancers (Wang et al., 2004; Funato et al., 2011).
Moreover, it has been reported that PTPRH and PTPRB directly
exert dephosphorylation on EGFR, and thence, suppress its
downstream signaling in PI3K/Akt/mTOR and MEK/MAPK
pathways (Yao et al., 2017).

The classical PTPs non-receptor type comprise the PTP1B,
whose activity has been associated with poor prognosis in
breast, gastric, colorectal, hepatocellular and lung cancer by
regulating variable tumor-specific mechanisms (Bollu et al.,
2017). Also, it has been shown that SHP2 (also known as
PTPN11), is a main functional regulator of RTK. Indeed, somatic
PTPN11 mutations has been linked to human malignancies,
including juvenile leukemia and juvenile myelomonocytic
leukemia (Grossmann et al., 2010). Finally, it has been suggested
that protein PTPN13 is a tumor-suppressor gene, for instance
in non-small cell lung cancer, likely due to the control of
phosphorylation of both RTK type receptors EGFR and HER2
(Scrima et al., 2012).

It has been shown that numerous DUSP are critical regulators
of the MAPK family, which includes ERK and JNK (Liu et al.,
1995; Muda et al., 1996; Nunes-Xavier et al., 2013). Besides,
PTEN, which is a crucial member of the DUSP family (Myers
et al., 1997), negatively regulates intracellular levels of PIP3 and
functions as a tumor suppressor by exerting a negative regulation
on the PI3K/Akt signaling pathway (Lee et al., 2018). Loss of
PTEN, which results in hyperactivation of PI3K pathway, and
thus an increase in cell proliferation, has been identified as a
decisive genetic event triggering the onset of a wide variety
of neoplasm. PTEN activity includes the control of apoptosis,
migration, metabolism and anti-cancer therapy response of
cancer cells (Lee et al., 2018).

PTEN has been frequently found to be downregulated by PRL-
3 in colorectal cancer (CRC). Overexpression of phosphatase
PRL-3 is associated with activation of the PI3K/Akt pathway,
which can promote epithelial to mesenchymal (EMT) and tumor
progression (Wang et al., 2007).

The CDK-associated protein phosphatase (KAP) is
overexpressed in cancer cells. It participates to the G1/S
transition of the cell cycle and forms a complex with CDK2.
Indeed, KAP promotes growth of cancer cells and determines
resistance to anti-tumor necrosis factor-α-induced apoptosis
by preventing the activation of caspase-3 (Lai et al., 2012).
Additionally, cells overexpressing KAP show a higher ability of
cell invasion and tumorigenicity (Stebbing et al., 2014).

A class of DUSP proteins involved in the regulation of MAPK
pathway, thus also referred to as MAP kinase phosphatases
(MPK), dephosphorylate ERK, JNK and p38 at tyrosine and
serine/threonine residues. In physiological conditions, DUSP
expression levels are positively regulated at transcriptional level
by ERK, generating a negative feedback loop to restrain RAS
signaling. DUSPs are classified, in more than ten members,
according to the specificity of the substrate and cell localization
(Caunt and Keyse, 2013). DUSPs are generally defined as
tumor suppressor even though several evidence reported a pro-
tumorigenic role (Furukawa et al., 2003). For instance, DUSP1
and DUSP6 inhibition suppresses tumor growth in leukemia and
BC. Indeed, in these cases DUSP activity seems to favor cancer
cell adaptation to high proliferative stimuli (Kaltenmeier et al.,
2017; Kesarwani et al., 2017).

Cyclin-dependent kinases dysregulation, which is often
determined by altered phosphatases, is undoubtedly a notorious
hallmark of cancer. As a result, it is important to understand
the abnormal role of specific proteins, including phosphatases,
which can facilitate cell cycle progression, leading to uncontrolled
cell proliferation and malignancy (Asghar et al., 2015). Cell
division cycle 25 (CDC25) families are DUSPs and determine the
activation of CDKs, which in turn regulate cell-cycle progression.
Three isoforms have been characterized CDC25A, CDC25B and
CDC25C, which showed a correlation with poor survival and
multi-drug resistance (Galaktionov et al., 1995; Karagoz et al.,
2010; Albert et al., 2012).

Given the indispensable role of kinase and phosphatase
enzymes in cancer onset and progression (an extensive
review literature can be found in the following references
Ostman et al., 2006; Ventura and Nebreda, 2006;
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Malumbres and Barbacid, 2009; Bononi et al., 2011; Otto
and Sicinski, 2017), several research studies, as reported below,
are nowadays aimed at uncovering the contribution of these
enzymes in cancer stemness.

KINASES AND PHOSPHATASES ARE
CRUCIAL PLAYERS IN CANCER STEM
CELLS

Cancer is a heterogeneous disease at phenotypic and genetic
level. Many studies have investigated the role of CSCs
in cancer progression and resistance to therapy. Kinases
and phosphatases play important roles in maintaining CSC
phenotypes, including self-renewal capacity, invasiveness, and
tumorigenicity (Figure 1).

The PI3K/Akt pathway is among the best investigated in
human biology, and its pathological activation is considered
as a “driver” in numerous cancers. Growing evidence suggests
an important role for PI3K signaling in the regulation of
stemness, and the underlying mechanisms are still under
investigation (Todaro et al., 2014; Di Franco et al., 2016;
Mangiapane et al., 2021). Previously Dubrovska et al. (2009)
showed that PTEN/PI3K/Akt pathway is critical for prostate
CSCs maintenance. Prostate cancer cells treated with the
PI3K inhibitors showed a reduced capacity to form spheres.
Conversely, genetic silencing of PTEN, caused a significant
increase of cancer progenitors and stem-like cells in prostate
cancer (Dubrovska et al., 2009) and glioblastoma (Duan et al.,
2015). Other activities in CSCs are mediated by the activation
of PI3K/Akt/mTOR pathway. In particular, mTOR pathway has
a central role in the maintenance of CSCs. The PI3K and
mTOR pathway sustained the expansion of side population
cells, expressing a CD44+/CD24− phenotype, in MCF7 BC
cell lines, and fostered tumorigenic potential in vivo (Li et al.,
2018). More recently, it has been shown that the activation
of PI3K/Akt pathway characterized breast CSCs (BCSCs)
expressing high levels of multidrug resistance (MDR) (Hu
et al., 2015). The PI3K/PTEN/Akt/mTOR signaling regulated
CSC activity in gefitinib-resistant A549 cells, which contained a
high proportion of CXCR4+ cells endowed with an enhanced
potential of self-renewal activity in vitro and tumor growth in vivo
(Jung et al., 2013).

Chang et al. (2015) found that prostate cancer radioresistance
is sustained by the activation of a stemness and EMT phenotype
dictated by the activation of the PI3K/Akt/mTOR signaling
pathway. PI3K/mTOR also positively regulated aldehyde
dehydrogenase 1, member A1 (ALDH1A1) expression and
ALDH activity, through SOX9 transcriptional activation, in
head and neck squamous cancer cell (Keysar et al., 2017).
PI3K/Akt pathway likely contributes to survival and resistance
of brain CSCs. Specifically, among the PI3K isoforms, the
p110α was decisive to sustain sphere formation and clonogenic
capability of medulloblastoma cells. Notably, the PI3Kα catalytic
isoform acted in synergism with MAPK-interacting kinase
(MNK) to enhance medulloblastoma stem-like properties
(Eckerdt et al., 2019).

Also MAPK signaling is involved stem cell biology. Blaj
et al. (2017) showed that MAPK pathway is significantly related
to intratumoral heterogeneity of CRC. The oncogenic effect
of MAPK activity appeared consistently restricted to tumor
cells placed at the leading edge, whereas more differentiated
tumor cell placed at the central core of the tumor had lower
MAPK activity. Moreover CRC cells, displaying high MAPK
activity, had a distinct phenotype characterized by decreased
epithelial markers expression, such as E-cadherin, and increased
expression of the LAMC2 mesenchymal marker, which is a target
of ZEB1 (Blaj et al., 2017). Recently it has been demonstrated
in CRC that MAPK and FAK signaling pathways are able
to maintain the ALDH+ cell population, which has been
described in various cancer, such as colon, breast, lung, head and
neck squamous cancer, to possess tumor-initiating capabilities
(Tomita et al., 2016).

JAK-STAT3 pathway regulated CSCs properties of thyroid
anaplastic carcinoma. Anaplastic thyroid carcinoma is one of
the most aggressive carcinoma refractory to current therapies.
CSCs, responsible for his high malignancy, have been previously
identified and characterized (Todaro et al., 2010). In vitro
experiments have showed that JAK1 inhibitor suppressed
specifically the stem cell compartment of THJ16T cells,
suggesting a role of JAK/STAT pathway in thyroid CSCs
growth (Shiraiwa et al., 2019). Zhou et al. (2007) demonstrated
that the JAK/STAT3 pathway, in synergism with mTOR, was
fundamental for breast cancer stem-like cell survival in vitro
and in a preclinical model of nude mice. The screening of a
large scale library of shRNAs revealed that the JAK2/STAT3
signaling was selectively activated in CD44+/CD24− BCSCs as
compared with the differentiated compartment (Marotta et al.,
2011). Similarly, IL-6 secreted by CRC-derived mesenchymal
stem cells promoted the onset of a stemness phenotype in
CRC cells through the activation of JAK2/STAT3 pathway
(Zhang et al., 2018). Tumor micro environmental cues are
indeed the major upstream activators of the JAK/STAT
pathway. Yang et al. (2019) demonstrated that IL-10 derived
by tumor associated macrophages dictates the stem cell
fate of non-small cell lung cancer (NSCLC) cells via the
activation of JAK1/STAT1 signaling. Under the hypoxic tumor
microenvironment, hypoxia-inducible factor 1 α (HIF-1α)
activated the JAK1-2/STAT3 pathway in glioma stem-like cells
causing an enhancement in self-renewal and a delay in in vivo
tumor growth (Almiron Bonnin et al., 2018).

Recently, by using an unbiased proteomic profiling combined
to in vivo transplantation studies, Coles et al. (2020) showed that
PKA is a key kinase responsible for initiation and progression
of small cell lung cancer (SCLC). Activation of PKA activity in
SCLC cells increased significantly the stem cell frequency, the
expression of stem cell markers, such as NCAM1, DLL3, MYCL
and CD24 and tumor growth of xenografts. Beyond the role of
PKA in SCLC pathogenesis, these data provided essential insights
regarding PKA signaling networks, comprising the G-protein α

subunit and the serine/threonine protein phosphatase PP2A as
positive and negative regulators respectively (Coles et al., 2020).

Phosphatases have been also linked to stem cell biology. SHP2,
currently under investigation for therapeutic proposal, has a
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FIGURE 1 | Landscape of the most common kinases and phosphatases network in cancer stem cells. Kinase activating phosphorylation is shown with arrowed
lines, inhibitory phosphorylation or non-phosphorylation is indicated with blocked lines, and dephosphorylation, exerted by phosphatases (black squares), is
displayed with round-ended lines. Dotted lines represent indirect effect. TFs1: Transcription Factors (Jun, ATF2, RNPK, p53, NFAT4, Shc); TFs2: Transcription
Factors (CHOP, ATF2, MNK, MSK, MEF2, Elk-1); TFs3: Transcription Factors (Elk-1, Ets-2, RSK, MNK, MSK, cPLA2).

specific role in regulating CSCs biology. The function of SHP2
within CSCs has been characterized in several tumors, such as
leukemia, BC, glioma and liver carcinoma. Aceto et al. (2012)
showed that SHP2 was able to influence the self-renewal of tumor
cells. In fact, SHP2 knockdown reduced the self-renewal ability of
breast cells in both HER2- positive and triple-negative tumors.
Overexpression of both HER2 and HER3 in vitro increased
the number of CD44+/CD24− cells. However, knockdown
of SHP2 decreased the CD44+/CD24− and ALDHhigh cell
population. Finally the depletion of SHP2 in xenografts reduced
tumor growth and abolished sphere formation suggesting that
SHP2 contributes to the CSC phenotype (Aceto et al., 2012).
Furthermore, PTPN11 mutations have been frequently identified
in glioblastomas, occurring in 7.5% of cases. SHP2 expression
correlated with SOX2 expression in glioma stem cells and
was decreased in the differentiated counterpart. The induction
of differentiation of glioma stem cells resulted in decreased
SHP2 expression (Roccograndi et al., 2017). In hepatocellular
carcinoma (HCC), SHP2 promoted cell dedifferentiation and
CSC expansion through the activation of β-catenin signaling
(Xiang et al., 2017).

Among phosphatases, an important role in CSCs regulation
has been attributed to DUSPs. Family members of DUSPs play
pleiotropic and controversial roles in stemness maintenance,
making their pro- or anti-cancer function particularly context-
dependent. The treatment of HCC1806 BC cells with specific
pharmacologic inhibitor or shRNA of DUSP9, significantly
reduced DUSP9 levels and caused simultaneously reduction of
the stem cells markers OCT4 and ALDH1. DUSP9 shRNA
treated cells had reduced ability to form mammospheres when
compared to controls. When transferred in xenograft, these cells
showed reduced tumor growth compared to controls (Jimenez
et al., 2020). DUSP1, DUSP4 and DUSP6 have been reported to
associate with resistance to anti-cancer therapies and activation
of an EMT program (Small et al., 2007; Liu et al., 2013; Boulding
et al., 2016; Wu Q. N. et al., 2018). A recent study showed that
DUSP6 supports a CSC phenotype in endometrial carcinoma.
DUSP6 albeit inhibiting MAPK–ERK1/2 signaling, led to the
activation of PI3K/Akt, with consequent increased expression of
CSC-related genes in endometrial cancer cells (Kato et al., 2020).
Conversely, Boulding et al. (2016) demonstrated that, although
DUSP1 sustains CSC expansion, DUSP4 and DUSP6 negatively
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influences BCSCs maintenance. DUSP2 also showed inhibitory
effects on stemness. In particular, knockdown of DUSP2 caused
an expansion of the CSC population in CRC. This cell subset
showed increased expression of OCT4, NANOG, and SOX2 and
tumor-sphere formation ability. In addition, DUSP2 expression
levels were significantly decreased in CD133+ CRC cells as
compared with the CD133− cell counterpart (Hou et al., 2017).

RECENT CLINICAL DEVELOPMENTS IN
KINASE AND PHOSPHATASE
INHIBITORS

As the knowledge obtained from different studies has shed light
on the fundamental influence of kinase and phosphatase proteins
in cancer biological processes, several protein tyrosine kinases
and phosphatases inhibitors have granted the FDA approval or
are under clinical evaluation for the treatment of various cancer
types. One of the fundamental aspects for the development of
molecules that inhibit protein kinases is the maximization of drug
affinity for a specific target and the limited interaction with non-
target enzymes. Some important physicochemical properties have
to be taken into consideration for orally effective therapies. It is
necessary to estimate the solubility, membrane permeability and
efficacy in the drug setting. The assessment of those parameters
follows the Lipinski’s “rule of five” (RO5) (Lipinski et al., 2001).
Additional characteristics considered are lipophilic efficiency and
ligand efficiency (Roskoski, 2021a,c).

Since the first approval in 2001 of the imatinib, a small
molecule inhibitor of ABL kinase, more than 60 protein tyrosine
kinase inhibitors have received FDA authorization for cancer
treatment (Figure 2 and Table 1). According to the mechanisms
of action, small molecule protein kinase inhibitors have been
categorized in six different classes. Type I inhibitors compete for
ATP binding in the ATP-binding sites of active conformations.
Type II inhibitors bind to an inactive enzyme forms and
in particular to an ATP-binding adjacent site. The allosteric
inhibitors, type III, interact with an allosteric site, and possess
the peculiarity of being a non-competitive ATP inhibitors since
they leave the ATP site free (Dar and Shokat, 2011). Type III
inhibitors have been further divided into different classes: type
III antagonists, which bind inside the cleft between small and
large lobes close to the ATP-binding site, and type IV antagonists,
which bind sites outside the ATP-binding pocket (Gavrin and
Saiah, 2013). Some antagonists, classified as type V inhibitors,
are defined as bivalent since they bind to separate parts of the
protein kinase domain (Lamba and Ghosh, 2012). Although
owing numerous advantages, including efficacy at low doses,
prolonged inhibition and capability to bind targets with shallow
binding sites, the scientific community has been skeptical about
covalent inhibitors due to their toxicity and safety concerns. In
2013, the BTK inhibitor ibrutinib was approved for clinical use
after demonstrating efficacy in lymphoma and chronic leukemia,
thus leading to a new area for irreversible drugs. Subsequently,
the FDA approved other six irreversible kinase inhibitors drugs
(acalabrutinib, zanubrutinib, afatinib, dacomitinib, osimertinib,
and neratinib) (Roskoski, 2021b).

Moreover, over the past decades antibody-based therapies
have significantly changed the probability of survival
for oncological disorders. Some examples are further
discussed below.

Besides PTK have been successfully targeted with almost
a hundred of FDA-approved drugs, PTP druggability is still
a major challenge due to difficulties in the design of safe
and efficacious treatments (Mullard, 2018). Protein tyrosine
phosphatase loss of function is due to genetic alterations
including point mutations, deletion and epigenetic modification.
For this reason, PTP inhibitors could comprise, in the near future,
agents with different characteristics and mechanisms of action.
As for now, the majority of drugs currently in clinic are mainly
directed against SHP2 and PTP1B, which are central nodes for
several signaling pathways. In this context, a list of phosphatase
inhibitors under clinical evaluation is reported in Table 2.

KINASES AND PHOSPHATASES AS
THERAPEUTIC TARGETS IN CANCER
STEM CELLS

The fight against cancer has always been a challenge for the
scientific community. Conventional anti-cancer therapies, as
for example chemotherapy, have been pivotal treatments for
cancer since the 1940s (DeVita and Chu, 2008). Over the past
years, several studies have been conducted with the purpose to
narrow the various chemotherapy drugs developed in order to
select the best chemical compounds. Nevertheless cancer patients
have received important benefits, the high mortality rate is
due to chemoresistance phenomena that allow the persistence
of therapy resistant cancer cell clones responsible for tumor
outgrowth and metastasis formation (Turdo et al., 2019, 2021).
Metastatic disease continues indeed to be a threat for cancer
patients, raising the important point of the necessity of new
efficacious and tailored therapies able to counteract the expansion
and dissemination of the CSCs compartment. Despite the
standard chemo-radiotherapy and specific kinase/phosphatase
inhibitors having improved the life quality of cancer patients,
metastatic disease, relapse and chemoresistance remain an
outstanding issue. Hence, the discovery of kinase/phosphatase
inhibitors constitute an attractive therapeutic option for the near
future for the purpose to improve the efficiency of standard
cancer therapy striking the refractory CSCs (Yang et al., 2020;
Momeny et al., 2021).

PI3K is the major pathway considered deregulated in cancer
(Fruman et al., 2017). In different types of cancer and in particular
in HCC, alteration of the PI3K pathway was considered a master
player for the support of CSCs. The striking increase in one of
catalytic subunit type 3 of PI3K (PIK3C3) was detected in HCC
tissues and liver CSCs. The inhibition of PIK3C3 hampered CSCs
stability via the activation of AMPK. In vitro and in vivo models
have shown that the combined use of PIK3C3 and PI3K inhibitor
reduced spheroid formation and counteracted the tumors growth
in mice models (Liu et al., 2020). In line with these observations,
our group demonstrated that a subpopulation of colorectal CSCs
(CR-CSC), endowed with metastatic potential, is characterized
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FIGURE 2 | Timeline of FDA approvals for kinase inhibitors.

TABLE 1 | Protein kinase inhibitors and their related targets.

Target Drug

ALK Alectinib Brigatinib Ceritinib Crizotinib Gliteritinib Lorlatinib

BCR/ABL Bosutinib Imatinib Nilotinib Ponatinib

BTK Acalabrutinib Ibrutinib

CDK Abemaciclib Midostaurin Palbociclib Ribociclib

C-RET Lenvatinib Pralsetinib Selpercatinib

CSF1R Pexidartinib

EGFR Afatinib Dacomitinib Erlotinib Gefitinib Lapatinib Neratinib Osimertinib Regorafenib Tucatinib Vandetanib

FGFR Erdafitinib Pemigatinib Nintedanib Lenvatinib

FGR Midostaurin

FLT3 Gliteritinib Midostaurin

JAK Baricitinib Fedratinib Ruxolitinib Tofacitinib

KIT Avapritinib Midostaurin Pazopanib Ripretinib

MEK Binimetinib Cobimetinib Encorafenib Selumetinib Trametinib

MET Cabozantinib Capmatinib Crizotinib

m-TOR Everolimus Temsirolimus

PDGFR Avapritinib Lenvatinib Midostaurin Nintedanib Pazopanib Ripretinib Sorafenib

PI3K Idelasib

RAF Dabrafenib Sorafenib Vemurafenib

RHO-K Netarsudil

ROS1 Crizotinib Lorlatinib

SRC Dasatinib

SYK Fostamatinib Midostaurin R406

TRK Entrectinib Larotrectinib

VEGFR Axitinib Cabozantinib Lenvatinib Midostaurin Nintedanib Pazopanib Regorafenib Sunitinib Vandetanib Sorafenib

by the expression of CD44v6 and consequent activation of
PI3K/Akt pathway. Targeting PI3K with the BKM120 selectively
killed CD44v6+ CR-CSCs and reduced the growth of metastasis
(Todaro et al., 2014; Veschi et al., 2020a). B591 is a novel inhibitor
that targets class I PI3K isoforms, blocking the PI3K/mTOR
pathway. This inhibitor proved to be effective in reducing the
CSC compartment of different types of cancer. In particular,
Zhou et al. (2019) observed a reduction in EMT and stemness
markers, self-renewal and tumor initiating capabilities of CSCs.
The combined treatment of cisplatin and the PI3K inhibitor,
BEZ235, induced apoptosis of chemoresistant ovarian cancer

cells. The authors also observed a reduction in colony formation
capabilities, EMT and CSC markers expression (Deng et al.,
2019). Akt isoforms play crucial roles in the maintenance of the
CSC-like phenotype. The knock-down of the Akt1 isoform, and
to a lesser extent of Akt2, affected the survival of BCSC and in
particular of those displaying mesenchymal characteristics (Rivas
et al., 2018). These results suggest that Akt1 is required not only
for the self-renewal of CSC but also for their migratory capacity.
On the other hand, glioblastoma and BCSCs deficient of Akt2
showed decreased expression of WIP and the stemness markers
YAP and TAZ (Escoll et al., 2017).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 October 2021 | Volume 9 | Article 690306

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-690306 October 22, 2021 Time: 17:22 # 8

Turdo et al. Targeting Phosphatases/Kinases in Cancer

TABLE 2 | Different phosphatase inhibitors under clinical investigation.

Drug Target Properties Indication NCT identifier Status

AKB-9778 VE-PTP Catalytic inhibitor Diabetic retinopathy NCT03197870 Phase IIb

Benznidazole PTP1B Allosteric inhibitor Chagas disease NCT03378661 Phase II

GSK2983559 RIP2 Allosteric inhibitor Inflammatory Bowel
Diseases

NCT03358407 Phase I

IFB-088 PPP1R15A Allosteric inhibitor Charcot-Marie-
Tooth

NCT03610334 Phase I

LB-100 PP2A Catalytic inhibitor Solid tumors NCT01837667 Phase I

MSI-1436C PTP1B Non-competitive allosteric inhibitor Breast
Type II diabetes

NCT 02524951
NCT00606112

Phase I
Phase I

PRL3-zumab A*STAR Monoclonal antibody Solid tumors NCT04118114 Phase II

RMC-4630 SHP2 Allosteric inhibitor Solid tumors NCT03989115 Phase I

Leishnaniasis NCT00662012 Phase I

SSG SHP1, SHP2 Allosteric inhibitor Melanoma NCT00498979 Phase IV

Solid tumors NCT00629200 Phase I

TNQ155 SHP2 Allosteric inhibitor Solid tumors NCT04000529 Phase Ib

Indeed, it is now clear that the PI3K/Akt pathway activation
is required for the maintenance of CSCs from a variety of
cancers including colorectal, ovarian, breast and hepatocellular
cancer. It should not also be underestimated that this aggressive
cell subpopulation could activate mechanisms of resistance to
PI3K/Akt inhibitors. Of note, high HER2 expression levels have
been associated with the activity of the PI3K/Akt pathway, whose
targeting was not sufficient to hamper the viability of CR-CSCs.
Besides targeting PI3K, with the BKM120 or taselisib, together
with the HER2, inhibitor Trastuzumab and MEK inhibitors,
cobimetinib or trametinib, induced the regression of tumors in
CRC xenografts (Mangiapane et al., 2021).

A better understanding of the signaling pathways driven
by CDKs activity is an urgent need in order to develop new
specific CDKs inhibitors to block cancer cell proliferation. For
instance, the role of unusual CDK, such as CDK5 was studied
in glioblastoma. It was reported that CDK5 was involved in
stemness of brain tumor cells in mouse models. Therefore, CDK5
enhanced asymmetric cells division and promoted glioma stem
cell self-renewal through bind and phosphorylation of CREB1.
The hypothesis to inhibit this kinase, with a specific inhibitor,
such as CP681301, could be a change to inhibit the brain CSCs
and reduce risk of recurrence (Mukherjee et al., 2018). The
CDK4 positively regulates cancer stemness in triple-negative BC,
where it behaved as negative prognostic marker and therapeutic
target. The pharmacological inhibition of CDK4 interfered with
BCSC self-renewal, promoted the transition to an epithelial
phenotype and eliminated chemotherapy-resistant cancer cells
(Dai et al., 2016).

An interesting example that empathizes the clinical relevance
of PTP and PTK double targeting has been demonstrated by
Lai et al. (2018) in the context of BCR/ABL positive leukemia
patients who experienced resistance to tyrosine kinase inhibitors
(TKIs). The LB100 and LB102 inhibitors of PP2A, in combination
with the most effective BRC-ABL inhibitors imatinib or dasatinib
(Roskoski, 2018a), reduced the viability of leukemic stem cells
both in vitro and in vivo. The PP2A is implicated in human cell

transformation and in cell cycle progression and its inhibition
eradicated the cancer subpopulation of leukemic stem cells
responsible for TKI resistance and minimal residual disease (Lai
et al., 2018). These findings corroborated previous observations
regarding the additive anti-cancer effect, on chronic myeloid
leukemia stem cells, of the inhibition of TKs and JAK2, which is a
component of the PP2A/β-catenin/BCR-ABL complex (Lin et al.,
2014). However, starting from the notion that PP2A activity is
inhibited by BCR-ABL, Perrotti et al. (2019) raised some concerns
regarding the synergistic effect of TKIs and the PP2A inhibiting
drug LB100. Several experimental flaws regarding Lai et al. (2018)
study have been brought to light, including the choice to use cell
lines and not primary normal and leukemia stem cells resistant to
TKIs, the evaluation of cell viability rather than apoptosis and the
lack of data regarding the translatability of PP2A inhibitors into
clinical settings due to expected serious adverse events. Thus, the
therapeutic relevance of PP2A inhibition combined with TKIs, in
BCR-ABL leukemia, seems still speculative (Perrotti et al., 2019).

Triple negative BC is known as a subtype of BC more
aggressive with a remarkable likelihood of relapse and metastasis.
The standard treatment for this molecular subtype of BC is
chemotherapy. Lu et al. (2018) have recently highlighted that
the HIF-1, induced by chemotherapy, positively regulated
DUSP9, while inhibiting DUSP16, in turn leading to the
dephosphorylation and nuclear translocation of FoxO3 and
activation of the p38 MAPK, respectively. This in turn triggers
a stemness program with the enrichment of ALDH+ BCSCs
and therapy resistance. In vitro treatment with the p38MAPK
inhibitor SB203580 sensitized BCSCs to chemotherapy.
Moreover, in vivo administration of another p38 MAPK
inhibitor, the LY2228820, decreased tumor formation in
immunocompromised mice. Interestingly, the small molecule
LY2228820, has already been tested in early phases clinical trials
showing tolerable side effects in advanced cancers (Patnaik et al.,
2016; Lu et al., 2018).

Accordingly our group and others demonstrated that IL4,
secreted by tumor and microenvironment cells interacts with
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IL4R expressed by cancer cells and promotes metastatic
spreading by the activation of the JAK/STAT6, PI3K/Akt
and MAPK pathways (Gaggianesi et al., 2017). Targeting the
autocrine and paracrine IL4 signaling by using an IL4Rα

antagonist (IL4DM), attenuated MAPK pathway and reduced
the tumorigenic and metastatic potential of CD44+/CD24−
BCSCs. Interestingly, IL4DM treatment also potentiate the
response of the immune system against the aggressive subtype
of CSCs responsible for cancer progression and resistance to
standard therapeutic regimens. Additionally, the inhibition of
the IL4-induced NF-κB, with withaferin or 5-aminosalicylic
acid (5-ASA), restored DUSP4 expression levels and consequent
ERK inactivation and inhibition of stemness, invasion and
proliferation of BC cells (Gaggianesi et al., 2017). Interestingly,
a decrease in IL6 levels abrogated sphere-formation and
in vivo growth of primary tumors generated by paclitaxel-
resistant cervical cancer cells. In particular, the treatment with
the EGFR inhibitor, erlotinib, inhibited IL6 at transcriptional
and translational levels through the MUC1-EGFR-CREB/GRβ

axis, causing a depletion in CSC both in vitro and in vivo
(Lv et al., 2019).

The protein phosphatase WIP1 (PPM1D) inhibitors are
currently under clinical evaluation for their capability to
subtract p53 from proteolytic degradation or inactivation.
Deng et al. (2020a) described a novel function of the WIP1
inhibitor GSK283071, which suppresses stemness features in
NSCLC through the activation of p38 MAPK. Specifically,
the inhibition of WIP1 induced p38 MAPK phosphorylation
and consequent activation of the downstream targets MK2
and HSP27 and reduction of the SOX2, OCT4, NANOG and
ALDH1A1 stemness markers, sphere forming capability and
tumor-initiating potential (Deng et al., 2020a).

The small molecule BBI608 is an inhibitor of STAT-3-driven
transcription, which showed cytotoxic effects against several
cancer types. The peculiarity of this compounds is that it
showed superiority in counteracting CSCs propagation in vitro as
compared to other PTK inhibitors and chemotherapy. Moreover,
the BBI608 depleted stem-like cells in vivo and prevented
metastasis formation (Li et al., 2015).

The Hippo kinases Mst1/2 and Lats1/2 are responsible for
the phosphorylation and inactivation of the Yes-associated
protein (YAP) and the transcriptional activator with PDZ-
binding domain (TAZ). The oncogenic role of YAP and TAZ
has always been debated (Hong et al., 2016). Indeed, recently
it has been demonstrated that YAP overactivation following
the loss of LATS1/2 caused a reduction in the Lgr5+ CR-CSC
compartment and acted as tumor suppressor role in preclinical
models (Cheung et al., 2020).

The development of drugs targeting the most
important oncogenic signaling, consisting in the
RTKs/RAS/RAF/MEK/ERK pathway, has been the major
challenge in the past 20 years (Roskoski, 2018b). One recent
report aimed at demonstrating the impact of more than two
thousands compounds on the activation of the Wnt pathway in
colorectal cancer. While small molecules targeting BRAF and
EGFR did not alter the stemness pathway, MEK1/2 inhibitors,
such as trametinib, selumetinib, U0126 and PD318088, fostered

an increase in Wnt signaling (Zhan et al., 2019). Accordingly,
MEK inhibition induced the expression of pluripotency markers
in thyroid cancer and melanoma cells (Dorris et al., 2016). On
the other hand, targeting BRAF signaling pathway depleted the
CD133 positive compartment in thyroid tumor (Bozorg-Ghalati
et al., 2019) and synergized with cetuxiamb, an EGRF inhibitor, in
reducing the CSC pool in colorectal cancer (Wu Z. et al., 2018).

DISCUSSION

In the present review, we propose an overview of the
major kinases and phosphatases involved in many biological
processes and in particular their roles in promoting tumor
growth. Notwithstanding standard anti-cancer therapies have
represented and actually represents the primary arm to
counteract tumor bulk, the presence of a small subpopulation in
the malignant cell pool, named CSCs, does not allow the total
eradication of the tumor.

Therefore, CSCs are responsible for cancer relapse, higher
invasiveness as well as chemoresistance.

Recent research has shown that the imbalance between kinases
and phosphatases in tumor microenvironment are key elements
to lead tumorigenesis, tumor growth and dissemination. In
addition, gene deletions, mutations or epigenetic modifications
have been shown to be crucial factors in aberrant activation of
signaling pathways.

We herewith describe the latest findings regarding the
contribution of kinases and phosphatases in cancer progression
and dissemination. Recent advances discussed in this review
regard drugs that target several kinases and phosphatases
proteins deregulated in cancer. Several inhibitors have been
used with the aim of counteracting advanced disease, in
particular hampering CSCs.

Unfortunately, many types of advanced cancers are still
appropriately untreated, in fact the challenge for the scientific
community is to drive the discovery of novel therapeutic targets.
Thus, there is a need to find new drugs that inhibit kinases
and phosphatases proteins and, at the same time, sensitize CSCs
compartments to chemotherapy.

Hereby, the aim is to enhance the efficacy of standard
therapeutic approaches also using new compounds. Based on
accumulated knowledge in recent years, new compounds have
been used in experimental phases in patients affected by different
types of cancer with promising results.

These data provide a new perspective in order to eradicate the
tumor and offer a better life expectancy for the oncologic patients.
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