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Long non-coding RNA (IncRNA) plays a crucial role in modulating genome instability,
immune characteristics, and cancer progression, within which genome instability was
identified as a critical regulator in tumorigenesis and tumor progression. However,
the existing accounts fail to detail the regulatory role of genome instability in lung
adenocarcinoma (LUAD). We explored the clinical value of genome instability-related
INcRNA in LUAD with multi-omics bioinformatics analysis. We extracted the key genome
instability-related and LUAD-related gene modules using weighted gene co-expression
network analysis (WGCNA) and established a competing endogenous RNA (ceRNA)
network using four INcRNAs (LINCO1224, LINC00346, TRPMZ2-AS, and CASC9) and
seven target mRNAs (CCNF, PKMYT1, GCH1, TK1, PSAT1, ADAMS33, and DDX11).
We found that LINCO1224 is primarily located in the cytoplasm and that LINC00346
and TRPM2-AS are primarily located in the nucleus (CASC9 unknown). We found
that all 11 genes were positively related to tumor mutational burden and involve
drug resistance, cancer stemness, and tumor microenvironment infiltration. Additionally,
an eight-IncRNA genome instability-related INcCRNA signature was established and
validated, predicting the overall survival and immunotherapy outcomes in LUAD. To
conclude, we discovered that sponging microRNA, genome instability-related IncRNA
functions as ceRNA, modulating genomic integrity. This research provides clinical
references for LUAD immunotherapy and prognosis and interprets a potential genome
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instability-related ceRNA regulatory network in which LINCO1224-miR-485-5p/miR-
29¢-3p-CCNF-RRM2 and LINCO1224-miR485-5p-PKMYT1-CDK1 axes were the most
promising pathways. However, the potential mechanisms underlying our findings still
need biological validation through in vitro and in vivo experiments.

Keywords: genome instability, lung adenocarcinoma, IncRNA, bioinformatics, ceRNA, prognosis

INTRODUCTION

At present, the incidence and mortality of lung cancer rank
first among malignant tumors worldwide. Non-small-cell lung
cancer (NSCLC) is the most common pathological type of lung
cancer, accounting for 85% of all tumors, among which lung
adenocarcinoma (LUAD) is the primary subtype, accounting
for up to 40% (Zhong et al., 2019; Li et al., 2020; Niu et al,,
2020). Unlike lung squamous cell carcinoma (LUSC), women and
non-smokers comprise most LUAD patients (Pros et al., 2020).
Besides, blood metastasis can occur in the early stage of LUAD
without clinical symptoms, leading to a poor prognosis (Wang
et al, 2019). Even though traditional therapeutic strategies,
including surgery, chemoradiotherapy, and targeted molecular
therapy, have rapidly developed in recent years, LUAD patients’
overall survival (OS) does not improve considerably (Lee et al,,
2019). Current clinical practice has demonstrated the prominent
effect of immunotherapy, especially after the discovery of
immune checkpoint, primarily including programmed cell
death 1 (PD-1), programmed cell death-ligand 1 (PD-LI), and
cytotoxic T lymphocyte antigen 4 (CTLA-4). A recent prospective
randomized clinical trial, KEYNOTE-042, demonstrated that
pembrolizumab achieved a significantly longer OS in advanced
LUAD patients even with low PD-L1 expression (Mok et al,
2019). Nevertheless, immune checkpoint inhibitor (ICI) expense
significantly burdens patients and government health insurance
(Carbone et al., 2017; Niu et al., 2020), and the median objective
response rate is only 48.5% in PD-L1-overexpressing (>50%)
NSCLC (Frost et al., 2021). In addition to PD-L1, microsatellite
instability (MSI) has been proved to be a novel ICI biomarker for
colorectal cancer (Overman et al., 2017), but due to its rarity in
LUAD, MSI cannot become promising ICI biomarkers for LUAD
(Takamochi et al., 2017). Therefore, there is still an urgent need
to explore more effective immunotherapy biomarkers.

It has previously been observed that tumor mutational burden
(TMB) is closely related to an increased tumor immunotherapy
response rate in LUAD and other cancer types (Rizvi et al,
2018; Liu et al, 2019; Yu et al, 2019). Genome instability,
demonstrated as the endogenous source of mutation and tumor
heterogeneity, modulates the alterations of epigenomic features
(Tubbs and Nussenzweig, 2017; Peyraud and Italiano, 2020).
Recent evidence suggests that long non-coding RNA (IncRNA)
plays a critical role in regulating genome instability (Lee et al.,
2016; Ventura, 2016; Hu et al., 2018; Munschauer et al., 2018).
NORAD is the first discovered IncRNA, which assembles a
critical topoisomerase complex maintaining genomic integrity.
Hu et al. (2018) found that IncRNA GUARDIN functions as
a scaffold RNA to sustain breast cancer 1 (BRCA1) stability.
Moreover, GUARDIN could maintain chromosome end-to-end

fusion through the GUARDIN-miR-23/TRF2 pathway. However,
the clinical value and potential regulatory mechanism of genome
instability-related IncRNA in LUAD remain elusive.

Here, we performed an integrative multi-omics analysis to
explore the mechanisms and clinical value of genome instability-
related IncRNA (GIncR) in LUAD. We adopted a weighted gene
co-expression network analysis (WGCNA) to extract the key
genome instability-related and LUAD-related modules and then
screened four IncRNAs (LINC01224, LINC00346, TRPM2-AS,
and CASCY9) that were most related to genome instability. We
established a competing endogenous RNA (ceRNA) network and
used subcellular localization analysis to investigate the potential
regulatory role of the four IncRNAs. We applied TMB, MSI, drug
sensitivity, immune analyses on the four IncRNAs and seven
target messenger RNAs (mRNAs) (CCNF, PKMYTI, GCHI,
TKI1, PSAT1, ADAM33, and DDX11). To elucidate the clinical
value of the GlncRs, we constructed an eight-IncRNA prognostic
signature predicting the OS. Surprisingly, our signature could
predict the response rate to PD-1/PD-L1 inhibitors, and several
existing biomarkers (TMB, PD-L1 expression, POLE mutation
rate, and CD8+ cell infiltration) proved this point. To conclude,
we established a novel genome instability-related ceRNA network
and proposed an eight-IncRNA gene signature predicting OS and
immunotherapy outcomes in LUAD.

MATERIALS AND METHODS

Data Collection

The graphical presentation and online resources of our study
design are shown in the graphical abstract. Clinical features,
transcriptome profiling (gene expression quantification (RNA-
seq, which was preprocessed by fragments per kilobase of an exon
model per million mapped fragments (FPKM)) and microRNA
(miRNA) expression quantification (miRNA-seq)), and simple
nucleotide variation (SNV, Masked Somatic Mutation detected
by VarScan 2) from the LUAD project of The Cancer Genome
Atlas (TCGA) database were download through the Genomic
Data Commons Data Portal website (https://portal.gdc.cancer.
g0v/,2020.12.25). RNA-seq included 535 tumor samples and 59
paired normal samples. Corresponding clinical features included
500 patients (13 tumor samples were excluded due to lack
of OS, and 22 tumor samples were duplicate samples (the
average expression data of duplicate samples from one patient
were utilized)). We used the “limma” package to normalize
the transcriptome profiling (log2(FPKM + 1)). To identify the
IncRNA and mRNA from total RNA-seq, the genome annotation
file Genome Reference Consortium Human Build 38 patch
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release 13 (GRCh38.p13, downloaded from the National Center
for Biotechnology Information)' was used to reannotate the
RNA-seq. We randomly divided the 500 samples into a training
cohort (250 samples) and a validation cohort (250 samples) to
build and validate the IncRNA prognostic signature. A chi-square
test was utilized to detect the selection bias. The miRNA-seq was
normalized by the “edgR” package, including 521 tumor samples
and 46 paired normal samples. Extraction of the mutation status
of each patient from SNV data was fulfilled by Perl language.
Each patient’s TMB/MSI status was retrieved from the open-
access bioinformatics website cBioPortal (the MSIsensor score
was used, https://www.cbioportal.org/, 2020.12.26) (Cerami et al.,
2012). Since all the data are open access, no ethics approval was
acquired. The policies and publication guidelines of the TCGA
database were strictly followed.

WGCNA

We performed WGCNA by R package “WGCNA” to identify
the gene co-expression modules that were most relevant to
LUAD development and genome instability. The total RNA-
seq, including 535 tumor samples and 59 normal samples, was
included in the WGCNA of LUAD development. We first used R
package “limma” to extract differentially expressed genes (DEGs)
between the tumor sample and normal sample (adjusted P-value
(adj.P) < 0.05; | log2 fold change (FC)| > 0.5) for the co-
expression module construction. Six was set as the soft power
using the pickSoftThreshold function. As for the WGCNA of
LUAD genome instability, we first sorted all patients according
to somatic mutation counts (SMC) from largest to smallest. The
first quarter of patients was classified into the genome-unstable
group (GU group). The last quarter of patients was classified into
the genome-stable group (GS group). Only the RNA-seq of the GS
and GU groups was included in the WGCNA of LUAD genome
instability. Then, we extracted the DEGs between the GS and GU
groups (adj.P < 0.05; | log2 FC| > 0.5) for the co-expression
module construction. Five was set as soft power. The detailed
steps of the WGCNA technology followed the “WGCNA” package
instruction. The code we used could be acquired by contacting the
corresponding author.

Identification of Genome
Instability-Related IncRNA (GIncRs),

mRNA (GmRs), and miRNA (GmiRs)

We used R package “limma” to extract DEGs between the GU
and GS groups. Differentially expressed IncRNAs were named
GlncRs (adj.P < 0.05; | log2 FC| > 1), mRNAs were named GmRs
(adj.P < 0.05; | log2 FC| > 1), and miRNAs were named GmiRs
(adj.P < 0.05; | log2 FC| > 0.5).

ceRNA Network Construction

The overlapping IncRNAs in the top three LUAD development-
related modules, genome instability-related module, and GlncRs
were included in the ceRNA network construction. We
searched an online ceRNA interaction network predictive

Uhttps://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/

database, ENCORI (The Encyclopedia of RNA Interactomes,
ceRNA interaction network, http://starbase.sysu.edu.cn/ceRNA.
php?source=IncRNA, 2021.1.12), for each included IncRNA to
explore the possible target mRNAs (Li et al., 2013). As described
on the website, the presented ceRNA interactive network from
thousands of interactions of miRNA-targets was supported by
crosslinking immunoprecipitation (CLIP)-seq data. We then
excluded the GIncR target mRNAs that are neither in the
module most related to genome instability nor in the GmRs.
Furthermore, only the IncRNA-mRNA pairs that are statistically
significant (P < 0.05) in LUAD based on the ENCORI database
(through a pan-cancer analysis of miRNA-targets and RBP
(RNA-binding protein)-RNAs in 32 types of cancers) remained.
Then, the predicted mediating miRNAs between the IncRNA-
mRNA pairs were retrieved. The overlapping miRNAs in GmiRs
and predicted miRNAs were included in the ceRNA networks.
The graphical representation of the screening process is presented
in Figures 2A-C. Then, to explore the potential function of
the included IncRNAs, an online IncRNA subcellular localization
database, IncATLAS,* was utilized. Cytoscape, a software for
processing complicated networks, was used to modify the ceRNA
network (Shannon et al., 2003).

Genome Instability, Immune, Drug
Sensitivity, and Cancer Stemness

Analyses

We performed a pan-cancer analysis to explore the potential
biological function of the IncRNAs and their target mRNAs in the
ceRNA network based on TCGA pan-cancer data downloaded
from the Xena platform,’ including RNA-seq, clinical data,
and cancer stemness scores based on mRNA expression (RNA
stemness score, RNAss) and DNA methylation pattern (DNA
stemness score, DNAss) (Malta et al, 2018). Thirty-three
cancer types (ACC, BLCA, BRCA, CESC, CHOL, COAD,
DLBC, ESCA, GBM, HNSC, KICH, KIRC, KIRP, LAML, LGG,
LIHC, LUAD, LUSC, MESO, OV, PAAD, PCPG, PRAD, READ,
SARC, SKCM, STAD, TGCT, THCA, THYM, UCEC, UCS, and
UVM) were included. We calculated the correlation coefficient
between each gene and the TMB/MSI status in 33 cancer types
by Spearman correlation. We then calculated the correlation
coefficient between every two genes by Spearman correlation
to detect these genes interactions. Genome instability fosters
tumor heterogeneity, contributing to tumor progression, drug
resistance, tumor microenvironment (TME) alterations, and
cancer stemness (Morel et al., 2017; Dagogo-Jack and Shaw, 2018;
Sansregret et al., 2018). Therefore, the prognosis, drug sensitivity,
TME infiltration, and cancer stemness analysis of these genes
were conducted. GEPIA,* an online website bioinformatics tool,
was utilized to perform survival analysis based on overall analysis
and disease-free survival (DFS). We utilized the National Cancer
Institute (NCI)-60° database to perform the drug sensitivity
analysis of the IncRNAs and their target mRNAs. NCI-60 is

Zhttp://Incatlas.crg.eu/
Shttps://xenabrowser.net/datapages/
*http://gepia.cancer-pku.cn/about.html
*https://discover.nci.nih.gov/cellminer/
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an open-access database based on nine cancer types and 60
cancer cell lines, consisting of mRNA expression level and
corresponding z scores of cell sensitivity data (GI50) after
drug treatment. We calculated the Pearson correlation between
each gene expression and the GI50 to explore the association
between these genes and drug sensitivity. We selected 262 FDA-
approved drugs or drugs that are currently in clinical trials in this
drug sensitivity analysis (Zhang et al., 2020). TME infiltration
analysis was performed by the Estimation of STromal and
Immune cells in MAlignant Tumor tissues using Expression
data (ESTIMATE) immune and stromal score downloaded from
ESTIMATE® (Yoshihara et al., 2013). Furthermore, to validate
these genes’ immune function, the six immune subtypes obtained
from TCGA pan-cancer data were used to test the association
between each gene and immune infiltrate types by analysis of
variance (Thorsson et al.,, 2018). The cancer stemness features
obtained from TCGA pan-cancer data were used to test the
association between each gene and stem-cell-like features of
tumor cells by Spearman correlation test. To further explore these
genes potential mechanisms in modulating genomic integrity
and TME, we detected the correlation between each gene
and four MMR genes (MLHI1, MSH2, MSH6, and PMS2),
six immune-checkpoint-related genes (PD-L1 (CD274), PDCDI,
PDCDILG2, CTLA4, CD80, and CD86), and two previously
discovered genome instability regulatory IncRNAs (NORAD
(Munschauer et al., 2018) and LNCTAM34A (GUARDIN) (Hu
et al,, 2018)). The normality test of the indexes (TMB/MSI score,
drug sensitivity index, ESTIMATE score, and RNAss/DNAss) was
performed by the Kolmogorov-Smirnov test (Supplementary
Table 1). The drug sensitivity indexes were normally distributed.
Therefore, the method of Pearson correlation between gene
expression and drug sensitivity was reasonable.

Construction and Validation of the
Genome Instability-Related IncRNA
Prognostic Signature (GIRIncPS)

We used the uni- and multi-variate Cox regression to
construct the GIRIncPS based on OS in the training
cohort using GlncRs. The risk score was calculated as
follows: risk sum(coefficient (multivariate Cox
regression) X corresponding IncRNA expression). Hazard
ratio (HR) was calculated as exp(coeflicient). Dividing the
training cohort based on the median risk score, we classified all
500 patients into high- and low-risk groups. Survival analysis
by the Kaplan-Meier (KM) curve and the log-rank test was
conducted to evaluate the prognostic value of the GIRIncPS.
The receiver operating characteristic (ROC) curve and area
under the curve (AUC) were utilized to evaluate the reliability
of the GIRIncPS. The TMB status, MSI status, expression
of four MMR genes (MLHI1, MSH6, PMS2, and MSH2), two
immune-checkpoint-related genes (CD274 (PD-L1) and CTLA4),
and the mutation rate of POLE (a novel discovered biomarker
for ICI therapy outcomes (Wang F. et al, 2019)) of the two
groups were compared by the Mann-Whitney U test. The R

score =

Chttp://bioinformatics.mdanderson.org/estimate/

package “gsva” was utilized to perform the single-sample gene
set enrichment analysis (ssGSEA) to compare the two groups’
immune cell infiltration and immune functions. Furthermore,
we compared the mutation rate of TP53 between the two groups
in the TCGA cohort. TP53 is one of the most mutated tumor
suppressor genes acting as a genomic integrity guard. We
classified the patients into four groups, TP53 mutated/high-risk,
TP53 mutated/low-risk, TP53 wild/high-risk, TP53 wild/low-risk
groups, to detect if the GIRIncPS has better predictive ability than
TP53. Survival analysis by the KM curve between the four groups
was performed. Then, we searched Google Scholar for previously
published prognostic IncRNA signatures for LUAD. ROC curve
and AUC were used to compare these signatures’ predictive
ability with the GIRIncPS based on OS at 1, 2, and 3 years in
the overlapping patients (500 patients). The included signatures
were as follows: Li’s signature, 2020, and Sui’s signature, 2020.
Independent analysis with clinical prognostic factors was
performed by uni- and multi-variate Cox regression in the
TCGA cohort. The included clinical features were as follows: age
(>65 vs. <65), gender (male vs. female), stage (III/IV vs. I/II),
T (III/TV vs. I/IT), M (I vs. 0), N (I/II vs. 0), EGFR (mutation vs.
wild), and TP53 (mutation vs. wild). We plotted the nomogram
in the TCGA cohort for clinical reference. The calibration curve
was plotted to evaluate the reliability of the nomogram.

Statistics

The descriptive analysis and normality test were conducted
by IBM SPSS Statistics 26.0 (International Business Machines
Corporation, Armonk, NY, United States). Other statistics were
performed by R language (version 4.0.3) (R Core Team, 2013).
The adj.P (g-value and false discovery rate (FDR)) was adjusted
by Benjamini and Hochberg. Adj.P < 0.05 was considered
statistically significant in DEG extraction, and P-value < 0.05 was
significant in other conditions.

RESULTS

WGCNA

We utilized the “WGCNA” to explore the potential gene modules
with the closest relation to LUAD development and genome
instability. The results of the WGCNA are presented in Figure 1.
As for the WGCNA of LUAD development, 5,326 genes were
included in the co-expression module construction, and a total
of 10 gene co-expression modules were acquired. The top three
LUAD development-related modules were turquoise (r = 0.8,
P = 7e—136), yellow (r = 0.64, P = 9¢—69), and blue modules
(r = 059, P = 2e—57), indicating that the genes cooperate
to promote tumorigenesis in these three modules, respectively.
Similarly, a total of 3,489 genes were included in the WGCNA
of LUAD genome instability. As shown in Figures 1B,D, eight
modules were acquired, and the turquoise module was most
relevant to genome instability (r = 0.64, P = 4e—33). The
detailed results, including the gene significance (GS) and module
membership (MM) of each gene, are provided in Supplementary
Tables 2 and 3.
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FIGURE 1 | Identification of key tumor- and genome instability-related modules via the WGCNA. The cluster dendrogram of genes in the key tumor-related modules
(A) and genome instability-related modules (B). The module—trait relationship of key tumor-related modules (C) and genome instability-related modules (D). The
coefficient varies from —1 to 1 as color changes as blue-white-red. GS, genome stable; GU, genome unstable.
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Identification of GincRs, GmRs, and
GmiRs and ceRNA Network Construction

We used R package “limma’ to extract genome instability-
related genes between the GU and GS groups. In total, 185
GlncRs, 845 GmRs, and 197 GmiRs were obtained. ceRNA is a
common regulatory mechanism of IncRNA. Salmena et al. (2011)
first proposed the ceRNA mechanism, describing that RNA
transcripts containing numerous miRNA-binding sites could
competitively sponge miRNA, altering the miRNA target genes’
function (Tay et al., 2014). Because we hope to extract the genome
instability-related IncRNA-miRNA-mRNA pairs precisely, a
rigorous screening process is presented in Figures 2A-C. Given
that WGCNA was used to extract key gene modules related to
genome instability and tumorigenesis, we first intersected the
module that was most related to genome instability, the top
three modules that were most related to tumorigenesis, and the
GIncRs to screen the crucial IncRNAs (we found 36 IncRNAs)
that are related to genome instability and LUAD tumorigenesis.
Then, we utilized an online database (ENCORI) to explore the
potential mRNAs (GIncR target mRNAs) of these 36 IncRNAs.
We excluded the GlncR target mRNAs that are neither in the
module most related to genome instability nor in the GmRs.
Further, only the IncRNA-mRNA pairs that are statistically
significant (P < 0.05) in LUAD based on the ENCORI database
(through a pan-cancer analysis of miRNA-targets and RBP
(RNA-binding protein)-RNAs in 32 types of cancers) remained.

The remaining 12 mRNAs were considered the crucial mRNAs
that were most related to genome instability. Last, we intersected
the predicted miRNAs (based on ENCORI) and the GmiRs (we
found 13 miRNAs). Meanwhile, some mRNAs in the 12 mRNAs
were excluded because their paired miRNAs were not included in
the 13 miRNAs. Finally, we only got four IncRNAs, seven mRNAs,
and 13 miRNAs. The detailed retrieved information about the
36 IncRNAs from the ENCORI database and IncRNA-miRNA-
mRNA pairs before being screened by crucial mRNA and miRNA
is provided in Supplementary Tables 4 and 5. Table 1 displays
the ceRNA network. The modified graphical ceRNA network is
presented in Figure 2D.

It is reported that IncRNAs™ unique subcellular localization
was closely associated with their functions and that cytoplasmic
IncRNAs could serve as ceRNA (Chen, 2016). We utilized the
IncATLAS database to investigate the subcellular localization of
the four IncRNAs. A549 is the specific cell line for NSCLC.
Among the four included IncRNA, LINC01224 was mainly
located in the cytoplasm in A549, and LINC00346 and TRPM2-
AS were mainly located in the nucleus in A549. The subcellular
localization of CASC9 in A549 was unclear, but mainly in the
cytoplasm in other cell lines (Figures 2E-H). These results
indicated that LINC01224 and CASC9 might primarily modulate
genomic integrity via the ceRNA mechanism and that LINC00346
and TRPM2-AS might primarily modulate genomic integrity via
direct regulation.
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FIGURE 2 | Screening process of the included IncRNA, mRNA, and miRNA and construction of genome instability-related ceRNA network. The Venn diagrams
present the screening process of included INcRNA (A), mRNA (B), and miRNA (C) by WGCNA gene modules that are the most relevant to both genome instability
and tumorigenesis and differential expression analysis between GS samples and GU samples. (D) The ceRNA network based on screened INcRNA, mRNA, and
miRNA using an online database ENCORI. (E-H) The subcellular localization of LINCO1224, CASC9, LINC00346, and TRPM2-AS based on the INCATLAS database.
“n”, the number of total genes; “m”, the mean value of total gene expressions. Blue, mRNA. Orange, IncRNA. GU, genome unstable. GIncRs, genome
instability-related INcRNAs; GmRs, genome instability-related mRNAs; GmiRs, genome instability-related miRNAs; RCI, relative concentration index; CN,
cytoplasmic/nuclear.
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Genome Instability, Immune, Cancer

Stemness, and Drug Sensitivity Analyses
To comprehensively understand these four IncRNAs
(LINC01224, CASCY9, LINC00346, and TRPM2-AS) and seven
target mRNAs (CCNF, PKMYT1, GCHI, TK1, PSAT1, ADAM33,
and DDX11), we performed genome instability, immune, cancer
stemness, and drug sensitivity analysis.

We calculated the Spearman correlation between each of the
11 gene expressions and the TMB and MSI score in pan-cancer.
Figure 3 presents the results of genome-instability analysis of
included IncRNAs and target mRNAs. Surprisingly, we found
that all the 11 genes expression was significantly associated
with TMB in LUAD (P < 0.001). Most (10/11, 90.9%) genes
were positively related to the TMB, and only ADAM33 was
negatively related to the TMB (r = —0.18), indicating that
ADAM33 plays a crucial role in maintaining genomic integrity
and that other genes contribute to genome instability in LUAD.
Notably, among the four IncRNAs, LINC00346 had the closest
relation to TMB with a Spearman correlation exceeding 0.25.
Among the seven target genes, the Spearman correlation between
CCNF, PKMYTI1, and TKI reached 0.35. Besides, we found
that TRPM2-AS, CCNF, PKMYT1I, and DDX11 (4/11, 36.4%)
were positively related to MSI score, indicating that these four
genes function as key regulators in MMR mechanisms. We then
calculated the correlation coefficient between every two genes
by Spearman correlation to detect these genes’ interactions. The
results were presented in Figure 4A. The correlation between

TABLE 1 | Genome instability-related ceRNA network.

IncRNA miRNA mRNA
TRPM2-AS hsa-miR-195-5p DDX11
TRPM2-AS hsa-miR-497-5p DDX11
TRPM2-AS hsa-miR-195-5p ADAM33
TRPM2-AS hsa-miR-497-5p ADAM33
LINCO1224 hsa-miR-485-5p PKMYT1
LINCO1224 hsa-miR-485-5p CCNF
LINCO1224 hsa-miR-29¢-3p CCNF
LINC00346 hsa-miR-148a-3p GCHA1
LINC00346 hsa-miR-190a-5p GCH1
LINC00346 hsa-miR-199a-5p GCH1
LINC00346 hsa-miR-199b-5p GCH1
CASC9 hsa-miR-145-5p TKA1
CASC9 hsa-miR-146a-5p TKA1
CASC9 hsa-miR-874-3p TK1
CASC9 hsa-miR-146b-5p TKA1
CASC9 hsa-miR-195-5p TKA1
CASC9 hsa-miR-497-5p TK1
CASC9 hsa-miR-145-5p PSAT1
CASC9 hsa-miR-146a-5p PSAT1
CASC9 hsa-miR-28-3p PSATAH
CASC9 hsa-miR-874-3p PSAT1
CASC9 hsa-miR-146b-5p PSATH
CASC9 hsa-miR-195-5p PSATH
CASC9 hsa-miR-497-5p PSAT1

PKMYTI and DDX11 reached 0.61, that between PKMYTI and
CCNF reached 0.86, that between PKMYTI and TKI reached
0.81, and that between CCNF and TK1 reached 0.72, indicating
these genes have a synergistic effect. Extensive research has
shown that genome instability is one of the major causes of
intratumoral heterogeneity, leading to drug resistance. The top
16 correlations between genes and drug sensitivity are shown
in Figure 4B. It is shown that sensitivity of drugs that affect
DNA replication and synthesis, such as 5-fluorodeoxyuridine
10mer, pyrazoloacridine, and palbociclib, was positively related
to GlncRs and paired mRNA expression. These results further
indicate the clinical usage of GlncRs. Furthermore, as for some
protein kinase-targeted drugs, such as dasatinib and cobimetinib,
genome instability-related genes were negatively related to the
sensitivity. We then performed the immune analysis of these
11 genes. The results of immune subtype analysis in LUAD are
shown in Figure 4C, which evaluates various immune functions
of each gene related to lung cancer: wound healing (Cl),
IFN-y dominant (C2), inflammatory (C3), lymphocyte depleted
(C4), immunologically quiet (C5), and TGF-B dominant (C6)
(Thorsson etal., 2018). PKMYT]I in C1 had the highest expression
among the five subtypes, corresponding to wound healing, and
this may account for the increase of expression of angiogenic
genes and the high proliferation rate. All genes were significantly
related to immune subtypes, indicating that genome instability-
related genes play a crucial role in tumor immunity. We
performed survival analysis of the 11 genes based on OS and DFS
using an online bioinformatics website tool GEPIA. The results
were displayed in Supplementary Figure 1. The high expression
of PKMYTI, TKI, and LINC00346 was related to lower OS
and DFS, indicating that these three genes could promote
LUAD progression and serve as novel prognostic biomarkers.
Besides, the high expression of ADAM33 was related to lower
OS. To explore potential mechanisms of genome instability-
related genes in modulating genome integrity and tumor immune
features, we calculated the Spearman correlation between the
expression of the 11 genes and genome instability and immune-
related genes (PDCDI, CD274, PDCDILG2, CTLA4, CD&0,
CD86, MSH2, MLH1, PMS2, MSH6, NORAD, and GUARDIN)
(Figure 4E). We found that most genes (10/11, 90.9%) were
positively related to MSH2 and MSH6 (P < 0.01), indicating
that high expression of MMR proteins was not consistent with
high genomic integrity in LUAD. Most genes were positively
related to PD-L1 (CD274) (6/11, 54.5%) and PD-1 (PDCDI)
(7/11, 63.6%) (P < 0.01). Furthermore, five genes (CCNF,
PKMYT1I, LINC00346, GCH1, and TKI) were negatively related
to GUARDIN (LNCTAM334A). These findings suggested that
these 11 genes modulate the GUARDIN pathway and contribute
to a predicted good ICI outcome. Furthermore, we utilized
the ESTIMATE and CIBERSORT databases to explore LUAD
TME infiltration. As shown in Figure 4D, most genes were
negatively related to stromal cell infiltration (8/11, 72.7%) and
immune cell infiltration (9/11, 81.8%) and positively related to
tumor purity (9/11, 81.8%). Besides, as shown in Supplementary
Figure 2, some critical immune cell infiltrations that affect
immunotherapy, such as CD8+ T cells and active NK cells, were
positively related to these genes’ expression (10/11, 90.9% for
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while M1-type macrophage infiltration, which mainly exerts
antitumor and proinflammatory effects, was positively related to

CD8+ cells; 9/11, 81.8% for active NK cells). Moreover, M2-type
most genes’ expression (10/11, 90.9%). These findings indicated

macrophage infiltration, which mainly exerts protumor effects,
was negatively related to most genes’ expression (10/11, 90.9%),
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FIGURE 4 | Pan-cancer analysis of the four IncRNAs and their seven target mRNAs
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. (A) The co-expression analysis between every two genes by Spearman
correlation based on pan-cancer data. (B) The drug sensitivity analysis based on the NCI-60 database by Spearman correlation. (C) The relationship between each
gene and immune subtype by the Kruskal-Wallis test in LUAD. (D) The co-expression analysis between each gene and four MMR genes (MLH1, MSH2, MSH6, and
PMS2), six immune-checkpoint-related genes (PD-L1 (CD274), PDCD1, PDCD1LG2, CTLA4, CD80, and CD86), and two previously discovered genome instability
regulatory INcRNAs (NORAD and LNCTAM34A (GUARDIN)) by Spearman analysis in LUAD. (E) The relationship between each gene and tumor stemness indexes
(RNA stemness score, RNAss; DNA stemness score, DNAss) and immune cell, stromal cell, and tumor purity (ESTIMATE score) in LUAD.
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that the 11 genes we proposed contribute to an antitumor TME
infiltration and are beneficial for immunotherapy. Given that
genome instability is a crucial regulator for cancer stemness,
we explored the association between gene expression and
cancer stemness features (including RNAss and DNAss). The
results showed that most genes were positively related to
cancer stemness (10/11, 90.9%) (Figure 4D), among which the
correlation between CCNF, PKMYTI, TK1, and RNAss reached

0.5 (P < 0.001). Noticeably, one mRNA, ADAM33, was different
from the other 10 genes in most conditions, indicating that
ADAM33 involves other complex biological processes.

Construction and Validation of the
GIRIncPS

To explore the prognostic value of GlncRs in LUAD, we
established a prognostic signature based on the 185 GlncRs.
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We randomly divided the 500 samples into a training
cohort (250 patients) and a validation cohort (250 patients).
The basic characteristics of the TCGA-LUAD cohort are
presented in Supplementary Table 6. According to the chi-
square test, there was no selection bias between the training
and validation cohorts. We then performed uni- and multi-
variate Cox regression in the training cohort, and the results
are displayed in Table 2. The risk score was calculated
as follows: risk score = sum(coefficient x corresponding
IncRNA expression (log2(normalized gene expression + 1))).
Hazard ratio (HR) was calculated as exp(coefficient). An
eight-IncRNA GIRIncPS was acquired: 0.03 x FAMBS83A-
AS1 4 0.05 x LINC02587 — 0.69 x MIR99AHG — 0.154 x AL07
8645.1 + 0.05 x LINCO01671 + 0.03 x PLAC4 + 0.06 x LINCO
1511 + 0.09 x LINCO1116. The predictive ability of our
GIRIncPS in the training, validation, and whole TCGA cohorts
was acceptable for IncRNA prognostic signature. Survival analysis
indicated the OS was significantly longer in the low-risk
group in the three cohorts (Figures 5A-C), and all the AUC
reached 0.65 (Figures 5D-F). Compared with two previously
published IncRNA prognostic signatures based on OS at 1, 2, and
3 years in LUAD, the GIRIncPS had the best prognostic ability
(AUC = 0.726, 0.672, and 0.677, respectively) (Figures 5G-I).
To explore whether the GIRIncPS had better prognostic ability
than he TP53 mutation, we analyzed the TP53 mutation rate
between the two groups. The TP53 mutation rate in the high-
risk group was 58%, significantly higher than that in the low-risk
group (41%). We classified the patients into four groups: TP53
mutated/high-risk, TP53 mutated/low-risk, TP53 wild/high-risk,
TP53 wild/low-risk groups. According to the survival analysis
between the four groups, GIRIncPS had better prognostic ability
than TP53 (Figure 5K). Regardless of whether the TP53 was
mutated, the high-risk groups had a significantly lower OS.
Independent analysis with clinical features by uni- and multi-
variate Cox regression indicated older age, higher stage, T,
and N, which were significant risk factors based on OS in
the TCGA cohort, and the low-risk group was a significant
protective factor (Supplementary Figures 3A,B). To provide a
clinical reference for clinicians, a nomogram based on OS in the
TCGA cohort was presented in Supplementary Figure 3C. The
calibration curve indicated that the nomogram could perform
well in predicting LUAD patients’ OS, especially at 2 and 3 years
(Supplementary Figure 3D).

We also performed the genome instability and immune
analyses in the high- and low-risk groups. As shown in
Figures 6A-C, both SMC and TMB were significantly higher in
the high-risk group, while there was no difference between the
MSI score of the two groups. The patients in the high-risk group
had a higher PD-L1 (CD274) expression and POLE mutation
rate but not CTLA4 expression (Figures 6D-F). Immune cell
infiltration and immune function analysis indicated that most
immune cell types, such as T helper cells, mast cells, and B cells,
were significantly higher in the low-risk group. But some essential
immune cells participating in immune checkpoint mechanisms,
such as CD8+ cells and Th cells, were even higher in high-
risk groups. Similarly, in immune function analysis, although
some innate immune processes, such as type II IFN response,

were lower in the high-risk group, cytolytic activity and antigen
presentation process such as MHC class I were higher in the
high-risk groups (Figures 6G,H). These results indicated that
the high-risk group probably had a higher response rate to PD-
1/PD-L1 inhibitors, and several existing biomarkers (TMB, PD-
LI expression, POLE mutation rate, and CD8+ cell infiltration)
proved this point.

DISCUSSION

Immunotherapy has achieved a gratifying breakthrough in lung
cancer, especially NSCLC (Sun et al., 2020). Predominantly,
ICIs aroused interest and led to a remarkable improvement
of DES and OS. Monoclonal antibodies targeting the CTLA-4
pathway (ipilimumab) (Rittmeyer et al., 2017), PD-1 (nivolumab
and pembrolizumab) (Tanvetyanon et al, 2016), and PD-
L1 (durvalumab, atezolizumab, and avelumab) (Zhou et al.,
2016) have achieved promising improvements in second-line
therapy for advanced lung cancers. ICIs enhance the intrinsic
immune response against tumor antigens by eliminating the
brake on T-cell activation by antigen-presenting cells. Despite
substantive progress in lung carcinoma immunotherapy, the
objective response rate in LUAD patients remains unsatisfying.
The combination of standard immunotherapy and neoadjuvant
therapy promoting immune system antitumor effects is an
alluring strategy (Li F. et al, 2020). Tumor initiation and
progression depend on the genomic alterations, involving
the generation of new peptide sequences and taking the
shape of neoantigens (Mardis, 2019). Genome instability
explains tumor heterogeneity, offering critical regulation of
cancer pathways, driving phenotypic variation, and impacting
epigenetics modification (Burrell et al.,, 2013). Hence, we look

TABLE 2 | The results of uni- and multi-variate Cox regression.

id Univariate Cox regression Multivariate Cox regression

HR HR.95L HR.95H P-value HR HR.95L HR.95H P-value

AC012085.2 1.14 1.04 1.26 0.01
FAM83A-AS1 1.04 1.01 1.06 0.00 1.03 1.01 1.06 0.02
LINCO2587 1.04 1.02 1.07 0.00 1.06 1.02 1.07 0.00
LINCO2864 1.12 1.02 1.22 0.01
AL138760.1 1.08 1.00 1.17 0.04
AC110619.1 1.20 1.01 1.42 0.04
MIR99AHG 0.29 0.11 0.80 0.02 0.50 0.19 1.36 0.18
SCAT1 119 1.04 1.36 0.01
AC003092.1 1.02 1.00 1.03 0.04
ALO78645.1 0.11  0.01 0.94 0.04 0.21 0.08 1.74 0.15
LINCO1671 1.04 1.01 1.07 0.00 1.05 1.02 1.08 0.00
PLAC4 1.08 1.01 1.06 0.01 1.03 1.01 1.06 0.01
LINCO1511 1.06 1.03 1.08 0.00 1.06 1.03 1.09 0.00
AC131009.1 1.40 1.01 1.94 0.04
LINCO1116  1.12 1.08 1.21 0.01 1.09 1.01 1.19 0.03

HR, hazard ratio, calculated by exp(coefficient), 95L/R, 95% confidence interval.

Frontiers in Cell and Developmental Biology | www.frontiersin.org

July 2021 | Volume 9 | Article 691540


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Wang et al.

INcRNA Modulates Genomic Integrity via ceRNA

A Training Risk == High risk S Low rsk B Validation.. = wgas = wovms c All Risk 2= High risk S Low risk
1.00 1.00 1.00
g 0.75 g 0.75 §' 0.75
3 3 3
F 8 8
=3 =3 2
a 0.50 a 0.50 a 0.50
B 3 3
2 = H
= = s
& %% b=0.002 & %% 520002 @ °%1 <0001
0.00 0.00 0.00
012345678 91011121314151617 181920 012345678 91011121314151617 181920 012345678 91011121314 151617 1819 20
Time(years) Time(years) Time(years)
& Highrisk{ 125924826147 52 0 0 0 0 0 0 0000000 <% Highrisk{ 10877462312107 6 3 2 2 1111111110 < Highrisk{ 2336994492617128 3 221111111110
o Lowrisk{ 1261105938251813119 6 4 3 3 3 1 111110 & Lowrisk{ 1411166644251713 8 5 4 3 2 2 2 1 11 1 1 0 0 @ Low risk{ 26226125825035261914107 5 55 2 2 2 2 2 1 0
012345867 8 91011121314151617 18 1920 012345678 91011121314151617 181920 01234567 8 91011121314151617 181920
Time(years) Time(years) Time(years)
D o | g E ©° F o |
Training Validation
@ |
2 E 2
> 9
:‘; g 7 E S g g -
% 2 %
2 E = 2
3 3 3 31 3 34
o S K . o K
S i —— AUC at 1 years: 0.771 —— AUCat 1 years: 0.677 S —— AUC at 1 years: 0.726
- —— AUC at 2 years: 0.674 — AUCat2 years: 0.674 —— AUC at 2 years: 0.672
o | —— AUC at 3 years: 0.657 e 4. —— AUCat3years: 0.705 o [ — AUC at 3 years: 0.677
e 2 T T T T T T o -
T T T T T T T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
1-Specificity 1-Specificity 1-Specificity
G o H = I o
- One-year OS = | Two-year OS - | Three-year OS
3 3
< | > 2 o |
z ° H z °
5 8 « | 5
o < | o o <
3 3
o~
g | ° GILncSig, AUC=0.672 g ]
— GILncSig, AUC=0.726 - Su\‘;‘(:si‘ggr;alure_AUC:O - — GlLncSig, AUC=0.677
—— Sui's Signature, AUC=0.636 — e )il iy —— Sui's Signature, AUC=0.574
2 —— Li's Signature, AUC=0.663 3 1 . . : L'fs'gr‘a""e’ rAUC'O 559| 2 —— Li's Signature, AUC=0.634
T T T T T T T T T T T T
0.0 0.2 04 0.6 08 1.0 o0 02 L 08 08 1.0 0.0 0.2 04 0.6 08 1.0
1-Specificity 1-Specificity 1-Specificity
1.00
J  TCGA set (p<0.001) K
1004 0.75
=
=
2
<}
a 0.50
754 g
4
e
0.2 k- TP53 Mutation/high
= TP53 p<0.001 e T8 it
Q " < TP53 Wildrhigh
g 504 . Ml.Atatlon - TPsswnd/\oj«
o . Wwiid 0.00
01234567 8 91011121314 151617 18 1920
Time(years)
254
TP53 Mutation/high{ 130975425127 4 2 0 0 0 0 0 0 0 0 0 0 0 0 O
g TP53 Mutation/low{ 10585462513 9 5 5 5 4 3 3 3 32222210
= TP53 Wild/high{ 10272402414108 6 3 2 2 11 11111110
04 253 Wild/low{ 1541337354 352419127 4 2 0 0 0 0 0 0 0 0 0 O
H\ghlrisk Low risk 012345678 91011121314151617 181920
Time(years)
FIGURE 5 | The eight-IncRNA prognostic signature based on the TCGA-LUAD cohort. (A-C) Survival analysis between the high- and low-risk groups based on OS.
(D-F) ROC curve of the signature model based on OS at 1, 2, and 3 years. AUC, area under the curve. (G-1) Model comparison with two previously published
INncRNA prognostic signatures by the ROC curve based on OS in the TCGA cohort at 1, 2, and 3 years. (J) The comparison of the mutation status of TP53 between
the high- and low-risk groups. (K) Survival analysis between TP53 mutated/high-risk, TP53 mutated/low-risk, TP53 wild/high-risk, and TP53 wild/low-risk groups by
the Kaplan—-Meier curve. (A,D) training cohort; (B,E) validation cohort; (C,F), the entire TCGA cohort.

Frontiers in Cell and Developmental Biology | www.frontiersin.org

11

July 2021 | Volume 9 | Article 691540


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Wang et al.

INcRNA Modulates Genomic Integrity via ceRNA

A B8 Low-risk E83 High-risk B B8 Low-risk F83 High-risk
8.3e-07 8.3e-07
- _30
3 1000 S
o - |
c o
S c
s 220
2 2
o =
£ 500 5
0 ]
Low=risk High-risk Low-risk High-risk
B8 Low-risk F&3 High-risk
[ B8 Low-risk E53 High-risk D
0.0034
0.36 20 Yo 800 @) e
. L] s .
. 0o
2034 - L.
8 2
e ¢ o g ®
% 0.32 g © .
Q NS
g N
go30 a
= 5
0.28
Low-risk High-risk Low~risk High-risk
TCGA set (p=0.048)
E B8 Low-risk E8 High-risk F
100
6
75
s
24 = POLE
2 g s B vuton
3 & 0 wia
<t
<
2
o2 25
0 0
Low-risk High-risk High risk Low risk
G Risk B3 low E3 high H Risk E3 low E3 high
1.00{ ns ns ns ns ns ns ™ ns " " ns ns 40{ ns ms ns ns ﬁ * ns s ns
' ] i -
0.75 ﬁ ﬁ i . % 08 ol ﬁ
i 2 s H
. g .
Soso| * L ° @ I
@ e & ' B
R . ] k 061 ¢4 s H
i o s
- ', . E o o s &
. li . . se 0
: : 04 ko
: p T
0.00 ‘. ,\\@\9{\ \@\00 (’&‘:‘?@ «§§‘© g@é‘&(& b’””g/ 6‘°§<~§§ §§§ @Qﬁ @Qo(e?
PSS FFF TS FAFF oo T Py LS SIS
LIPS PV A §'°°&V OGP &7 & & o & & & fé) AN
oo's" & 0@‘2 & \Q@\ PPN ¢
FIGURE 6 | Genome instability and immune analysis of high- and low-risk groups. The comparison of the SMC (A), TMB (B), MSI (C), the expression and mutation
status of CD274 (PD-L1) (D), the expression of CTLA4 (E), and the mutation status of POLE (F) between the high- and low-risk groups. The comparison of the
immune cell infiltration (G) and immune functions (H) of the two groups by ssGSEA. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Frontiers in Cell and Developmental Biology | www.frontiersin.org

12

July 2021 | Volume 9 | Article 691540


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Wang et al.

INcRNA Modulates Genomic Integrity via ceRNA

forward to selecting genome instability-related biomarkers and
treatment targets to shed light on LUAD immunotherapy.
IncRNA has been reported to play a direct role in regulating
genome instability. NORAD was the first reported IncRNA
maintaining genomic integrity via sequestering PUMILIO
proteins (Lee et al., 2016). Munschauer et al. (2018) proved that
NORAD controls RNA-binding motif protein X-linked (RBMX)
to assemble a ribonucleoprotein complex (NORAD-activated
ribonucleoprotein complex 1), mainly including suppressors of
genome instability topoisomerase 1, necessary for the assembly
of topoisomerase complex NARC1 (Munschauer et al., 2018;
Elguindy et al., 2019). Hu et al. found that a p53-responsive
IncRNA GUARDIN could maintain genomic integrity via the
ceRNA mechanism. Therefore, we suppose a ceRNA network
regulating genome instability in LUAD and GlncRs are promising
immunotherapy biomarkers and treatment targets. We extracted
hub-IncRNAs through WGCNA and differential expression
analysis. Among the four IncRNAs (LINC01224, LINC00346,
TRPM2-AS, and CASCY9), LINC01224 is primarily located in the
cytoplasm, and LINC00346 and TRPM2-AS are primarily located
in the nucleus (the localization of CASC9 in a lung cancer
cell line is unknown). IncRNA in the cytoplasm functions as
ceRNA sponging miRNA and upregulates the target mRNA (Tay
et al., 2014). The target mRNAs of LINC01224 were CCNF and
PKMYTI. CCNF belongs to the F-box protein family, which
participates in the Skpl-Cull-F-box protein (SCF) ubiquitin
ligase complexes, serving as substrate recognition subunits.
D’Angiolella et al. reported that CCNF-mediated degradation of
ribonucleotide reductase family member 2 (RRM2) plays a crucial
role in maintaining the balance of ANTP (which is essential
for DNA synthesis and repair) levels. The alteration of dNTP
levels leads to genome instability and a hypermutator phenotype
(D’Angiolella et al., 2013). Besides, CCNF regulates the CP110
level, a centrosomal protein promoting centrosome duplication
localized in the cytoplasm. Another target gene of LINC01224,
PKMYTI, a “forgotten” member of the WEE kinase family, has
similar functions to WEEI, regulating the G2-M checkpoint via
cyclin-dependent kinase 1 (CDK1) phosphorylation. Notably,
unlike WEEI, PKMYTI is predominantly localized in the
cytoplasm and associates with the Golgi apparatus and
endoplasmic reticulum through a membrane tether, where
PKMYTI modulates CDKI by sequestering it in the cytoplasm
(Asquith et al., 2020). Therefore, it is possible to hypothesize
that LINC01224 regulates genome instability through the
CCNF/RRM?2 axis and PKMYTI/CDKI axis via the ceRNA
mechanism. Further studies are needed to prove this point. In
the nucleus, IncRNA participates in the constituents of complexes
and has to do with epigenetic modulation. Although LINC00346
and TRPM2-AS are predominantly localized in the nucleus,
there is still a part of them that is localized in the cytoplasm,
modulating genome instability via the ccRNA mechanism. In this
study, we did not explore how IncRNA directly affects genome
instability. In summary, we constructed a ceRNA regulatory
network for genome instability in LUAD and proposed four
hub-IncRNAs and seven target genes (CCNF, PKMYT1, GCHI,
TK1, PSAT1, ADAM33, and DDX11) as potential immunotherapy
biomarkers and neoadjuvant therapy treatment targets, among

which LINC01224-CCNF and LINC01224-PKMYTI1 were the
most promising axes.

We proved that the hub-IncRNAs and target mRNAs
were involved in TME modulation. Immune subtypes C1-C6
mark diverse immune functions: wound healing (C1), IFN-
y dominant (C2), inflammatory (C3), lymphocyte depleted
(C4), immunologically quiet (C5), and TGF-f dominant (C6)
(Venteicher et al., 2017; Thorsson et al., 2018). CCNF had the
highest expression in C4 within all six subtypes, suggesting
that it was sensitive to a temporary shutdown of the naive
lymphocyte recirculation process. CCNF remains for further
research to indicate the increase of lymphocyte numbers in
responding to lymphoid organ locally or immunosuppression
due to the depletion of recirculation lymphocytes systemically
(Shiow et al., 2006). PKMYT1, GCHI, and TKI presented
the highest expression in C2—IFN-y dominant. They were
biomarkers measuring inflammation. Notably, GCHI and TK1
had relatively high immunophenotype expressions among
all the hub-IncRNAs and target mRNAs, although they
seem less valuable in other analyses. The results suggested
that GCHI and TKI expressions can be used as specific
indicators of impaired immune functions. Furthermore, we
explored LUAD TME infiltration. Although most genes were
negatively associated with immune cell infiltration, some critical
immune cells that affect immunotherapy, such as CD8+ T
cells and active NK cells, were positively related to these
genes expression. Besides, most genes (6/11, 54.5%) were
positively associated with PD-LI. These findings indicated
that the 11 genes we proposed contribute to an antitumor
TME infiltration, leading to tumor immune escape. To
conclude, these 11 genes could be novel immunotherapy
biomarkers on the aspects of LUAD genome instability and
immune features.

Genome instability is associated with DNA replication, the
most vulnerable cellular process, and is often accompanied by
increased tumor heterogeneity. Severe DNA damage leads to
replication stress, which is a feature of pre-cancer and cancer
cells and provides a source of genome instability. Tumors are
a patchwork of cells with diverse capacities of self-renewal,
tumorigenicity, and differentiation potential with hierarchical
organization, and intratumor heterogeneity offers the fuel.
Cancer stem cell (CSC) plays a driver role in intratumor
heterogeneity (Kreso and Dick, 2014). High cancer stemness is
usually associated with an increased mutation load and provides
a strong hint of a “cold” immune microenvironment, resulting
in immune suppression (Miranda et al., 2019). The clinical
value of CSC is intriguing, while the sensitivity of current
biomarkers used for monitoring CSCs, including CD133, CD44,
and aldehyde dehydrogenase (ALDH), is not guaranteed in
LUAD (Skvortsov et al., 2018). In this study, we found that most
genes were positively related to cancer stemness (10/11, 90.9%),
among which the correlation between CCNF, PKMYTI1, TK1,
and RNAss reached 0.5 (P < 0.001), which is consistent with
previous literature, and these genes could be cancer stemness
and tumor heterogeneity biomarkers. Besides, only ADAM33
was negatively related to cancer stemness, still needing further
research. Tumor heterogeneity is a significant cause of drug
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resistance, caused by the expansion of specific drug-tolerant
subclonal populations or the evolution of novel drug-tolerant
cells under selective therapeutic pressure (Dagogo-Jack and
Shaw, 2018). Our drug sensitivity analysis is consistent with
this hypothesis. We found that some protein kinase-targeted
drugs, such as dasatinib and cobimetinib, and genome instability-
related genes were negatively related to sensitivity, which the high
tumor heterogeneity could explain. In contrast, the sensitivity
of drugs that affect DNA replication and synthesis, such as 5-
fluorodeoxyuridine 10mer, pyrazoloacridine, and palbociclib, was
positively related to these 11 genes. These findings provide a new
perspective for genomic instability and emphasize the clinical
significance of genomic instability in tumor treatment.

There are still some limitations in this study. First, we did not
explore how IncRNA directly affects genome instability. Second,
the potential mechanisms underlying our findings still need
biological validation through in vitro and in vivo experiments.
Third, due to the diversity of IncRNA sequencing techniques, we
did not find an appropriate testing cohort independent of the
TCGA cohort to validate our clustering and signature further.
Nevertheless, we tried our best to minimize the selection bias,
including random division and the chi-square test.

To conclude, we performed an integrative multi-omics
analysis to explore the mechanisms and clinical value of
genome instability-related IncRNA in LUAD. We discovered that
sponging miRNA, genome instability-related IncRNA functions
as ceRNA, modulating genomic integrity. This research provides
clinical references for LUAD immunotherapy and prognosis
and interprets a potential genome instability-related ceRNA
regulatory network in which LINC01224-miR-485-5p/miR-29c-
3p-CCNF-RRM2 and LINCO01224-miR485-5p-PKMYT1-CDK1
axes were the most promising pathways.
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