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Pulmonary hypertension (PH) is a debilitating and life-threatening disease characterized
by increased blood pressure within the pulmonary arteries. Adenosine monophosphate-
activated protein kinase (AMPK) is a heterotrimeric serine-threonine kinase that
contributes to the regulation of metabolic and redox signaling pathways. It has key
roles in the regulation of cell survival and proliferation. The role of AMPK in PH is
controversial because both inhibition and activation of AMPK are preventive against PH
development. Some clinical studies found that metformin, the first-line antidiabetic drug
and the canonical AMPK activator, has therapeutic efficacy during treatment of early-
stage PH. Other study findings suggest the use of metformin is preferentially beneficial
for treatment of PH associated with heart failure with preserved ejection fraction (PH-
HFpEF). In this review, we discuss the “AMPK paradox” and highlight the differential
effects of AMPK on pulmonary vasoconstriction and pulmonary vascular remodeling.
We also review the effects of AMPK activators and inhibitors on rescue of preexisting PH
in animals and include a discussion of gender differences in the response to metformin
in PH.

Keywords: AMPK, pulmonary hypertension, pulmonary vascular remodeling, hypoxic pulmonary
vasoconstriction, metformin

INTRODUCTION

Pulmonary hypertension (PH) is a disease characterized by high blood pressure that affects the
vessels in lungs. These changes result in right ventricular failure and ultimately, premature death
(Maron and Leopold, 2015). Adenosine monophosphate-activated protein kinase (AMPK) is a
central regulator of energy homeostasis. It is activated under a variety of conditions, including
hypoxia, nutrient starvation, and toxin exposure (Towler and Hardie, 2007; Kim et al., 2016; Herzig
and Shaw, 2018). AMPK exerts most of its biological effects via catalytic α-subunits (α1 and α2) that
are ubiquitously expressed in pulmonary vessels (Mihaylova and Shaw, 2011; Hardie, 2013; Kim
et al., 2016). AMPK α1 is the predominant subunit in small pulmonary artery-derived pulmonary
microvascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). AMPK α2 is the
predominant subunit in conduit pulmonary artery-derived ECs and VSMCs (Evans et al., 2005;
Creighton et al., 2011). The AMPK α1 and AMPK α2 subunits have different effects on survival
of pulmonary VSMCs and hypoxic pulmonary vasoconstriction. For example, activation of AMPK
α1 stimulates autophagy in pulmonary artery VSMCs, but AMPK α2 activation prevents apoptosis
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(Ibe et al., 2013). Under conditions of mild hypoxia, AMPK
α1 is activated by liver kinase B1 (LKB1) and is required for
hypoxic pulmonary vasoconstriction; the AMPK α2 subunit
is required under conditions of severe hypoxia (Moral-Sanz
et al., 2018). Because of these characteristics, studies found
that use of AMPK-targeting agonists and antagonists results in
contradictory effects on PH development. Some studies found
that AMPK activators [i.e., metformin (Agard et al., 2009; Dean
et al., 2016; Lai et al., 2016; Omura et al., 2016; Zhai et al.,
2018; Zhang et al., 2018; Wang et al., 2020), 5-aminoimidazole-
4-carboxamide (AICAR) (Huang et al., 2014; Chen et al., 2016;
Dean et al., 2016), rosiglitazone/pioglitazone (Hansmann et al.,
2007; Satoh et al., 2009; Kim et al., 2010; Legchenko et al., 2018),
and apelin (Chandra et al., 2011; Kim, 2014)] are protective
against experimental PH. Other studies found that AMPK
activation induces hypoxic pulmonary vasoconstriction (Evans,
2006; Robertson et al., 2008; Evans et al., 2009; Moral-Sanz et al.,
2018) and that inhibition of AMPK by compound C prevents
PH (Ibe et al., 2013). Results from human clinical studies are not
currently conclusive on the precise role of AMPK in PH because
studies on PH treatment using metformin are currently phase two
clinical trials (NCT01884051 and NCT03629340). The AMPK
paradox remains relevant.

AMPK: STRUCTURE AND REGULATION

AMPK Structure
Adenosine monophosphate-activated protein kinase is a highly
conserved serine/threonine protein kinase complex consisting of
a catalytic α-subunit, a scaffolding β-subunit, and a regulatory
γ-subunit (Figure 1). In eukaryotes, each subunit has multiple
distinct isoforms encoded by different genes. The α-subunit
has two isoforms, α1 and α2, encoded by genes Prkaa1 and
Prkaa2, respectively (Stapleton et al., 1996). It contains a
canonical N-terminal Ser/Thr kinase domain (KD), an auto-
inhibitory domain (AID), and an adenine nucleotide sensor
segment termed an α-linker (Herzig and Shaw, 2018; Yan et al.,
2018). AMPK activation requires phosphorylation of critical
residues (Thr174 in the AMPK α1 subunit and Thr172 in the
AMPK α2 subunit) within the activation loop of the KD in the
AMPKα catalytic subunit that is phosphorylated by upstream
kinases LKB1 (Hudson et al., 2003), Ca2+/calmodulin-dependent
protein kinase β (CaMKKβ) (Woods et al., 2005), or TGF-beta-
activated kinase-1 (TAK-1) (Momcilovic et al., 2006). AMPK
auto-inhibition requires an AID, which interacts with the KD
and causes AMPK to be maintained as an inactive conformation
(Chen et al., 2013; Kim et al., 2016). The β-subunit also has two
isoforms, β1 and β2, encoded by Prkab1 and Prkab2, respectively
(Hudson et al., 2003). The γ-subunit has three isoforms, γ1,
γ2, and γ3, encoded by Prkag1, Prkag2, and Prkag3, respectively
(Cheung et al., 2000). The γ-subunits contain four tandem
cystathionine-β-synthase domains, which enable AMP, ADP, or
ATP binding (Xiao et al., 2007). Binding of AMP, and to a lesser
extent ADP, to the γ-subunit is an important regulatory feature
of the conformational switch that activates the AMPK complex
(Hardie et al., 2011; Gowans et al., 2013; Ross et al., 2016a). Each

AMPK complex consists of one α-subunit, one β-subunit, and
one γ-subunit, and all 12 heterotrimeric combinations are
possible (Ross et al., 2016b). Different subunits have distinct
organ preferences and expression patterns. For example, the
AMPK α1 subunit is mainly expressed in adipose tissue
(Ruderman et al., 2003; Rutter et al., 2003; Kelly et al.,
2004). The AMPK α2 subunit is predominantly expressed in
skeletal muscle and cardiac myocytes (Sakamoto et al., 2005,
2006; Thomson et al., 2007). Isoform-specific roles of AMPK
α1/AMPK α2 contribute to the pathogenesis of different diseases
(e.g., cardiovascular disease (Ahmad et al., 2005; Sakamoto
et al., 2006; Zarrinpashneh et al., 2006; Arad et al., 2007),
osteoclastogenesis (Wang et al., 2016), and Alzheimer’s disease
(Zhao et al., 2020)).

AMPK Signaling Transduction
Adenosine monophosphate-activated protein kinase can be
phosphorylated directly by small molecules that mimic cellular
decreased ATP-to-ADP or ATP-to-AMP ratios or three upstream
AMPK kinases (i.e., LKB1, CaMKKβ and TAK1) (Figure 1).
Upon changes in ATP/ADP and ATP/AMP ratios that occur
during nutrient starvation, AMP binds to the AMPK γ

subunit to cause allosteric activation via modulation of the
phosphorylation state of Thr172 (Xiao et al., 2011; Oakhill
et al., 2012; Gowans et al., 2013). LKB1, in a complex with
the pseudokinase STRAD and the scaffolding protein MO25,
directly phosphorylates AMPK at Thr172 (Lizcano et al., 2004).
Study results indicate that LKB1 is the principal route via
which AMPK is activated in many organs (e.g., skeletal muscle,
adipose tissue, and liver) (Shackelford and Shaw, 2009). Whereas,
CaMKKβ activates AMPK in response to Ca2+ signaling
pathways (Hawley et al., 2005; Hong et al., 2005; Hurley et al.,
2005). In 2006, TAK1 (i.e., MAPKK kinase-7, MAP3K7) was
identified as the third kinase capable of direct AMPK activation
(Momcilovic et al., 2006).

Adenosine monophosphate-activated protein kinase can be
activated by hypoxia in various tissue and cell types (Mungai
et al., 2011; Sallé-Lefort et al., 2016), but long-term hypoxia
exposure inhibits AMPK activation (de Theije et al., 2018).
Many studies found that activation of AMPK under hypoxia
primarily implies LKB1 activity, because AMPK activation is
abrogated in LKB1-deleted cells and knockout of CaMKK2, or
another upstream kinase, has no effect on AMPK activation in
VSMCs under hypoxic conditions (Moral-Sanz et al., 2018). Some
studies found that LKB1 seems to only activate the AMPK α2
subunit, because the AMPK α1 subunit remains phosphorylated
in LKB1-deficient heart muscle cells (Sakamoto et al., 2006).
This result might be explained by differences in abundances
and preferences of the AMPK upstream kinase in different cells
and organs. Increased production of reactive oxygen species
(ROS) in hypoxic conditions contributes to activation of AMPK
(Choi et al., 2001; Emerling et al., 2009; Zmijewski et al.,
2010; Hinchy et al., 2018). Hypoxia-inducible factor-prolyl-4-
hydroxylases (HIF-P4Hs) have a role in the activation of AMPK
(Yan et al., 2012; Dengler and Gäbel, 2019).

Once activated, AMPK phosphorylates key proteins in
multiple pathways (Marsin et al., 2000; Inoki et al., 2003;
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FIGURE 1 | Summary of AMP-activated protein kinase (AMPK) structure and activation. Domain structure of AMPK trimer: α-, β-, and γ-subunits with respective
domains. AMPK α subunits: KD, kinase domain containing Thr-172 phosphorylation site; AID, autoinhibitory domain; BD, binding domain. AMPK β subunits: CBM,
carbohydrate binding module; BD, binding domain. AMPK γ subunits: CBS, cystathione-β-synthase domain. The upstream kinases LKB1, CAMKK2, and TAK1 are
shown above the AMPK complex. LKB1 in complex with STRAD and MO25 activates AMPK; CAMKK2 activated by intracellular calcium.

Gwinn et al., 2008) or directly regulates key enzymes involved in
these pathways. These processes occur over time via targeting of
transcriptional regulators (Koo et al., 2005; Lamia et al., 2009;
Bungard et al., 2010; Figure 1). The most important aspect of
AMPK biology is its role in maintaining the balance between
catabolism and anabolism in response to metabolic stress (Towler
and Hardie, 2007; Hardie, 2008; Fogarty and Hardie, 2010).
Studies have revealed the roles of AMPK in lipid homeostasis
[e.g., acetyl-CoA carboxylase (Munday et al., 1988) and HMG-
CoA reductase (Carling et al., 1987)], glucose metabolism [e.g.,
thioredoxin-interacting protein (TXNIP) (Wu et al., 2013) and
6-phosphofructo-2-kinase (Bando et al., 2005)], insulin signaling
(Galic et al., 2011; Li Y. et al., 2011; Fullerton et al., 2013; Wu
et al., 2015; Emilio et al., 2016; Myers et al., 2017), and food
intake and body weight (Kahn et al., 2005; Kola et al., 2005;
Kola, 2008). Given those functional attributes in metabolism,
AMPK is a major therapeutic target for treatment of metabolic
diseases (e.g., type 2 diabetes) and obesity (Viollet et al., 2009;
Rojas et al., 2011; Hardie, 2013; Day et al., 2017). A growing
body of evidence also points to specific regulation of AMPK
and mitochondrial homeostasis, including via stimulation of
mitochondrial biogenesis (Bergeron et al., 2001; Zong et al., 2002;
Garcia-Roves et al., 2008), regulation of mitochondrial dynamics
(Ducommun et al., 2015; Toyama et al., 2016), and mitophagy
(Wang et al., 2001; Egan et al., 2011).

AMPK and Cardiovascular Disease
Adenosine monophosphate-activated protein kinase has pivotal
roles in cardiovascular physiology and in cardiovascular disease
states. AMPK α1 is the predominant subunit in VSMCs,
ECs, monocytes/macrophages, and adipocytes. AMPK α2 is
the predominant subunit in cardiomyocytes (Shirwany and
Zou, 2010; Wu and Zou, 2020). The functions of AMPK in
cardiovascular disease include contributions to atherosclerosis
and to heart failure and hypertension, which have been

extensively reviewed elsewhere (Shirwany and Zou, 2010;
Wu and Zou, 2020).

PULMONARY HYPERTENSION

Categories
Pulmonary hypertension is a general term used to describe
increased blood pressure (mean pulmonary arterial pressure,
mPAP, exceeds 25 mmHg at rest) in the lungs (Galiè et al.,
2009). At the 5th and 6th World Symposium on PH, it was
classified into five groups: pulmonary artery hypertension (PAH,
Group 1), PH associated with left heart disease (Group 2), PH
associated with lung disease and/or hypoxia (Group 3), PH
associated with chronic thromboembolic disease (Group 4), and
PH with unclear or multifactorial mechanisms, or both (Group
5) (Galiè and Simonneau, 2013; Simonneau et al., 2019). Each
group represents a very broad spectrum of disease etiology,
pathobiology, hemodynamic characteristics, and therapeutic
approaches (Table 1). The detailed features and treatments
of pulmonary hypertensive vascular disease in humans have
been reviewed elsewhere (Maron and Galiè, 2016; Thenappan
et al., 2018). AMPK deficiency has been identified in metabolic
syndrome-associated PH (PH-HFpE) (Lai et al., 2016). However,
in PAH, AMPK activity and expression can be either inhibited or
promoted depending on cell type and branch pulmonary artery
diameter (Ibe et al., 2013; Omura et al., 2016; Zhang et al.,
2018), which is discussed in section “Clinical Trials of Pulmonary
Hypertension Treatment Using Metformin.”

Pathology of PH
Although the exact causes of PH remain to be determined, study
findings indicate that it results from a combination of sustained
pulmonary vasoconstriction and pulmonary vascular remodeling
(Stenmark and McMurtry, 2005; Stenmark et al., 2006).
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TABLE 1 | Animal models of pulmonary hypertension.

Cause Histological features Animal models

Group 1: Pulmonary arterial hypertension (PAH)

Idiopathic PAH Pulmonary artery intimal
proliferation

Su-Hx rat/mouse

Heritable PAH Pulmonary artery medical
hypertrophy

MCT rat

Drugs/Toxin/Others Plexiform lesions Su-Hx-Normoxia

Group 2: Pulmonary hypertension with left heart disease

Left-sided heart disease Pulmonary medical
hypertrophy

SU5416/Obese
ZSF1 rat

Pulmonary vein
arterialization

Pulmonary interstitial
edema

Group 3: Pulmonary hypertension associated with lung disease

and/or hypoxemia

High altitudes Hypoxic pulmonary
vasoconstriction

Su-Hx rat/mouse

COPD/Pulmonary fibrosis Muscularization of arterioles Hypoxia rat/mouse

Obstructive sleep apnea

Group 4: Pulmonary hypertension due to chronic thrombotic and/or

embolic disease

Pulmonary emboli Thrombi or embolism Vena cava ligation

Other clotting disorders Recanalized organized
thrombi

Group 5: Pulmonary hypertension triggered by other health conditions

Heterogeneous Heterogeneous

Pulmonary vasoconstriction is the major contributor to the early
phase of the disease; pulmonary vascular structural remodeling
becomes progressively more dominant and important over
time (Shimoda and Laurie, 2013). Hypoxic pulmonary
vasoconstriction is a reflex contraction of vascular smooth
muscle in the pulmonary circulation to optimize lung blood
flow from low ventilated areas to well-oxygenated areas, and
thereby optimize gas exchange and oxygen delivery (Moudgil
et al., 2005; Dunham-Snary et al., 2017; Tarry and Powell, 2017).
Unlike the systemic circulation, which dilates in the presence
of hypoxia, pulmonary arteries constrict in response to alveolar
hypoxia (Detar, 1980; Waypa and Schumacker, 2010). Hypoxic
pulmonary vasoconstriction is an important homeostatic
mechanism used to match regional perfusion and ventilation in
the lung (Dunham-Snary et al., 2017; Tarry and Powell, 2017).

Sustained pulmonary vasoconstriction initiates pulmonary
vascular structural changes. These changes are characterized
by thickening of the intimal and/or medial layers of muscular
vessels, which results in concentric pulmonary vascular
remodeling (Heath and Edwards, 1958; Tuder, 2017). In human
beings, pulmonary vascular remodeling is attributed to lesions
that mainly occur in distal pre-capillary arteries, ranging in
diameter from 500 to 700 µm. Remodeling involves a change
in the maximal lumen diameter (interior and exterior) and
accumulation of different vascular cell types in the pulmonary
arterial wall (pulmonary artery ECs, VSMCs, and fibroblasts).
Pulmonary endothelial dysfunction is the key trigger that drives

PH development. It is characterized by either impairment of
endothelial-dependent vasodilatation, reduced anticoagulant
properties, ROS production, or active EC metabolic changes
(Budhiraja et al., 2004; Attinà et al., 2005; Klinger et al.,
2013; Ranchoux et al., 2018). Various stimuli (e.g., hypoxia,
smoking, disturbed blood flow, and oxidative stress) can lead
to endothelial dysfunction (Dummer et al., 2018; Ranchoux
et al., 2018). In PH, progressive accumulation of resident VSMCs
in pulmonary arteries contributes to expansion of the tunica
media. Accumulating evidence also supports involvement of
increased VSMC proliferation and inhibition of apoptosis in
pulmonary vascular medial layer thickening (Tuder et al., 2007;
Lyle et al., 2017; Humbert et al., 2019). Better understanding of
the molecular mechanisms underlying pulmonary endothelial
dysfunction and VSMC adaptation will greatly enhance our
understanding of the pathogenesis of PH, which may help
identify new therapeutic strategies. Other promising targets (e.g.,
fibroblast cell activation and immune system dysregulation) have
also been identified as contributing to the pathogenesis of PH
(Li M. et al., 2011; Rabinovitch et al., 2014; Plecitá-Hlavatá et al.,
2016; Nicolls and Voelkel, 2017).

Animal Models of PH
A variety of pre-clinical PH animal models are available
to study this complex disease of diverse etiologies and
histopathological features. Each model has its own hemodynamic
and microanatomic histological characteristics (Table 1). The
chronic hypoxia rat/mouse model is the one most widely
used to study PH. Exposure of rats/mice to hypoxia causes
increased mPAP, pulmonary vasoconstriction, and vascular
medial hypertrophy that mimic the pathological features of
human PH. However, right ventricular failure is absent (Zhao,
2010; Ryan et al., 2013). Monocrotaline (MCT) is a toxic alkaloid
that causes a widespread pneumotoxicity and endothelial injury
(Kay et al., 1967; Wilson et al., 1989). A single dose of MCT
(60 mg/Kg) is sufficient to induce PH in rats by modulating
two key pathological features of human PH, pulmonary vascular
remodeling and right ventricular failure (Schoental and Head,
1955; Jasmin et al., 2001; Dumitrascu et al., 2008; Gomez-Arroyo
et al., 2012). Sugen 5416 is a vascular endothelial growth factor
receptor 2 (VEGFR2) inhibitor. Sugen 5416/hypoxia (Su/Hx)
induces severe PH in both rats and mice that is characterized
by pulmonary angioobliteration and right ventricular failure
(Taraseviciene-Stewart et al., 2001; Sakao and Tatsumi, 2011).
These three PH animal models are well-recognized models of
Group 1 PH and Group 3 PH (Ryan et al., 2013; Colvin and
Yeager, 2014; Sztuka and Jasiñska-Stroschein, 2017). Lai et al.
(2016) developed a two-hit model of PH associated with heart
failure with preserved ejection fraction (PH-HFpEF). It includes
giving a single injection of SU5416 to obese ZSF1 rats. The
SU5416/obese ZSF1 rats develop PH that includes a preserved
ejection fraction and right and left ventricular hypertrophy.
PH-HFpEF develops as a more advanced corollary of PH and
diastolic HF, leading to more severe symptoms than those with
HFpEF and suffers significant exercise intolerance, frequent
hospitalization, and reduced survival (Thenappan et al., 2011;
Hoeper et al., 2016).
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AMPK AND PULMONARY
HYPERTENSION

Role of AMPK in the Predisposition and
Development of PH
Researches have revealed the role of AMPK in hypoxic
pulmonary vasoconstriction and pulmonary vascular
remodeling. Two clinical trials (NCT01884051 and
NCT03629340) focusing on PAH treatment with metformin
are in progress. However, in various animal models, AMPK
has contradictory effects on PH, as both inhibition and
activation of AMPK are protective for the development of
PH. These seemingly opposing results can be partly explained
by the different effects of AMPK signaling in pulmonary
vasoconstriction and pulmonary vascular remodeling.

Role of AMPK in Hypoxic Pulmonary Vasoconstriction
Until 1871, it was universally believed that the pulmonary
vessels did not respond to a vasomotor system. However,
Brown-Séquard (1871) published some results indicating that
such a system exists. Subsequently, Bradford and Dean (1894)
reported that asphyxia causes PH. von Euler and von Liljestrand
(1946) reported that acute hypoxia promotes pulmonary
vasoconstriction to increase pulmonary arterial pressure. This
study (von Euler and von Liljestrand, 1946) launched the current
era of study of hypoxia and pulmonary vasoconstriction.

Hypoxic pulmonary vasoconstriction is an important
homeostatic physiological mechanism that optimizes
ventilation/perfusion matching, gas exchange, and systemic
oxygen delivery. In response to alveolar hypoxia, intrapulmonary
arteries constrict to divert blood to better-oxygenated lung
segments (Bradford and Dean, 1894; von Euler and von
Liljestrand, 1946; McMurtry et al., 1976; Madden et al., 1985;
Sylvester et al., 2012; Dunham-Snary et al., 2017). Hypoxic
pulmonary vasoconstriction relies on a group of specialized
pulmonary VSMCs, which are located in pulmonary arterial
segments stripped of the tunica intima and tunica media,
but not in similar segments of pulmonary veins or systemic
arteries (Bergofsky et al., 1967; Murray et al., 1990a,b; Madden
et al., 1992; Weir and Archer, 1995). Hypoxic pulmonary
vasoconstriction is triggered by mitochondrial redox signaling
that involves voltage-gated potassium channels (Kv) and calcium
channels (Weir and Archer, 1995). Hypoxia inhibits Kv channels
in pulmonary VSMCs, causing membrane depolarization
and opening of voltage-gated calcium channels to initiate
Ca2+-mediated pulmonary vasoconstriction (Weir and Archer,
1995; Archer and Michelakis, 2002; Sommer et al., 2008;
Dunham-Snary et al., 2017).

Adenosine monophosphate-activated protein kinase has a
critical role in hypoxic pulmonary vasoconstriction by linking
the oxygen sensor to its effectors (Figure 2). Evans et al.
(2005, 2006) and Evans (2006) found that physiological hypoxia
increases the AMP/ATP ratio in pulmonary VSMCs, followed
by increased AMPK activity and phosphorylation of a classical
AMPK substrate, acetyl CoA carboxylase (a well-validated
marker for AMPK activation). This process is likely to be

mediated by binding of AMP to the AMPK γ subunit, which
triggers activation of the kinase by, (1) promoting AMPK Thr
172 phosphorylation via allosteric regulation (Scott et al., 2002;
Kemp, 2004; Oakhill et al., 2010), (2) inhibiting AMPK Thr
172 dephosphorylating (Davies et al., 1995), and (3) facilitating
phosphorylation of Thr 172 by the upstream kinase LKB1
(Hawley et al., 2003; Woods et al., 2003; Shaw et al., 2004,
2005). Additional studies found that AMPK activation evokes a
slow, sustained, and reversible increase in Ca2+ influx via cyclic
adenosine diphosphate-ribose (cADPR)-dependent mobilization
of sarcoplasmic reticulum stores in pulmonary VSMCs and the
consequent induction of constriction of pulmonary artery rings
(Evans et al., 2005). Consistent with these findings, two different
AMPK activators, AICAR and phenformin, evoke intracellular
Ca2+ influx and reversible constriction of the pulmonary
artery rings. The characteristics of this process are strikingly
similar to those of hypoxic pulmonary vasoconstriction (Evans
et al., 2005). The hypoxia-associated pulmonary vasoconstriction
and Ca2+ influx is inhibited by the non-selective AMPK
antagonist, compound C, upon inhibition of the sarcoplasmic
reticulum store-refilling current (Robertson et al., 2008). When
hypoxia occurs, AMPK can directly phosphorylate voltage-gated
potassium channels (Kv1.5 channels), followed by inhibition
of K+ currents in pulmonary VSMCs. The entry of voltage-
dependent Ca2+ to initiate the hypoxia-related pulmonary
vasoconstriction is thus activated (Moral-Sanz et al., 2016).
Downregulation of Kv1.5 expression and activity is also a
hallmark of PH (Yuan et al., 1998; Lv et al., 2013). Strong support
for this mechanism results from in vivo studies performed by
Moral-Sanz et al. (2018), who found a key in vivo role of AMPK
in hypoxic pulmonary vasoconstriction using a combination
of AMPK isoform deletion strategies and spectral Doppler
ultrasound. Under conditions of mild hypoxia (8% O2), deletion
of AMPK α1, but not AMPK α2, in smooth muscle cells block
induction of hypoxia-related pulmonary vasoconstriction. When
conditions of severe hypoxia (5% O2) are present, either AMPK
α1 or AMPK α2 deletion attenuates hypoxia-related pulmonary
vasoconstriction (Moral-Sanz et al., 2018). The findings that SNPs
in the Prkaa1 gene have been identified in populations that live
at high altitudes and who have attenuated hypoxic pulmonary
vasoconstriction are consistent with these results (Penaloza and
Arias-Stella, 2007; Bigham et al., 2014). In summary, a growing
body of evidence supports the hypothesis that AMPK activation
is a primary mediator of hypoxic pulmonary vasoconstriction.

Role of AMPK in Pulmonary Vasculature Remodeling
In PH, pulmonary arteries and veins undergo structure
changes. This pulmonary vascular remodeling is characterized
by proliferation of pulmonary ECs and VSMCs. AMPK has
a key role in the pathogenesis of pulmonary vasculature
remodeling (Figure 3).

AMPK in Endothelial Cells and PH
Both AMPK subunits (AMPK α1 and AMPK α2) are expressed
in pulmonary ECs. However, AMPK α1 is mainly expressed in
capillary-derived pulmonary microvascular ECs and AMPK α2
is mainly expressed in conduit-derived pulmonary artery ECs
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FIGURE 2 | Graphical summary of possible mechanisms that explain how AMPK activation is involved in hypoxic pulmonary vasoconstriction. Physiological hypoxia
results in increases in the AMP/ATP ratio, ROS production, and in LKB1 activation to promote AMPK Thr 172 phosphorylation. AMPK activation increases Ca2+

levels in pulmonary VSMCs to promote constriction through, (1) inhibition of voltage-dependent K+ channels, (2) activation of voltage-operated Ca2+ channels, and
(3) activation of Ca2+-sensing sarcoplasmic reticulum.

(Creighton et al., 2011). Pulmonary endothelial AMPK is down-
regulated in pulmonary hypertensive patients and hypoxia-
induced PH animals, compared with that from healthy donors
or non-PH animals, respectively (Teng et al., 2013; Afolayan
et al., 2016; Omura et al., 2016; Rana et al., 2020). EC-specific
AMPK knockout mice (EC-AMPK−/−) (Omura et al., 2016)
and EC-specific AMPK α2 knockout mice (EC-AMPK α2−/−)
(Zhang et al., 2018) have accelerated development of PH under
conditions of hypoxia. Endothelial AMPK exerts protective
effects against PH via, (1) paracrine growth mechanism (e.g.,
PDGF-BB and FGF-2) mediation of the interaction between
pulmonary artery ECs and pulmonary VSMCs (Omura et al.,
2016), (2) positive regulation of nitric oxide (NO) production via
endothelial NO synthase (eNOS) phosphorylation (Zhang et al.,
2006; Chen et al., 2009; Afolayan et al., 2016), (3) stabilization of
angiotensin-converting enzyme 2 (ACE2) to increase angiotensin
1–7 (Ang 1–7) expression and eNOS-derived NO bioavailability
(Zhang et al., 2006), (4) Ca2+ influx in pulmonary microvascular
ECs, which promotes endothelial barrier function (Creighton
et al., 2011), (5) notch ligand promotion of angiogenesis (200),
and (6) alleviation of EC apoptosis (Ido et al., 2002; Nagata et al.,
2009; Enkhjargal et al., 2014).

AMPK in Vascular Smooth Muscle Cells and PH
During PH development, the remodeling process
universally involves medial thickening driven by VSMC
proliferation/hypertrophy and deposition of extracellular matrix
within the tunica media of pulmonary arteries (Lyle et al.,
2017). Pulmonary VSMCs express both the AMPK α1 and
AMPK α2 subunits of AMPK (Creighton et al., 2011; Ibe et al.,
2013). However, AMPK α1 is the predominant subunit in
pulmonary VSMCs and contributes up to 80% of total AMPK
activity (Evans et al., 2005; Xue et al., 2017). AMPK α1 catalytic

activity is much higher in VSMCs from small pulmonary arteries
than in those from the main pulmonary arteries (Evans et al.,
2005). Unlike AMPK in pulmonary ECs, studies of AMPK in
pulmonary VSMCs have found contradictory results. Some
studies found that phosphorylated AMPK is increased, while
total AMPK levels remain the same, in pulmonary VSMCs
from pulmonary hypertensive patients and hypoxia-induced
PH mice, compared with those from healthy donors or non-PH
mice, respectively (Krymskaya et al., 2011; Ibe et al., 2013).
Mechanistically, hypoxia-activated AMPK promotes pulmonary
VSMC survival, but AMPK activity pharmacologically inhibited
by either compound C or 9-β-d-arabinofuranosyl adenine (Ara-
a) abrogates hypoxia-induced pulmonary VSMC proliferation
and PH (Ibe et al., 2013; Xue et al., 2017). Ibe et al. (2013)
found that although suppression of either AMPK α1 or α2 in
pulmonary VSMCs leads to increased cell death, AMPK α1
and AMPK α2 have differential roles. Activation of AMPK α1
stimulates autophagy and promotes pulmonary VSMC survival;
activation of AMPK α2 regulates myeloid cell leukemia sequence
1 (MCL-1) to prevent apoptosis (Ibe et al., 2013). In contrast to
these results, another series of studies found that phosphorylated
AMPK is decreased in pulmonary VSMCs from patients with
PH and from mice with hypoxia-induced PH, compared
with those from healthy donors or non-PH mice, respectively
(Goncharov et al., 2014). AMPK inhibition promotes pulmonary
VSMC proliferation and survival, but AMPK pharmacologically
activated by metformin or AICAR inhibits hypoxia-induced
pulmonary VSMC proliferation and chronic PH (Agard et al.,
2009; Goncharov et al., 2014; Wu et al., 2014; Ke et al., 2016;
Song et al., 2016; Gui et al., 2017; Liu et al., 2019).

Seemingly contradictory results should be interpreted
with caution. In the study that found elevated AMPK
phosphorylation in PH and AMPK inhibition-attenuated
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FIGURE 3 | Graphical summary of possible mechanisms associated with how AMPK activation affects pulmonary vascular remodeling. Hypoxia/ROS/growth factors
activate AMPK in ECs or VSMCs to promote or inhibit PH development. In pulmonary ECs, AMPK activation protects PH: (1) AMPK α1 activation in pulmonary ECs
promotes Ca2+ influx to maintain endothelial barrier function, (2) pulmonary endothelial AMPK inhibits VCAM-1 expression to antagonize inflammatory cell infiltration,
(3) AMPK activation in pulmonary ECs inhibits ROS production, promotes eNOS-NO bioactivity, and stabilizes ACE2 to increase Ang 1–7 expression. Pulmonary
VSMC proliferation and contraction are thus regulated. In pulmonary VSMCs, AMPK α1 activation promotes autophagy-mediated cell survival; AMPK α2 activation
inhibits cell apoptosis.

PH (Krymskaya et al., 2011; Ibe et al., 2013), the researchers
used pulmonary VSMCs isolated from large-diameter arteries
located in a segment of pulmonary arteries just proximal to
where lung entry occurs (diameter ≥ 0.8 mm). In the study that
found AMPK reduction in PH and PH mitigation by AMPK
activation (Goncharov et al., 2014), pulmonary VSMCs isolated
from small-diameter arteries located in distal pulmonary artery
segments (type III, diameter ≤ 0.1 mm) were used. Therefore,
these discrepancies may be due to different functions of AMPK
or different AMPK isoforms, or both, in pulmonary arteries
with different diameters. Hypoxic pulmonary vasoconstriction
is more vigorous in small pulmonary arteries (Dawson et al.,
1977; Grimm et al., 1978; Sylvester et al., 2012), where the
AMPK α1 catalytic subunit is predominantly expressed (Evans
et al., 2005). The non-selective nature of AMPK activators
or inhibitors may be another factor that contributes to these
apparent inconsistencies.

AMPK and Pulmonary Hypertension
Treatment
AMPK Inhibition Is Preventive for Development of
Pulmonary Hypertension
Ibe et al. (2013) found that inhibition of AMPK by compound
C prevents development of hypoxia-induced PH. When mice

treated with compound C one day before hypoxia exposure
(10% oxygen for 3 weeks), compound C prevents hypoxia-
induced PH, pulmonary arterial wall thickening, and right
ventricular hypertrophy. The activation of AMPK α1 stimulates
autophagy, promoting pulmonary VSMCs survival, whereas the
activation of AMPK α2 increases the expression of myeloid cell
leukemia sequence 1 (MCL-1), inhibiting pulmonary VSMCs
apoptosis (Ibe et al., 2013). Consistent with these results,
Robertson et al. (2008) and Evans et al. (2009) pre-incubated
intrapulmonary arteries (3rd and 4th order branches of the
pulmonary arterial tree, 0.2–0.5 mm internal diameter) with
compound C (40 mM). Compound C reversed/inhibited hypoxic
pulmonary vasoconstriction in a concentration-dependent
manner. Functionally, AMPK phosphorylates voltage-gated
K+ channel (Kv2.1) and thereby confers a leftward shift in
both the activation and inactivation curves of Kv2.1, which
precipitates an increase in the intracellular Ca2+ concentration
(Evans et al., 2009).

AMPK Activation Is Preventive for Development of
Pulmonary Hypertension
A significant body of evidence suggests that AMPK activation
is preventive for development of PH. Metformin, the first-line
medication for treatment of type 2 diabetes and the canonical
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TABLE 2 | Pulmonary hypertension (PH) animal experiments of AMPK.

Therapy Dose (mg/kg/day) Route Time (day) PH models Sex References

AMPK activator with beneficial effects on PH

Metformin 100–150 p.o. 21–28 MCT rat M Zhai et al., 2018; Yoshida et al., 2020

Metformin 100–150 i.p. 21–28 MCT rat M Agard et al., 2009; Li et al., 2016

Metformin 100 i.p. 30 MCT rat Sun et al., 2019

Metformin 100 i.p. 21 Hypoxia rat Liu et al., 2019

Metformin 100 p.o. 21 Su/Hx rat F Dean et al., 2016

Metformin 300 p.o. 31–28 Obese ZSF1 rat M Lai et al., 2016

Metformin 300 p.o. 98 SU5416/Obese ZSF1 rat F Wang et al., 2020

Metformin 150 i.p. 14 Su/Hx mouse M Zhang et al., 2018

Metformin 100 p.o. 21 Hypoxia mouse M Omura et al., 2016

AICAR 1? i.p. 28 Hypoxia rat M Huang et al., 2014; Chen et al., 2016

AMPK antagonist with beneficial effects on PH

Compound C 20 i.p. 21 Hypoxia mouse M Ibe et al., 2013

AMPK activators without effects on PH

Metformin 100 p.o. 14 SuHx mouse M Goncharov et al., 2018

Metformin 300 p.o. 42 SuHx rat M Goncharov et al., 2018

AICAR 500 p.o. 42 SuHx rat M Goncharov et al., 2018

p.o., oral administration (per os); i.p., Intraperitoneal injection.

AMPK activator, demonstrates therapeutic efficacy on PH in
animal models. AMPK activation by metformin prevents MCT-
induced PH in rats (Agard et al., 2009; Li et al., 2016; Zhai et al.,
2018; Sun et al., 2019; Yoshida et al., 2020). In these experimental
models, rats were injected with one dose of MCT (60 mg/kg)
to induce PH. Metformin (100–150 mg/kg/day, drinking water
or intraperitoneal injection, 21–30 days) treatment significantly
reduced right ventricular systolic pressure and pulmonary
vascular remodeling in rats with MCT-induced PH (Agard
et al., 2009; Li et al., 2016; Zhai et al., 2018; Sun et al., 2019;
Yoshida et al., 2020). Consistent with these results, metformin
has protective effects on hypoxia-induced PH in mice and rats
(Huang et al., 2014; Omura et al., 2016; Liu et al., 2019), and
a more pronounced PH with angioobliterative lesions in Sugen
5416/hypoxia (SuHx) mice/rats (Dean et al., 2016; Zhang et al.,
2018) and SU5416/Obese ZSF1 rats (Lai et al., 2016; Wang
et al., 2020). The AMPK activator, AICAR, also prevents PH
development in rats with hypoxia-induced PH (Huang et al.,
2014; Chen et al., 2016).

In contrast to the results that metformin has protective effects,
other researchers reported that their findings did not support
the efficacy of metformin in PAH therapy (Goncharov et al.,
2018). Goncharov et al. (2018) findings suggested that metformin
treatment may be preferentially beneficial for PH with heart
failure with preserved ejection fraction (PH-HFpEF, group 2 PH),
but that it has limited efficacy for PAH. They induced PAH
in a male C57BL/6J mouse model using a 3-week exposure to
SuHx. They then gave metformin (100 mg/kg/day, 14 days) in
drinking water for 2-weeks post hypoxia exposure. Goncharov
et al. found no changes in right ventricular systolic pressure,
right ventricular hypertrophy, or pulmonary vascular remodeling
in the metformin-treated SuHx mice. They also evaluated the
preventive effects of metformin and AICAR in PAH. In these
animal models, metformin (300 mg/kg/day, drinking water,

42 days) or AICAR (500 mg/kg/day, intraperitoneal, 42 days)
were administrated 1 day before SuHx exposure. They found no
changes in right ventricular systolic pressure, right ventricular
hypertrophy, or pulmonary vascular remodeling in either the
metformin- or AICAR-treated SuHx rats. However, they did
not measure phosphorylation levels of AMPK or downstream
AMPK pathways. Metformin-induced AMPK activation requires
full activation of an upstream kinase (e.g., LKB1), especially at low
doses (Choi et al., 2001; Emerling et al., 2009; Zmijewski et al.,
2010; Hinchy et al., 2018). Therefore, it is unknown whether the
lack of metformin efficacy for PH treatment was associated with
AMPK activation.

Different characteristics that likely contribute to apparently
contradictory results are presented in Table 2. In Dean et al.
(2016), AMPK activation by metformin (100 mg/kg/day, oral
gavage, 21 days) seems to reverse the PH phenotype induced by
SuHx in female rats, in contrast to the findings of Goncharov et al.
(2018) that was performed using male rats. Thus, a sex difference
might affect the response to metformin treatment of PH. Effects
of this difference have been described for other diseases (e.g.,
obesity, aging, and spontaneous tumorigenesis) (Anisimov et al.,
2010; Quan et al., 2016; Park et al., 2017; Bramante et al., 2021).

Clinical Trials of Pulmonary Hypertension
Treatment Using Metformin
There has been significant interest in the use of metformin for
PH treatment. Liao et al. (2018, 2019) found that a combination
therapy using metformin (500 mg, twice daily, 3 months)
and bosentan (endothelin receptor antagonist) improves 6-min
walk distance and right heart hemodynamics, decreases serum
pro-brain natriuretic peptide (pro-BNP) levels, and ameliorates
pulmonary vasoconstriction in patients with PH associated
with congenital heart defects. Two phase I/II clinical trials of
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metformin for PH treatment are in progress (clinicaltrials.gov,
NCT01884051 and NCT03629340). Results to date indicate good
tolerability and potential clinical efficacy for improvement in
right ventricular function in patients with PH who receive
metformin therapy (2 g/day, 8 weeks) (Brittain et al., 2020).
However, metformin use did not change the 6-min walk distance
in those patients (Brittain et al., 2020). Although not yet
complete, this clinical study provides new insights into the
potential benefits of metformin use on right ventricular failure
in patients with PH and indicates the need for more studies of
the use of metformin therapeutic intervention in patients with
PH and PH-HFpEF.

CONCLUSION AND PERSPECTIVES

In this review, we discussed some seemingly contradictory
study results for AMPK and PH development. AMPK has
a key role in PH, either during the early process of
hypoxic pulmonary vasoconstriction or later during pulmonary
vasculature remodeling, or both. However, whether AMPK
activation or inhibition is protective against PH remains unclear:
(1) AMPK activation triggers hypoxia-induced pulmonary artery
constriction. AMPK activator use (e.g., AICAR and Ara-a)
prevents hypoxia-induced pulmonary artery constriction and
PH. (2) EC-specific deletion of AMPK exaggerates hypoxia-
induced PH in vivo. This result indicates endothelial AMPK
has a protective role during PH development. (3) VSMCs from
large pulmonary arteries with AMPK activation have accelerated
proliferation and inhibited apoptosis. VSMCs from distal small
pulmonary arteries with AMPK inhibition have similar potential.
(4) Some animal studies found that the AMPK activators, AICAR
and metformin, have beneficial effects on PH treatment. Other
study findings suggest that metformin therapy for PH may be
limited to use for PH-HFpEF. AMPK activation might have less
pronounced pulmonary vascular effects than right ventricular
effects, as much evidence has been published suggesting that

AMPK activation exerts a protective effect in cardiac dysfunction,
ischemic heart, heat failure, and cardiac hypertrophy (Russell
et al., 2004; Miller et al., 2008; Ma et al., 2010; Kim et al., 2011;
Morrison et al., 2011). (5) Sex differences in the response to
metformin used for PH treatment may affect outcomes.

In conclusion, studies found seemingly contradictory results
for the relationship between AMPK and PH. In one series
of studies, inhibition of AMPK resulted in attenuated hypoxic
pulmonary vasoconstriction and pulmonary VSMC proliferation.
In another series of studies, activation of AMPK resulted
in improved EC function, VSMC apoptosis, and decreased
pulmonary vasculature tone. Given that AMPK a1 and AMPK
a2 have different expression patterns and different functions in
pulmonary arteries of different sizes, the role of AMPK in PH
should be studied using a cell-specific and pathological process-
specific approach. Studies involving genetically- and specifically-
modified AMPK α1 and α2 subunits are needed to clarify their
specific roles in PH pathogenesis and treatment.
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