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Cancer stem cells (CSCs) are subpopulations of undifferentiated cancer cells within
the tumor bulk that are responsible for tumor initiation, recurrence and therapeutic
resistance. The enhanced ability of CSCs to give rise to new tumors suggests
potential roles of these cells in the evasion of immune surveillance. A growing body
of evidence has described the interplay between CSCs and immune cells within the
tumor microenvironment (TME). Recent data have shown the pivotal role of some major
immune cells in driving the expansion of CSCs, which concurrently elicit evasion of
the detection and destruction of various immune cells through a number of distinct
mechanisms. Here, we will discuss the role of immune cells in driving the stemness of
cancer cells and provide evidence of how CSCs evade immune surveillance by exerting
their effects on tumor-associated macrophages (TAMs), dendritic cells (DCs), myeloid-
derived suppressor cells (MDSCs), T-regulatory (Treg) cells, natural killer (NK) cells,
and tumor-infiltrating lymphocytes (TILs). The knowledge gained from the interaction
between CSCs and various immune cells will provide insight into the mechanisms by
which tumors evade immune surveillance. In conclusion, CSC-targeted immunotherapy
emerges as a novel immunotherapy strategy against cancer by disrupting the interaction
between immune cells and CSCs in the TME.
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INTRODUCTION

Cancer stem cells (CSCs) are subsets of cancer cells enriched
with stem cell-like characteristics, including self-renewal ability
and multilineage differentiation (Bhatia and Kumar, 2016).
The CSC theory of tumor progression presents the tumor
microenvironment (TME) as a hierarchically organized tissue
with a CSC subpopulation ranked at the top level, which
generates more differentiated cancer cells with lower or limited
proliferative potential. CSCs are often defined by the expression
of surface stem cell markers such as CD24, CD34, CD44,
CD47, CD133, and CD90, along with side populations that
can be isolated and enriched in vitro and in vivo without
stem cell surface markers (Taniguchi et al., 2019). Epithelial-to-
mesenchymal transition (EMT) is well known to be an inducer of
CSC phenotypes via epigenetic regulation (Bocci et al., 2019). Its
activation allows CSCs to drive resistance to conventional therapy
and thus leads to treatment relapse and tumor reoccurrence
(Shibue and Weinberg, 2017).

A substantial body of literature has extensively described the
interactions of tumor bulks with the immune system; however,
investigations have only begun to elucidate the relationship of
CSCs and immune cells within the TME, paving the way for the
development of rational therapeutic strategies to explore CSC-
immune dynamics. The capability of CSCs in tumor initiation
in partly immunocompromised mice e.g., SCID or NOD/SCID
mice (T, B cells defect but NK cells present) suggests that
these cells are empowered with the definitive ability to evade
immune detection and surveillance, whereas non-CSCs require
a higher extent of deficiency in immune system for generating
tumors in NSG mice (lack of T, B, and NK cells) (Tsuchiya and
Shiota, 2021). Increasing evidence has demonstrated that there
is a reciprocal interaction between CSCs and various immune
cells. Major immune cells within the TME drive CSC expansion
and concurrently elicit protumorigenic immune cell activities,
promoting CSC-specific avoidance of immune detection and
destruction. In this section, we will discuss the emerging
knowledge of the role of tumor-associated macrophages (TAMs),
dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs),
T regulatory (Treg) cells, natural killer (NK) cells, and tumor-
infiltrating lymphocytes (TILs) in driving cancer stemness and
how CSCs evade the immune surveillance of these cells. Finally,
we will discuss the potential of CSC-targeted immunotherapy to
eradicate cancer.

TUMOR-ASSOCIATED MACROPHAGES

Macrophages can be classified into two subtypes: pro-
inflammatory M1 and anti-inflammatory M2 macrophages
(Chen et al., 2019). TAMs usually express an M2 phenotype,
which executes immunosuppressive and pro-tumor functions
and is thus closely related to cancer progression and recurrence
(Lewis and Pollard, 2006; Malfitano et al., 2020).

Developing findings support the hypothesis that CSCs
influence the immune TME via the recruitment of macrophages
and the promotion of their pro-tumor properties, while TAMs,

in turn, are crucial for the self-renewal ability and maintenance
of CSCs in primary tumors through the coupling between
STAT3 and NF-κB signaling cascades (Sainz et al., 2016). It has
been proposed that CSCs have an intrinsic immunosuppressive
program involving recruiting macrophages and driving them
toward M2 polarization at the tumor site (Brissette et al.,
2012). This ability of CSCs is commonly found in ovarian,
glioblastoma, liver, breast and lung cancers through activating
the signal transducer and activator of transcription 3 (STAT3)
and nuclear factor-κB (NF-κB) pathways and cytokines such as
interleukin (IL)-8 and IL-10 (Iliopoulos et al., 2009; Ginestier
et al., 2010; Mitchem et al., 2013; Fang et al., 2014). For
example, in hepatocellular carcinoma (HCC), CD133+ cells
induce M2 polarization of TAMs through secretion of IL-8 (Xiao
et al., 2018). In glioblastoma, CSCs generate higher levels of
the chemoattractants C-C motif chemokine ligand 2 (CCL2),
CCL5, vascular endothelial growth factor-A (VEGF-A), and
neurotensin than the bulk of the glioma (Yi et al., 2011). The
extracellular matrix protein periostin is preferentially expressed
on CD133+CD15+ glioma CSCs and recruits macrophages
through integrin αvβ3 from the peripheral blood to the brain
(Zhou et al., 2015). Depletion of periostin in glioma CSCs leads to
a reduction in the M2 population and alleviates tumor growth in
glioblastoma xenografts. In breast cancer, Sox2+ cancer cells, via
activation of nuclear factor of activated T-cells (NFAT), STAT3
and NF-κB, express chemokines CCL3 and ICAM-1 and thus
recruit TAMs into the TME (Yang et al., 2013; Mou et al., 2015).
These findings suggest that CSCs play an important role in
TAM recruitment and M2 polarization by secreting macrophage
chemoattractants.

Subsequent to TAM recruitment to the TME, TAMs are
deployed as a “niche” to support CSC growth. Infiltrating
TAMs, by activating the NF-κB signaling pathway, secrete the
inflammatory cytokines IL-1β, IL-6, IL-10, transforming growth
factor beta (TGF-β), and MFG-E8 (Jinushi et al., 2011; Li et al.,
2012; Fang et al., 2014; Wan et al., 2014; Yang et al., 2019).
These tumor-promoting cytokines bind to their receptors, further
stimulating STAT3 activation in adjacent CSCs. This results in a
vicious cycle of NF-κB activation as well as stemness maintenance
of cancer cells. For example, treatment of breast cancer cells
with conditioned medium of TAMs leads to increments in the
stem cell markers Sox-2, Oct3/4 and Nanog with enhanced
ALDH1 activity in a mouse model (Nnv and Kundu, 2018). The
abrogation of STAT3 confirmed the role of JAK/STAT pathway
in mediating TAM regulation on CSC enrichment. In coculture
systems, recruited TAMs promote liver CSC expansion through
IL-6/STAT3, Wnt/β-catenin and TGF-β signaling pathways (Fang
et al., 2014; Wan et al., 2014; Chen et al., 2019). TAMs
preferentially secrete TGF-β to stimulate CSC-like properties
by inducing EMT, while TAM-derived IL-6 induces CD44+
HCC stem cell expansion by activating STAT3, thus promoting
tumor development through CSC growth. Blockade of IL-6 with
tocilizumab and STAT3 knockdown attenuated CD44+ sphere
formation and tumor growth of patient-derived HCC as well as
breast xenografts (Wan et al., 2014; Wang et al., 2018a).

To facilitate communication, TAMs establish direct adhesion
with CD90+ CSCs through EphA/ephrin A signaling and
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promote tumor initiation in breast cancer tissue (Lu et al.,
2014). The EMT program first induces the expression of the
surface ligands Thy1 and EphA4, which enable more frequent
cell-cell interactions between TAMs and CSCs. Upregulated
TAM-CSC contact thus activates the EphA4 receptor on CSCs
and its downstream Src and NF-κB pathways (Iliopoulos et al.,
2009; Lu et al., 2014). NF-κB activation positively reinforces
the secretion of cytokines, including IL-6, IL-8, and GM-CSF,
which are crucial for CSC self-renewal and stemness state
maintenance (Rinkenbaugh and Baldwin, 2016; Choi et al., 2019).
Interestingly, proinflammatory M1 macrophages were also found
to play a role in breast CSC formation due to their activation
of the STAT3 and NF-κB pathways by CD44high/CD24−/low

or ALDH1+ CSCs, while M2 macrophages maintained a
higher population of ALDH+ cells (Guo et al., 2019). There
is a possibility that M1 macrophages, through M2-mediated
signaling, modulate CSC formation and regulate tumor initiation.
Other signaling pathways, such as PTN/β-catenin, Notch1 and
p38-MAPK, are also involved in stimulating CSC self-renewal
in lymphoma, lung and ovarian cancers via the preferential
secretion of IL-10 and IL-17 by TAMs (Xiang et al., 2015; Wei X.
et al., 2019; Yang et al., 2019). Taken together, TAMs, through
activating STAT3 and NF-κB signaling cascades and cytokines IL-
1β, IL-6, IL-8, IL-10, and IL-17 and growth factor TGF-β, play an
important role in the self-renewal and chemoresistance of CSCs.

Numerous studies have demonstrated the direct regulation
of CSC self-renewal and proliferation by TAMs. CSCs also
take advantage of TAM immunosuppressive functions to
escape immune surveillance. In HCC, TAMs provide a “safe”
environment for CSCs by overexpressing SIPRα, which interacts
with CD47 that in turn acts as a “Don’t eat me” signal and
protects CSCs from being phagocytosed. Recently, CD24, one
of the liver CSC markers, was identified to be another “Don’t
eat me” signal to macrophages by binding to inhibitory receptor
sialic-acid-binding Ig-like lectin 10 (Siglec-10) (Lee et al., 2014;
Barkal et al., 2019). Liver CSCs may also escape the clearance of
macrophages by interacting with their surface Siglec-10 receptor.
TAMs also influence T-cell cytotoxic activity by stimulating
immune checkpoint molecules such as programmed death-ligand
1 (PD-L1) in cancer cells and T cell immunoglobulin and
mucin domain-containing protein 3 (TIM-3), programmed cell
death protein-1 (PD-1) and cytotoxic T-lymphocyte-associated
protein-4 (CTLA-4) on the T cell surface, leading to an impaired
immune response (Cassetta and Kitamura, 2018; Liu et al.,
2018; Xiao et al., 2018). Interestingly, it has been proposed that
leukemic CSCs secure their survival by overexpressing TIM-
3, which promotes MDSCs and subsequent differentiation into
TAMs in the leukemic stem cancer niche (Kikushige et al., 2010;
Gao et al., 2014; Raggi et al., 2016). The relationship between
TIM-3 expression and CSCs has also been shown in melanoma,
osteosarcoma, as well as liver, lung, and ovarian cancers
(Fourcade et al., 2010; Gao et al., 2012). To protect themselves
from being targeted, deterioration in the antigen-presenting
ability of TAMs also minimizes macrophage stimulation of T-cell
and NK cell cytotoxicity activity (Lewis and Pollard, 2006).

In summary, complicated STAT3/NF-κB crosstalk is
established between CSCs and TAMs in the TME, in which

CSCs attract, re-educate, and put macrophages into their service
to support primary tumor growth.

DENDRITIC CELLS

Dendritic cells are antigen-presenting cells that elicit innate
or adaptive immune responses (Ma et al., 2013). Immature
DCs capture tumor-derived antigens and present them on
their cell surface to immune cells with proper costimulatory
molecules, resulting in an antigen-specific immune response
and the formation of T and B cell memories (Ravindran
et al., 2019). Nevertheless, DCs exert antitumor or pro-
tumor immune responses in accordance with their distinct
morphologies and phenotypes.

A growing number of research studies have demonstrated
the importance of CSCs in immune evasion by changing DC
phenotypes and impeding their recruitment to the TME. CSCs
are responsible for influencing the functional differentiation
and activation of DCs, turning DCs to become tolerogenic
or limiting them to activate T cells (Jachetti et al., 2015;
Zhong et al., 2019). CD133+ CSCs impair the function of
DCs by reducing the quantity of activated DCs in colorectal
cancer (Szarynska et al., 2018). The EpCAM+ HCC subtype
has stemness properties and induces AFP expression, which
hinders DC differentiation, maturation and T cell proliferation
(Yamashita et al., 2009; Pardee et al., 2014). CSCs also produce
immunosuppressive cytokines IL-4, IL-10, IL-13, and TGF-
β, and express higher levels of coinhibitory molecules such
as PD-L1, B7-H3, and IDO1 (Shipitsin et al., 2007; Todaro
et al., 2007). These molecules play crucial roles in accumulating
immunosuppressive DCs, which hamper the antitumor response
by inducing T cell tolerance and T reg cell recruitment (Boks
et al., 2012; Pardee et al., 2014). TGF-β is known for its negative
effect on immune response; in terms of DCs, TGF-β inhibits
DC activation by suppressing the expressions of its costimulatory
molecules CD80 and CD86 and MHC class II (Kobie et al., 2003;
Fainaru et al., 2007). Defective RIG-I liver CSCs reduce DC
population and induce immunotolerance by upregulating TGF-
β signaling (Zhong et al., 2019). Additionally, TGF-β promotes
Wnt/β-catenin activation and thus impairs the recruitment of
BATF3+ DCs, which is correlated with CD8+ T cell infiltration
(Spranger et al., 2017). Via β-catenin activation, TGF-β impairs T
cell mediated immune surveillance and subsides DC recruitment
to the tumor site, consequently incurring HCC immune escape
and resistance to anti-PD1 treatment (Ruiz de Galarreta et al.,
2019). Moreover, TGF-β encourages the development of PD-
L1-expressing immunosuppressive DCs, resulting in weakened
CD8+ T cell activity in a metastatic ovarian cancer model
(Cubillos-Ruiz et al., 2010; Krempski et al., 2011).

In the TME, cancer and stromal cells also express C-X-
C motif chemokine receptor 4 (CXCR4) and produce its
ligand C-X-C motif ligand 12 (CXCL12) to sustain CSC self-
renewal and to recruit regulatory DCs. These DCs produce
CXCL12 themselves in an autocrine manner and employ a feed-
forward mechanism for maintaining CSC stemness (Sultan et al.,
2017). Similar to TAM-mediated escape from phagocytic killing,
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overexpressed CD47 on CSC surface elicits “Don’t eat me” signal
by binding to signal regulatory protein alpha (SIPRα), which
acts in phagocytosis signaling pathway of DCs (Liu et al., 2017).
Although recent findings showed CSCs hijack immune responses
by impairing DC functions and recruiting immunosuppressive
DC subsets, more investigations are necessary to shed light on
the interactions between these two cell types, especially on how
DCs alternately regulate CSC stemness properties.

MYELOID-DERIVED SUPPRESSOR
CELLS

Myeloid-derived suppressor cells are a heterogeneous subset
of myeloid-originated progenitor cells. In humans, these cells
are defined by CD11b+CD14−CD33+, while in mice, they are
characterized by CD11b+Gr1+ (Kusmartsev et al., 2004; Nagaraj
and Gabrilovich, 2010). MDSCs have been used as a prognostic
indicator for patients’ responsiveness to immunotherapy and
their survival, as they account for the majority of cells that
promote an immunosuppressive environment in the TME (Ai
et al., 2018). MSDCs can be classified into two main populations
according to their different nuclear morphologies: monocytic-
MDSC (mMDSC) and granulocytic-MDSC (gMDSC). They are
endowed with different immunosuppressive molecules: mMDSC
contains both arginase-1 and iNOS, while g-MDSC contains high
levels of arginase-1; therefore, are suggested to exert distinct
spatiotemporal regulations on tumor plasticity (Ouzounova et al.,
2017). Both mMDSC-derived iNOS and NO, and gMDSC-
induced ROS and arginase-1, can lead to TCR peroxynitration
and T cell apoptosis (Nagaraj and Gabrilovich, 2010). In addition,
MDSCs produce the immunosuppressive cytokines IL-10 and
TGF-β as well as PD-L1, which together suppress T cell activity
and recruit Tregs (Ostrand-Rosenberg, 2010). They also convey
their immunosuppressive functions to macrophages, NK cells
and DCs via crosstalk.

Myeloid-derived suppressor cell accumulation in the TME
is facilitated by the secretion of cytokines, including IL-1β,
IL-6, G-CSF, M-CSF, GM-CSF, macrophage MIF, and TGF-
1β, and chemokines CCL1, CCL2, CCL5, CCL22, CXCL2,
CXCL5, and CXCL12. The quantity of infiltrating MDSCs is
positively associated with CSCs in cancer patients. In a synergistic
mammary tumor model, CSCs enhance G-CSF, which is
responsible for recruiting MDSCs to the tumor site (Welte et al.,
2016). Activation of IL-6/STAT3 signaling has been reported
to promote the differentiation of monocytes to MDSCs (Panni
et al., 2014). Reciprocally, MDSCs promote the stemness and
mesenchymal properties of cancer cells through NOTCH/STAT3
signaling, forming a positive feedback loop with crosstalk
between MDSCs and CSCs (Welte et al., 2016; Ouzounova et al.,
2017). Via secretion of prometastatic molecules such as MMP9
and chitinase 3–like 1 (CHI3L1), recruited MDSCs enhance
stem cell features to promote tumorigenesis and metastasis in
triple-negative breast cancer (Kumar et al., 2018). MDSCs also
enrich breast cancer cells with stem-like properties by activating
IL-6/STAT3 and NO/NOTCH signaling pathways with NO,
leading to suppression of T cell activation (Peng et al., 2016).

Intriguingly, MDSCs play an additional important role beyond
just IL-6-induced transient STAT3 activation. Cell-derived IL-
6 further increases IL-6 and IL6Rα in MDSCs, thus allowing
MDSCs to prolong STAT3 signaling activation and maintain
STAT3 phosphorylation. IL-6-derived MDSC regulation of CSC
expansion and immunosuppressive activity is present in both
breast and liver cancers (Peng et al., 2016; Xu et al., 2017).

In addition, MDSCs influence cancer stemness via modulation
of RNA interference as well as epigenetic regulation. MDSCs
trigger miR-101 expression in ovarian cancer, thus inhibit the co-
repressor CtBP2 from repressing the transcription of stem cell
core genes, leading to an upregulation of stemness markers and
tumor growth (Cui et al., 2013). In a co-culture setup, gMDSCs
are found to enhance expression of stemness genes and CSC
phenotypes of multiple myeloma cell lines through piRNA-823
and subsequent activation of DNA methyltransferases DNMT3B
(Ai et al., 2019). MDSCs also increase stem-like properties in
ovarian CSCs by upregulating prostaglandin E2 (PGE2) and PD-
L1 expressions (Komura et al., 2020). Under hypoxic conditions
where liver CSCs are enriched, MDSCs migrate to the tumor
site through ENTPD2/CD39 L1 signaling. These MDSCs further
promote HCC progression and reduce the efficacy of PD1
therapy (Chiu et al., 2017). Interestingly, depletion of MDSCs
leads to sensitization of HCC cells to 5-FU (Xu et al., 2017).
Reduction of MDSCs by Listeria bacteria or herpes simplex virus
expressing 15-PGDH can attenuate tumor growth and metastasis
in breast cancer (Walker et al., 2011; Chandra et al., 2013). All
of these findings emphasize the role of MDSCs in reshaping
stemness in breast, ovarian and liver cancers and demonstrate
the possibility of targeting MDSCs along with CSC eradication
in future immunotherapy.

REGULATORY T CELLS

Regulatory T cells (Tregs) are a group of CD4+ T cells
with tumor-promoting effects, usually defined by the
Foxp3+CD25+CD4+ T cell subpopulation (Sakaguchi et al.,
2010). Tregs abolish host defense mechanisms and exert their
functions by inhibiting effector T cells and other immune cells
by secreting immunosuppressive cytokines such as IL-10, IL-35,
and TGF-β.

A positive correlation has been observed between the
presence of CSCs and Tregs in cancers, suggesting possible
crosstalk between these cell populations in promoting an
immunosuppressive milieu (Yu et al., 2012; Napoletano et al.,
2016; Solis-Castillo et al., 2020). In glioblastoma, CSCs induce
Treg cell infiltration mediated by the costimulatory molecule
PD-L1, soluble Galectin-3, and TGF-β secretion (Wei et al.,
2010, 2011), whereas ABCB5+ melanoma cells induce Treg cell
infiltration via a B7-2-dependent mechanism (Schatton et al.,
2010). Chemokines such as CC17, CCL22, and CCL28 are also
produced by various cancers to attract Foxp3+ Treg cells.

CSCs have been suggested to affect the Th17/Treg balance
by altering the production of cytokines such as IL-6 and
IL-8 and chemokine CCL5 in the TME (Yu et al., 2012).
Treg/Th17 homeostasis has been implicated in its dual effect
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on the promotion or suppression of cancer (Maniati et al.,
2010; Marshall et al., 2016; Knochelmann et al., 2018). A study
on Treg and Th17 cells demonstrated STAT3 was a pivotal
transcription factor in Th17 differentiation and Treg inhibition,
whereas STAT3 is significantly activated in gastric CSCs (Wei
et al., 2008; Rezalotfi et al., 2019). Therefore, STAT3 may act
as a key factor in modulating CSC stemness and expansion as
well as Th17/Treg homeostasis. Yang et al. (2011) demonstrated
that IL-17 Tregs stimulate the development of colorectal cancer-
related stemness markers, including CD44, CD133, CD166,
EpCAM, and ALDH, in bone marrow-derived mononuclear
cells and drive cells to become CSCs, indicating the ability
of Tregs to induce CSC development. In addition, Tregs
release PGE2, which promotes colorectal CSC expansion and
metastasis in a mouse model through NF-κB activation (Wang
et al., 2015). Indirect interactions between Tregs and CSCs
act on the regulation of angiogenesis, TGF-β signaling and
macrophage-associated EMT (Mima et al., 2012; Yu et al., 2012;
Liu et al., 2021). Under hypoxic conditions, Tregs, which are
an important source of VEGF expression, release TGF-β and
indirectly regulate CSC expansion by mediating angiogenesis
(Facciabene et al., 2011). Additionally, VEGF signaling was
found to promote CSC stemness and expansion in melanoma
(Beck et al., 2011). Depletion of Tregs lowers VEGF-A and
decreases vascularization in tumors. Blockade of VEGFR2 leads
to a shrunken CSC population and impaired self-renewal. Similar
results have been demonstrated in brain tumors, where the
vascular niche directly correlates with CSC generation (Treps
et al., 2017). Blockade of angiogenesis signaling significantly
inhibits brain CSCs due to reduced blood vasculature in tumors.
In line with clinical data, metastatic renal cancer patients who
receive antiangiogenic therapy have an overall survival strongly
correlated with the reduction in Treg numbers (Brodaczewska
et al., 2018). Additionally, the angiogenetic situation is aggravated
by TAM preferential secretion of VEGF and IL-8, doubling the
effect on promoting CSC proliferation (Werno et al., 2010). Apart
from angiogenesis, Tregs also promote CSC expansion by TAM-
mediated EMT induction via the expression of CTLA-4, IL-10,
and TGF-β (Yu et al., 2012).

Overall, CSCs induce Treg infiltration via costimulatory
molecules and STAT3 signaling in the TME, while Tregs
alternately regulate CSC proliferation and expansion directly
via secretion of IL-17 and PGE2 or indirectly through TGF-
β-mediated angiogenesis and EMT.

NATURAL KILLER CELLS

Natural killer cells represent a population of cytotoxic
lymphocytes with an innate immune response and are
responsible for eradicating tumor cells. High cytotoxic activity
of NK cells is correlated with a lowered cancer risk (Imai et al.,
2000). Approximately 95% of peripheral blood NK cells are
CD56dimCD16+, which exert strong cytotoxic activity.

Beside antibody-dependent cellular cytotoxicity (ADCC) via
Fc receptors bound to target cells, NK cells recognize target
cells in cell-cell interactions through a variety of activating and

inhibitory receptors. Activating receptors, including NKG2C,
NKG2D, and NCR, as well as inhibitory receptors, such as Ly49,
bind to MHC or HLA class I molecules and cellular stress ligands,
leading to the NK cell response (Zhang et al., 2020a). In response
to exposure to cancer cells, preferential NK killing of CSCs
has been demonstrated in oral squamous carcinoma, human
colon carcinoma, melanoma and glioblastoma (Castriconi et al.,
2009; Pietra et al., 2009; Tseng et al., 2010; Tallerico et al.,
2013; Pan et al., 2015). Specific killing of CSCs with the stem
cell markers CD24+, CD133+, and ALDH+ confirms the role
of NK cells in effectively targeting and eradicating CSCs. This
selective recognition of CSCs has been proposed to be mediated
through NKG2D-, DNAM-1- and NKp30-activating receptors
(Tallerico et al., 2016). In line with these findings, different types
of CSCs express or overexpress the corresponding ligands of
those activating receptors with low expression of MHC class I on
the surface, leading to effective NK cytotoxicity activity.

However, the preferential tumorigenic capability of CSCs
in NOD/SCID mice suggests that there are underlying
immunosuppressive mechanisms for CSCs to dodge from
NK cell specific killing (Al-Hajj et al., 2003; Tsuchiya and Shiota,
2021). It has been reported that CSCs escape NK-mediated
cytotoxicity via various mechanisms by tuning NK receptors. In
lung cancer, tumor-derived mesenchymal stem cells (MSCs) alter
the NK cell phenotype by downregulating activating receptor
expression and inhibiting interferon gamma (IFN-γ) secretion,
whereas abortion of PGE2 and restoration of IL-6 activity
reverse the tumor-derived MSC-mediated immunosuppression
activities (Galland et al., 2017). CD34+CD38− leukemic stem
cells were shown to be resistant to allogenic NK-mediated
killing (She et al., 2012). Breast ALDH+ CSCs escape NK
cells by reducing the expression of NKG2D ligands MICA
and MICB through miR20a modulation (Wang et al., 2014).
Downregulation of MICA/B expression supports CSC resistance
to NK cell cytotoxicity and increases their metastatic capacity
in vivo. Recent research also revealed the dual immunoinhibitory
role of PCNA in upregulating the stemness of pancreatic and
colon CD44+CD133+ CSCs, as well as participating in immune
evasion from NK cytotoxicity by engaging with the inhibitory
receptor NKp44 (Malaer and Mathew, 2020). Blockade of
the PCNA-NKp44 interaction changes IFN-γ secretion and
NK cytotoxicity, suggesting a potential immunotherapeutic
target for NK cell-mediated attack. The interaction of NK cell
coinhibitory receptors, such as PD-1, with their ligands on tumor
cells, also suppresses NK cell-mediated glioma CSC eradication
(Huang et al., 2015).

As most NK cell-mediated immune responses occur in tumor
cells with low levels of MHC-I, melanoma cancer cells may
escape NK cells by upregulating MHC-I on their surface.
Interestingly, Huergo-Zapico et al. (2018) suggested that NK
cells may release tumor necrosis factor-alpha (TNF-α) and IFN-
γ and induce melanoma cells to undergo EMT, pushing them
toward invasive phenotypes. EMT induction endows melanoma
cells with upregulated stemness markers and enhances their
invasive capability. Moreover, EMT favors immune escape by
suppressing activating receptors or HLA class-I (Chen et al.,
2015). In contrast, some reports have demonstrated that EMT
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induction promotes NKG2D-L expression on colorectal cells
and upregulates NK cell-mediated immunosurveillance in lung
cancer (Lopez-Soto et al., 2013; Chockley et al., 2018). This
finding suggests that the disparity of the EMT-derived NK cell
immune response is dependent on the cancer type.

In summary, NK-mediated killing plays an important role in
immune response in diminishing CSCs through the assistance of
various activating and inhibitory receptors. Nevertheless, CSCs
may escape specific targeting by modulating the expression of
these receptors. A novel study also pointed out that NK cells may
clash with their classical cytotoxic activity by promoting EMT in
CSCs, dependent on the cancer type (Huergo-Zapico et al., 2018).

TUMOR-INFILTRATING LYMPHOCYTES

Tumor-infiltrating lymphocytes represent all lymphocytic cell
populations, including CD4+, CD8+, and a small portion of B
and NK cells that infiltrate the TME. TILs have been observed
in the majority of solid tumors, such as breast, liver and lung
cancers (Biller and Dow, 2007). These cells exert diverse effects on
the immune response toward the tumor and are correlated with
tumor aggressiveness, metastasis, treatment response rate and
tumor recurrence. Subsequent to antigen stimulation by APCs,
activated helper (CD4+) T cells (Th) support the antitumor
immune response by further activating cytotoxic (CD8+) T
cells (CTLs) and recruiting innate immune cells. Th cells
stimulate CTLs by IL-2 secretion and cell-cell interactions
through costimulatory molecules, including MHC-II, CD27 and
CD134 (Giuntoli et al., 2002). Cancer cells, by producing CCL18,
recruit Tregs that promote tumor formation and impact other
immune cells (Paluskievicz et al., 2019). Bone marrow-derived
MSCs have been reported to recruit and maintain Tregs via TGF-
β secretion, leading to a negative regulation on T cell proliferation
(Di Ianni et al., 2008; Papaccio et al., 2017). Moreover, tumor-
derived TGF-β, TNF-α, and IFN-γ induce the differentiation of
IL-17hi Th17 cells, which supports angiogenesis and enhances
protumor transcription factors (Maniati et al., 2010).

The presence of TILs frequently represents a good prognosis
for cancer patients (Fridman et al., 2011; Dieci et al., 2014; Idos
et al., 2020). Tumor-specific CD8+ T cells induced by CSCs
in vitro demonstrated an effective antitumor response, including
inhibiting tumor growth and metastasis with prolonged survival
in pancreatic and lung cancer mouse models (Visvader and
Lindeman, 2008; Luo et al., 2014). Nevertheless, CSCs are
capable of attenuating the action of these cells directly by
altering their PD-L1 expression. Elevated stromal TILs and
their PD-L1 expression in inflammatory breast cancer and lung
adenocarcinoma have been reported to be significantly associated
with CSC markers (Mansour et al., 2020; Zhang et al., 2020b).
By analyzing PD-L1 expression in a large cohort of HCC
patients, Kurebayashi et al. (2018) and others showed that PD-L1
expression in tumor infiltrates is associated with the progenitor
subtype of HCC, marked by CK19 and SALL4 expression
(Calderaro et al., 2016). High expression levels of PD-L1 are
also observed in CD133+CD44+ colorectal CSCs and CSC-
enriched tumor spheres. Hsu et al. (2018) suggested that PD-L1

enrichment in CSCs is mediated by β-catenin/STT3 signaling
through glycosylation modulation and PD-L1 stabilization.
Based on the clinical correlation between IL-6 and PD-L1 in
HCC patient samples, Chan et al. (2019) showed that IL-6
activated JAK1 signaling cascade-induced N-glycosylation and
the stabilization of PD-L1. Notch3/mTOR pathway activation
is also reported to mediate PD-L1 overexpression on breast
CSCs (Mansour et al., 2020). Altered PD-L1 expression, in
turn, facilitates colorectal CSC self-renewal with upregulated
stemness genes and promotes CSC expansion by activating
HMGA1-dependent signaling pathways (Wei F. et al., 2019).
PI3K/Akt pathway activation has also been reported to
participate in PD-L1-derived promotion of stemness in CSCs
(Almozyan et al., 2017).

In addition, interaction with nonlytic CD8+ T cells leads
to CSC expansion by cell-cell contact in primary breast cancer
cell cultures (Stein et al., 2019). The induction of stemness
properties in CSCs was confirmed by enhanced tumorigenesis in
immunodeficient mice, and the resulting tumors were endowed
with a higher cell density and an increased proliferation rate,
as well as an elevated chance of lymphoid metastasis. Taken
together, these findings showed that the ineffective cytotoxic
activity of tumor infiltrates not only fails to eradicate malignancy
but also conversely facilitates immune evasion by promoting
CSC stemness, proliferation and tumorigenesis of cancer cells.
The interaction between various immune cells and CSCs was
summarized in Figure 1.

DEVELOPMENT OF CSC-TARGETED
IMMUNOTHERAPY

Immune checkpoint CTLA-4 and PD-1 inhibitors revolutionized
cancer research in the last decade and brought immunology back
to the spotlight in therapeutic development. As immunotherapy
relies on the immune system to recognize and attack tumor
cells, it takes into account not only the tumor cells but also the
TME as a therapeutic target to induce a powerful antitumor
response. It is clear that CSCs and differentiated tumor cells
exhibit distinct gene expression and functions in the tumor
bulk, and therefore immunological targeting of the tumor
bulk will be biased toward more differentiated tumor cells
that express differentiated antigens (Pan et al., 2015). Effective
targeting of CSCs may require highly specific identification of
the CSC population. Currently, immunological targets of CSCs in
therapeutic development have now been focused on three major
approaches: CSC-associated antigens, phenotypes and niches.

The innate immune response, including NK and DC cells,
exhibits cytotoxic activities toward tumor cells when they are
exposed to foreign antigens in the normal immune system.
The innate effector and antigen-presenting properties of NK
and DC cells empower them to be suitable candidates for
immunotherapy. Furthermore, several studies demonstrated
that chemotherapy or radiation therapy increased MICA and
MICB expression on CSCs, accompanied with CSC expansion
(Ames et al., 2015b). This highlights the prospective use of
NK cell therapy in combination with traditional therapies in
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FIGURE 1 | A diagram illustrating the crosstalk between immune cells and CSCs.

eradicating CSCs. Currently, several clinical trials using NK cells
infusion (NCT04162158 and NCT03592706) or in combination
therapies (NCT03319459) to treat advanced solid tumors are
ongoing. Adoptive NK cell therapy aims to strengthen and
reinforce the antitumor functions of NK cells from autologous
and allogeneic sources (Wang et al., 2021). After exposure to
cytokines such as IL-2 and IL-5, NK cells prolong their activation
and exhibit increased cytotoxicity. IL-2- and IL-15-activated NK
cells have been shown to be able to eradicate human breast,
colon, glioblastoma and melanoma CSCs (Castriconi et al.,
2009; Ames et al., 2015a; Yin et al., 2016). A phase I clinical
trial using allogeneic NK cells to target CSCs in advanced
biliary tract cancer was conducted (NCT03358849). However,
the administration of the activating cytokine IL-2 may also
lead to the expansion of other immunosuppressive immune
cells, including Treg cells (Koreth et al., 2016). In addition, to
consistently activate NK cells, the trafficking and maintenance
of engineered cytokines such as mbIL-15 and mbIL-21 will also
need to be modified during the development of NK cell therapy
(Pittari et al., 2015).

Sipuleucel-T is the first FDA-approved DC vaccine against
advanced prostate cancer, ensuring DCs as a promising
therapeutic strategy in immunotherapy (Cheever and Higano,
2011). DC vaccination has been confirmed to have effective
immunologic activities in several preclinical studies. Stimulating

DCs with CSC-designated antigens is believed to facilitate CSC
eradication with high specificity and effectively resolve CSC-
mediated tumor relapse and metastasis (Pang et al., 2019).
However, clinical trials reported only a 10 to 15% response to DC
vaccination by several cancer types (Anguille et al., 2014). One
of the problems leading to low efficacy is the immunosuppressive
effect from the upregulation of immune checkpoints (Shi et al.,
2018). Recently, CSC-targeted DC vaccines have been reported
to enhance the elimination of melanoma CSCs in a mouse tumor
model with a combination of PD-L1 and CTLA-4 blockades,
with an enhanced CD8+ T cell response, increased IFN-γ
and inhibited TGF-β expression (Zheng et al., 2018). This
finding demonstrates the potential of CSC-based DC vaccines in
combinational therapy.

The FDA has approved the use of chimeric antigen receptor
(CAR)-T cell therapies targeting CD19 in treating lymphoma
since 2017 (FDA, 2017). Increasing numbers of preclinical studies
have demonstrated effective immunological control of CAR-T
cells in inhibiting cancer growth and prolonging host survival
(Chong et al., 2017; Foster et al., 2017; Heczey et al., 2017;
Kloss et al., 2018; Zhang et al., 2019). As CAR-T therapy has
been in use with a high success rate in treating lymphoma and
leukemia, it has also been proposed for targeting CSCs. CSC-
related markers such as CD133, EpCAM, and CD90 have been
identified as targeted antigens for CAR-T cells (Guo et al., 2018).
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TABLE 1 | Therapeutic strategies targeting the CSC niche and their development progress.

Trial description Drug name Molecular targets Mechanism of action Phase of drug
development

References

CSC-associated molecules

NK cell therapy HLA NK cell killing I/II NCT04162158;

II/III NCT03592706;

FAKE-NK100 I NCT03319459;

SMT-NK I NCT03358849

CAR-T cell therapy CARTEPC EpCAM T cell cytotoxicity I/II NCT03013712

CD133 I/II NCT02541370

Pathways

iL-6/JAK/STAT AZD-1480 JAK1/2 Inhibition of JAK1/2 I NCT01112397

Celecoxib (FDA approved) STAT3 Inhibition of STAT3 III NCT00087256

Pyrimethamine (FDA approved) STAT3 Inhibition of STAT3 I/II NCT01066663

Tocilizumab IL-6 IL-6R monoclonal antibody II NCT03999749

Siltuximab IL-6 IL-6R monoclonal antibody II NCT03315026

IL-8 Reparixin CXCR1 Inhibition of CXCR1 II NCT01861054;

II NCT02370238

NF-kB

Acalabrutinib BTK Inhibition of BTK III NCT04008706

Ibudilast (MN-166) TLR4 TLR4 antagonist II NCT03782415

LCL-161 c-IAP Inhibition of c-IAP II NCT01617668;

I/II NCT02649673

TGF-β

Fresolimumab TGF-β1/2/3 Neutralizing antibody II NCT01472731;

I/II NCT02581787

Galunisertib TGF-βR1 Inhibition of TGF-βR1 II NCT02688712;

II NCT02538471;

II NCT01246986

Lucanix TGF-β2 Antisense oligonucleotide II NCT01058785;

III NCT00676507

M7824 TGF-β/PD-L1 Ligand trap III NCT04066491

Wnt/β-catenin

Ipafricept (OMP-54F28) FZD receptor FZD8 decoy receptor I NCT01608867;

I NCT02050178;

I NCT02092363;

I NCT02069145

Vantictumab (OMP-18R5) FZD receptor Monoclonal antibody against
FZD receptors

I NCT01957007;

I NCT01973309;

I NCT01345201;

I NCT02005315

PRI-724 CBP/β-catenin Antagonist II NCT01302405

WNT974 PORCN Inhibition of PORCN II NCT02649530;

I/II NCT02278133;

I NCT01351103

Notch

AL101 γ-Secretase Inhibition of S3 cleavage II NCT03691207

MK-0752 γ-Secretase Inhibition of S3 cleavage I NCT00106145;

I NCT01098344

Nirogacestat (PF-03084014) γ-Secretase Inhibition of S3 cleavage II NCT02109445;

II NCT02299635

Demicizumab (OMP-21 M18) DLL4 Blockade of DLL4 II NCT02259582

Enoticumab (REGN421) DLL4 Monoclonal antibody against
DLL4

I NCT00871559

VEGF

Axitinib VEGFR Inhibition of VEGFR I NCT02853331

(Continued)
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TABLE 1 | Continued

Trial description Drug name Molecular targets Mechanism of action Phase of drug
development

References

Bevacizumab (FDA approved) VEGFR Inhibition of VEGF binding to
receptor

II NCT02226289;

III NCT02420821;

III NCT03434379

Immune cells

TAMs Zoledronate acid Mevalonate pathway Elimination I/II NCT00588913;

III NCT02622607

BMS-813160 CCR2/5 Inhibition of macrophage
recruitment

II NCT04123379;

I/II NCT03767582;

I/II NCT03496662;

II NCT02996110

BL-8040 CXCR4 Antagonist II NCT02826486;

II NCT02907099

Pexidartinib CSF-1R Inhibition of CSF-1R I NCT02777710

AMG820 CSF-1R Monoclonal antibody against
CSF-1R

I/II NCT02713529

ALX148 CD47/SIRPα Blockade of CD47 I NCT03013218

IBI322 CD47/SIRPα CD47/PD-L1 bispecific
antibody

I NCT04328831

Hu5F9-G4 CD47/SIRPα Monoclonal antibody against
CD47

I NCT02216409

MDSCs INCB001158 Arginase Inhibition of arginase I/II NCT02903914

Decitabine Arginase Differentiation I NCT00030615

Entinostat Arginase Elimination I NCT02453620

NK cells Lirilumab KIR Blockade of inhibitory signal of
NK cells

I/II NCT03532451;

NCT01714739

Monalizumab (IPH2201) NKG2A Inhibition of immune checkpoint I/II NCT03822351;

NCT03833440

Tregs Ontak (Denileukin diftitox) CD25 Induction of apoptosis II NCT00726037

Zhu et al. (2015) successfully eliminated CD133+ CSCs derived
from glioblastoma patients; however, T cell aging marker CD57
was induced as a side effect. Recently, a phase I clinical trial
(NCT02541370) using autologous CD133-targeted CAR-T cells
to treat 23 patients with advanced CD133+ tumors resulted
in a benefit of 5-month median progression-free survival, with
controllable toxicity (Wang et al., 2018b). Zhang et al. (2019)
also reported that adoptive transfer of EpCAM-targeted CAR-T
cells significantly reduced tumor growth in a xenograft model
without safety issues. An EpCAM-targeted CAR-T cell clinical
trial (NCT03013712) is in progress for targeting EpCAM+
cancers. To minimize the toxicity to normal cells, targeting these
CSC markers can be coupled with an inhibitory receptor with
specificity for normal tissue antigens.

Yet, more investigations are necessary to overcome the
challenges of using CAR-T cells to eliminate CSCs. One of the
limitations in developing CAR-T cells targeting CSCs is the
diverse treatment response due to the distinct CSCs plasticity
and heterogenicity in patients (Alhabbab, 2020). Common
immunotherapy hurdles, including acquired resistance as well
as upregulation of immune checkpoints are also observed in
T cell immunotherapies. Miao et al. (2019) demonstrated that
TGF-β-enriched CSCs dampened the cytotoxicity of adoptive T

cells by promoting the exhaustion state through CD80-CTLA4
interaction in squamous cell carcinoma. The findings of adaptive
immune resistance raised from CSCs against immunotherapy
echoes with the previously proposed immunosuppressing feature
of CSC, and furthermore emphases CSC as the root of tumor
relapse (Tsuchiya and Shiota, 2021).

In addition to direct targeting CSC phenotype and markers,
researchers have also targeted the CSC niche, which contributes
to CSC self-renewal and immune escape. This includes CSC-
associated pathways, cytokines and immune cells (Table 1).
As mentioned above, CSCs maintain their self-renewal by
generating a positive feedback loop with immunosuppressive
cells such as TAMs through JAK/STAT3, Wnt/β-catenin, and
NF-κB crosstalk activation, with the expression of inhibitory
cytokines such as IL-6, IL-8, and TGF-β. Wnt/ β-catenin-targeted
therapies such as anti-FZD receptors monoclonal antibody
(Vantictumab), β-catenin inhibitors PRI-724, as well as small-
molecule porcupine inhibitor WNT974 are currently in clinical
trials. Wnt-targeted treatments are proposed to be implemented
as combinational therapies with immune checkpoint inhibitors
such as nivolumab and ipilimumab or tyrosine kinase inhibitors,
in order to pinpoint the immune evasive ability of CSCs in Wnt-
driven cancers (Katoh, 2017). Blockade of IL-6 was previously
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proven to affect non-small cell lung cancer tumorigenesis and
the proliferation of H460 lung CSCs (Yi et al., 2012). The IL-6
receptor monoclonal antibody tocilizumab has been reported to
suppress the premetastatic ability of breast CSCs and potentiate
the cytotoxicity of cisplatin against triple-negative breast cancer
(Alraouji et al., 2020). The drug has been approved by the
FDA for treating rheumatoid arthritis and is now under phase
II study for curing advanced melanoma in combination with
the immune checkpoint inhibitors nivolumab and ipilimumab
(NCT03999749). Blockade of the IL-8 receptor CXCR1 using
small molecule Reparixin successfully attenuated the CSC
population and induced massive apoptosis in a breast cancer cell
line. The result of phase I clinical trial showed that Reparixin is
safe and well tolerated, in combination of paclitaxel (Schott et al.,
2017). Phase II study of this drug showed a ≥20% reduction in
CSC markers ALDH+ and CD24−/CD44+ in HER-2-negative
breast patients with no serious adverse reactions (Goldstein et al.,
2020). Due to the limited number of CSC in primary breast
cancer, another clinical trial (NCT02370238) with alternative
evaluation endpoint, for example, measurement of metastasis,
has been set for assessing the effectiveness of reparixin on CSC
eradication (Ruffini, 2019).

The roles of angiogenesis in supporting immunosuppressive
TME and self-renewal of CSCs have been extensively studied,
thus the combination use with VEGF inhibitor provides
a novel direction for immunotherapy. A phase III clinical
trial (NCT03434379) of bevacizumab with PD-L1 inhibitor
atezolizumab showed a superior outcome in overall and
progression-free survival than sorafenib in advanced HCC cases
(Finn et al., 2020). Due to this encouraging result, FDA approved
the combined use of bevacizumab and atezolizumab as the first-
line treatment for unresectable HCC patients (Yang et al., 2020).
A recent report on targeting aberrant mRNA modification in
leukemia has highlighted another potential therapeutic approach
to suppress fat mass and obesity-associated protein (FTO), an
RNA N6-methyladenosine (m6A) demethylase (Su et al., 2020).
M6A RNA modification has been implicated in self-renewal and
tumorigenesis in various cancers, thus is proposed to be a novel
therapeutic target against CSCs (Ma and Ji, 2020). Using small
molecule inhibitors CS1 and CS2, inhibition of FTO attenuates
self-renewal ability of leukemic stem cells via reducing MYC and
CEBPA expressions. Targeting FTO also suppresses the immune
checkpoint gene LILRB4, and thus sensitizes the cancer cells to T
cell cytotoxicity (Su et al., 2020). Thus, the combination of FTO
inhibitors and hypomethylating agents (HMA) is recommended
for future clinical trials, in order to overcome the adaptive
immune resistance induced by HMA treatment in leukemia
patients with high FTO.

Direct targeting of immunosuppressive cells such as TAMs
with zoledronic acid successfully inhibited the growth of cervical

cancer cell-derived CSCs by reducing their stemness properties
and inducing apoptosis (Wang et al., 2019). The drug is now
undergoing phase III clinical trials to examine its preventive
effect on bone metastasis in patients with advanced lung cancer
(NCT02622607). CD47-targeting antibodies also overcome a
key immune escape mechanism, the CD47/SIRPα-mediated
“Don’t eat me” signal. ALX148, which is a CD47 blocking
protein, was well tolerated in combination with anticancer
antibodies and conventional chemotherapy in patients with
advanced cancers (NCT03013218). Hu5F9-G4, an anti-CD47
antibody, also shows excellent tolerability and promising
effects in leukemia stem cells in combination with Azacitidine
(NCT03248479). These findings suggest that targeting CD47
with conventional cancer treatment may be a powerful strategy
to address CSC-derived immune evasion. Ontak, a fusion
protein comprized of human IL-2 and diphtheria toxin,
targets CD25+ Treg cells by inducing apoptotic cell death
(Cheung et al., 2019). A pilot study was carried out to
evaluate its inhibitory effect on Tregs in metastatic pancreatic
cancer patients (NCT00726037). This drug is designed to
integrate DC vaccine administration for treating unresectable
pancreatic cancer. Several clinical trials aiming at other
immunotherapeutic targets, such as MDSCs and NK cells, are
also ongoing (Table 1).

While direct CSC-targeted treatments such as NK, CAR-
T therapies and DC vaccines are still being studied, targeting
the CSC niche might be a feasible immunological therapeutic
approach to eradicate cancer, considering several encouraging
preclinical results. Similarly, much effort will be required to
resolve the side effects such as the resistance or diverse treatment
responses that most immunotherapies may arouse. Additionally,
basic research on the crosstalk between CSCs and their niche is
also necessary for identifying a biomarker that can monitor the
treatment response, as well as novel therapeutic targets for the
development of effective treatments.
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