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Extracellular adenosine triphosphate (eATP) is a potent mediator of the immune
response via stimulation of purinergic P2 receptors. ATP concentration in the
extracellular space increases dramatically during tissue damage and eATP acts as a
danger-associated molecular pattern (DAMP) to alert innate immune system cells for
tissue repair. Similarly, eATP is present at hundreds of micromolar concentration in the
tumor microenvironment (TME). However, its impact on antitumor immune response
is still not well established, probably because of the complexity of the responses it
induces in different cells constituting the TME. On one hand, ATP released by tumor
cells concomitantly to cell death can contribute to immunogenic cell death (ICD) that is
proinflammatory for the innate immune compartment and beneficial for tumor control,
while on the other hand, eATP can foster immune-suppressive mechanisms within the
TME, thus contributing to tumor progression and metastasis. It is well established that
T-cell immunity is pivotal in limiting tumor growth and possibly eradicating neoplastic
cells. T cells are limited though in their antitumor activity through different mechanisms,
such as exhaustion, anergy, and senescence; the pathways resulting in these cellular
outcomes are not clear. Here, we review the function of P2X7 receptor in conditioning T
cell-dependent immunity against cancer.
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INTRODUCTION

Extracellular adenosine triphosphate (eATP) can transduce signal into virtually all cells through two
types of plasma membrane receptors: ATP-gated ion channels termed P2X receptors (P2XRs) and G
protein-coupled receptors, named P2Y receptors (P2YRs) (Burnstock, 2006). The P2XR and P2YR
subfamilies consist of seven (P2XR1–7) and eight (P2YR1, 2, 4, 6, 11–14) members, respectively.
Whereas the selective agonist for P2XRs is ATP, P2YRs show a rather heterogeneous selectivity
for the nucleotide ligand; in fact, ATP is the selective agonist only for P2Y11R, while ADP, UDP,
UTP, UDP-glucose, or UDP-galactose are agonists as well for other P2YRs. A vast repertoire of
pharmacological tools has been developed to define P2 receptor functions and to be possibly used
in clinical trials for various pathological conditions (Jacobson and Muller, 2016).

The P2X7R is broadly expressed in the immune system, whether innate or adaptive, and is
the component of the P2XR family with a clearly defined role in a number of inflammatory and
immune responses (Di Virgilio et al., 2017). In the tumor microenvironment (TME), P2X7R activity
conditions the function of different cell subsets and can have opposite influences on the progression
of the disease as a tumor-promoting or contrasting factor. The P2X7R monomer is a 595-aa
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protein that oligomerizes into a trimer to constitute the
functional receptor (Surprenant et al., 1996; McCarthy
et al., 2019). It is activated by relatively high extracellular
concentrations of ATP (in the hundreds of micromolar range)
and is characterized by dual gating. Activation of P2X7R by eATP
opens the cation-selective channel within milliseconds, whereas
prolonged exposure to eATP leads to dilation of a pore permeable
to molecules of up to 900 Da and eventually cell death (Browne
et al., 2013; Khadra et al., 2013). Whether this membrane
permeabilization is due to dilation of the P2X7 channel itself
(Yan et al., 2010), or the activation of non-selective pores like
pannexin-1 (Pelegrin and Surprenant, 2006), gasdermin-D
(Faliti et al., 2019), or anoctamin-6 (Ousingsawat et al., 2015),
is probably dependent on the cell type, structural features of the
plasma membrane, and/or possibly other cellular factors.

THE P2X7R IN TUMOR CELLS

The P2X7R is expressed in most tumor cells. For an exhaustive
review of P2X7R expression in different cancers, we refer
the reader to a recent publication (Lara et al., 2020). In
B16 melanoma cells, low-pH that mimics features observed
in solid tumors, such as hypoxia and acidosis, was shown
to induce P2X7R-mediated ATP release (Hattori et al., 2012).
Another study showed that P2X7R-expressing tumors were
characterized by increased proliferation, reduced apoptosis,
and enhanced activation of the transcription factor NFATc1.
These tumors also secreted high levels of VEGF and displayed
a more developed vascular network; these phenomena were
inhibited by pharmacologic P2X7R blockade (Adinolfi et al.,
2012). In neuroblastoma cells, P2X7R activity positively regulated
the activation of the PI3K/Akt pathway, HIF1α expression,
VEGF secretion, and GSK3β phosphorylation, regulating MYCN
oncogene and glycogen accumulation. Notably, high P2X7R
levels were associated with reduced survival in a cohort of
neuroblastoma patients (Amoroso et al., 2015). In osteosarcoma
cells, P2X7R stimulation increased glycogen storage, epithelial-
to-mesenchymal transition, and stemness. The induction of
PI3K/Akt/GSK3β/β-catenin and mTOR/HIF1α/VEGF signaling
supported these oncogenic features in osteosarcoma cells (Zhang
et al., 2019a) (Figure 1A).

In lung cancer cells, P2X7R activation by eATP could induce
epithelial–mesenchymal transition (EMT), cell migration, and
invasion (Cao et al., 2019). In pancreatic ductal adenocarcinoma,
P2X7R activity influenced cell survival and migration in vitro
(Giannuzzo et al., 2015). Two studies recently correlated high
expression of P2X7R in colorectal cancer with poor prognosis,
cancer progression, and metastasis, thus suggesting that P2X7R
might be exploited as a biomarker and therapeutic target in these
patients (Zhang et al., 2019b; Calik et al., 2020b). P2X7R might
promote the migration and invasion of colon cancer cells by
activating the STAT3 pathway (Zhang et al., 2020). Moreover,
high expression of P2X7R was associated to poor survival in
gastric cancer patients, suggesting that P2X7R may serve as a
prognostic parameter and therapeutic target also in these patients
(Calik et al., 2020a). Different studies have uncovered a role of

extracellular ATP in the expansion of hematopoietic stem cells
(Lemoli et al., 2004; Casati et al., 2011). P2X7R could function
in the development of leukemia-initiating cells (LICs). In fact,
blocking the ATP/P2X7R axis delayed leukemia development,
suggesting that eATP may serve as an important niche factor in
the control of LICs via P2X7R activation (He et al., 2021).

Overexpression of the full-length P2X7R in tumor cells
resulted in enhanced lactate production and cell proliferation
in serum-deprived culture media. This metabolic shift was
defined by the upregulation of glycolytic promoters, inhibition
of pyruvate dehydrogenase (PDH), enhanced phosphorylation of
Akt/PKB, and expression of HIF-1α and intracellular glycogen, all
metabolic modifications found in developing tumors (Amoroso
et al., 2012). Recently, non-functional P2X7 (nf P2X7), which
does not open to cytolytic pore, was detected in multiple
cancer cell lines. High ATP concentrations induced nf P2X7 and
downregulated P2X7R, leading to the hypothesis that tumor cells
might avoid cytolytic pore-mediated cell death via this regulatory
pathway. Notably, the 200–216 AA sequence of P2X7R was
selectively exposed in nf P2X7 but not in “wild-type” P2X7R in
several cancer types, and antibodies targeting this sequence have
been developed as therapeutics (Gilbert et al., 2019).

The wealth of observations on P2X7R activity in different
cancers suggests that P2X7R can act as an intrinsic positive
regulator of tumorigenesis and metastasis generation. Therefore,
the selective targeting of pro-tumorigenic signaling pathways
controlled by P2X7R could provide therapeutic opportunities for
oncologic patients.

THE ATP/P2X7R AXIS IN
TUMOR-INFILTRATING INNATE CELLS

To overcome the issue of measuring the ATP concentration
in tissues, Di Virgilio and collaborators developed a plasma
membrane luciferase (pmeLUC) probe that is exposed on the cell
surface, thus allowing the real-time measurement of extracellular
ATP (Pellegatti et al., 2005). The application of this technology
to cancer research allowed demonstrating that the TME is
characterized by concentrations of eATP in the hundreds of
micromolar range, whereas in healthy tissues, eATP is barely, if
at all, detectable by pmeLUC (Pellegatti et al., 2008).

The TME can either foster an antitumor immune response
or promote immunosuppression that accelerates tumor
progression. In this context, deciphering the function of eATP
can be difficult; in fact, the final effect of eATP would depend
on its concentration, the expression of ectonucleotidases, and
composition of the inflammatory infiltrate. In solid tumors,
antineoplastic agents that induce immunogenic cell death (ICD),
such as anthracyclines and oxaliplatin, stimulate a tumor-specific
immune response that can support a successful therapeutic
outcome. The release of ATP from dying cells constitutes a
hallmark of ICD. ATP released during ICD functions as a
“find-me” signal that attracts phagocytes to the site of ICD.
Moreover, eATP-mediated purinergic stimulation of target cells
results in inflammasome activation (Ghiringhelli et al., 2009;
Martins et al., 2009; Aymeric et al., 2010). Notably, breast
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FIGURE 1 | Influence of P2X7R activity on tumor and immune system cells. (A) In tumor cells, P2X7R stimulation by eATP results in Ca2+ influx, activation of
MyD88/NF-κB, PI3K/Akt/mTOR signaling pathways leading to nuclear translocation of Hif1α and Nf-κB, enhancement of cell proliferation, cell migration, and VEGF
secretion. Moreover, stimulation of P2X7R upregulates the glucose transporter GLUT-1, fostering the glycolytic pathway and oxidative phosphorylation that allow
tumor cells to proliferate in vitro in the absence of serum. (B) (Left) In the TME, extracellular ATP is released by tumor-dying cells and may function as a DAMP
(danger-associated molecular pattern), inducing the recruitment and activation of macrophages and DCs. Activation of P2X7R by eATP triggers several responses in
DCs, such as maturation, migration, and antigen presentation. Moreover, K+ release leads to NLRP3 inflammasome activation and secretion of proinflammatory
cytokines such as IL-1β, TNF-α, IL-6, IL-18, and type I IFN. (Right) P2X7R activation promotes immunosuppression by MDSCs by stimulating the release of ROS,
arginase 1 (ARG1), and TGF-β1, which, in turn, leads to Tregs expansion. Moreover, P2X7R promotes the conversion of M1 macrophages to M2. P2X7R activity in
TILs fosters stress-induced cellular senescence, thus limiting their expansion and cytotoxic activity.

cancer patients carrying the P2X7R loss-of-function mutation
E496A showed more aggressive cancer dissemination during
treatment with adjuvant chemotherapy (Ghiringhelli et al.,
2009). Enhancement of P2X7R-mediated activation of NLRP3
inflammasome in myeloid cells promoted the antitumor
response by CD8+ TILs (Li et al., 2019). Accordingly, tumor-
bearing P2X7R null mice showed lack of inflammatory
infiltration and accelerated tumor progression (Adinolfi et al.,
2015). Cyclic GMP-AMP synthase stimulator of interferon
genes (cGAS-STING) signaling is involved in tumor sensing
by innate immune cells (Deng et al., 2014; Woo et al., 2014).
Recently, P2X7R activation was shown to facilitate transfer of
tumor-derived cyclic GMP-AMP (cGAMP) to tumor-associated
macrophages (TAMs), thereby enhancing STING-dependent
type I IFN response and tumor immunogenicity (Zhou et al.,
2020). Finally, activation of P2X7R expressed by DCs was
shown to potentiate immune checkpoint blockade efficacy in

mice bearing non-small cell lung cancer by enhancing IL-18
production (Douguet et al., 2021) (Figure 1B).

On the other hand, P2X7R is expressed by innate
immunosuppressive cells, such as myeloid-derived suppressor
cells (MDSCs), where P2X7R activity can promote radical species
production, Arginase-1 accumulation, and TGF-β release, thus
fostering immunosuppression (Bianchi et al., 2014). Consistent
with P2X7R-mediated innate immunosuppression, P2X7R was
recently shown to be highly expressed in TAMs and its deficiency
inhibited the “M2-like” polarization of TAMs via downregulation
of STAT6 and IRF4 phosphorylation both in vivo and in vitro
(Qin et al., 2020) (Figure 1B). Altogether, these results show that
P2X7R activity can condition functionally different cells of the
innate immune system in the TME with opposite outcomes on
tumor growth control. To exploit this knowledge in therapeutic
approaches, it would be important to functionally define the
innate component of tumor infiltrate on a personalized basis
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and/or selectively targeting a defined cell population with specific
pharmacological tools.

P2X7R-MEDIATED REGULATION OF
T-CELL ADAPTIVE IMMUNITY

Purinergic signaling at the immune synapse is instrumental in
amplifying T-cell receptor (TCR) signaling. Signal transduction
by TCR and co-stimulatory molecules results in ATP release
through pannexin-1 channels. In naïve T cells stimulated
by cognate antigen, ATP activates P2XRs, including P2X1,
P2X4, and P2X7 subtypes, in an autocrine fashion (Schenk
et al., 2008; Yip et al., 2009). In human T cells, P2X1R
and P2X4R segregate to the immune synapse, whereas the
P2X7R remains homogeneously distributed in the plasma
membrane and can sense eATP (Woehrle et al., 2010). In
mouse T cell, eATP-mediated autocrine stimulation of P2XRs
sustains MAPK signaling and induction of pro-inflammatory
features. Hence, P2XRs antagonism can foster T-cell anergy and
beneficially affect immunopathological damage in autoimmune
conditions (Schenk et al., 2008). In addition, conversion of
naïve CD4 T cells into immunosuppressive T regulatory cells
(Tregs) by pharmacological P2XR antagonism contributes to
this therapeutic outcome (Schenk et al., 2011). In human
CD4 T cell, autocrine signaling by eATP via P2X7R promotes
Ca2+ influx, NFAT nuclear translocation, and IL-2 production,
suggesting that P2X7R is required for productive T-cell activation
(Yip et al., 2009).

A few reports addressed the function of P2X7R in DCs during
the induction of T helper cell polarization. A non-hydrolyzable
ATP derivative was shown to distort DC maturation and inhibit
the production of IL-12 and TNF-α; in fact, Th1 polarization of
naive CD4 T cells by DCs pretreated with ATP was compromised
(la Sala et al., 2001). Nevertheless, this function of P2X7R in
DCs is controversial, since P2Y11R might mediate this effect
through cAMP signaling (Wilkin et al., 2002; Schnurr et al., 2005).
Micromolar concentrations of ATP reduce chemoattraction of
Th1 and cytotoxic cells by DCs, suggesting that ATP may not only
inhibit polarization of Th1 cells but also diminish the DCs/T cells
interaction. Moreover, culture supernatants from ATP-treated
DCs were shown to impair the migratory capacity of these cells
(la Sala et al., 2002).

Some effector T-cell populations are particularly vulnerable
to eATP-induced cell death via P2X7R-mediated cytolytic pore
formation. For example, T follicular helper (Tfh) cells in the
Peyer’s patches (PPs) of the small intestine are selectively
expanded in P2rx7−/− mice because of resistance to eATP-
mediated cell death (Proietti et al., 2014, 2019). P2X7R-
mediated pyroptosis impairs the generation of ICOS+ IFN-
γ-secreting Tfh cells in systemic lupus erythematosus (SLE),
thus limiting immunopathology. Notably, reduced P2X7R
activity characterizes circulating Tfh cells in SLE patients
(Faliti et al., 2019).

In contrast, P2X7R plays a positive role in the establishment
and maintenance of murine long-lived central and tissue-
resident memory (Trm) CD8 T cells by supporting mitochondrial

function and metabolic fitness (Borges da Silva et al., 2018).
In fact, P2X7R promotes Trm cell generation by enhancing
sensitivity to TGF-β (Borges da Silva et al., 2020). These
results are difficult to reconcile with studies showing that
P2X7R activity in vivo leads to a specific depletion of Trm
cells (Stark et al., 2018) and intestinal T effector/memory
cells (Hashimoto-Hill et al., 2017). Extracellular nucleotides
released during infection and tissue damage were shown to
deplete Trm cells via P2X7R unless they were stimulated via
TCR that robustly downregulated P2X7R (Stark et al., 2018),
as shown in small intestine Tfh cells (Proietti et al., 2014).
This mechanism would allow permanence of antigen-specific
over bystander T cells in a tissue niche. Because of the
dual gating properties of the receptor, P2X7R could support
cell autonomous maintenance of the memory T-cell pool at
steady state by promoting mitochondrial fitness via its activity
as ion channel; high concentrations of eATP (e.g., during
inflammation) without concomitant TCR engagement would
result in cytolytic pore opening and cell death, thereby selecting
antigen proficient cells.

T-CELL FUNCTION CONDITIONING BY
TME

In solid tumors, the extent of T-cell infiltration correlates with
better patient prognosis. It was originally appreciated in primary
cutaneous melanoma that the abundance of tumor-infiltrating
lymphocytes (TILs) had a strong predictive value for increased
survival (Clark et al., 1989; Clemente et al., 1996). Subsequently,
the presence of intratumoral T cells was shown to correlate
with improved clinical outcome in advanced ovarian carcinoma
(Zhang et al., 2003). The role of adaptive immunity in controlling
tumor growth was further suggested in colorectal cancers where
accumulation of memory and effector memory T cells was
associated with diminished dissemination and prolonged survival
(Pages et al., 2005).

In the TME, the development of effective antitumor immunity
is limited by the induction of T cell dysfunctional states,
such as exhaustion and senescence. Exhaustion is the result of
persistent antigen stimulation that provokes a gradual decrease
in effector function of CD8 T cells in tumors and infections.
Exhausted T cells express high levels of inhibitory molecules,
including PD-1, CTLA4, Tim-3, and TIGIT, and fail to respond
to TCR stimulation by cognate antigen. They are defective
in killing activity and secretion of effector cytokines such as
IFN-γ and TNF-α (Barber et al., 2006; Fourcade et al., 2012;
He et al., 2017; Li et al., 2018). Immune checkpoint blockade
modulates inhibitory pathways that affect antitumor immunity
at different stages of T cell response. Anti-PD-1 antibodies
were shown to unleash tumor-specific cytotoxic T cells that
already reside in the TME before treatment (Tumeh et al., 2014).
The rather low success rates for anti-PD-1/PD-L1 monotherapy
suggests the existence of diverse adaptive immune resistance
mechanisms within the TME.

Cellular senescence can be elicited by telomere shortening
or erosion (termed replicative senescence) and/or “damage”
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signals, such as oxidative stress (termed premature senescence)
(Campisi and d’Adda di Fagagna, 2007). Senescent T cells
develop significant phenotypic and genotyping alterations, like a
decrease in CD28 expression, cell cycle arrest, and secretion of
proinflammatory and suppressive cytokines (Ye et al., 2013). In
patients with head and neck cancer, CD8+CD28− effector T cells
were expanded and showed a rapid turnover. This phenomenon
was normalized by tumor resection, suggesting that tumor cells
promoted the generation of this “cell death-prone” subset of
effector T cells (Tsukishiro et al., 2003). Senescent T cells lose
their killing abilities and secretion of antitumoral cytokines,
such as granzyme and IFN-γ. It was hypothesized that tumors
directly induced T-cell senescence and converted effector T cells
functionally into suppressor cells to achieve immune evasion
(Montes et al., 2008). This hypothesis was corroborated by
data suggesting that tumor cells could transfer cyclic adenosine
monophosphate (cAMP) to T cells via gap junctions, resulting
in T-cell senescence and immunosuppression, which could be
reverted by cAMP lowering via TLR8 signaling in tumor cells (Ye
et al., 2014). It is plausible to hypothesize that T-cell senescence in
the TME may contribute to compromise the efficacy of multiple
clinical trials of cancer immunotherapy. Thus, inhibition of T-cell
senescence might constitute a strategy for restoring T-cell effector
function and enhance antitumor immunity.

P2X7 IN ANTITUMOR T-CELL RESPONSE

Tumor engraftment in P2X7R null mice showed lack of
inflammatory infiltration and accelerated tumor progression,
suggesting host immune system benefits from P2X7R activity
for controlling tumor growth (Adinolfi et al., 2015). Conversely,
pharmacological blockade of P2X7R with A740003 showed
an opposite effect on tumor outcome. Immunophenotyping
of tumor-infiltrating cells in P2X7R null versus A740003-
treated mice uncovered a different T-cell subset composition.
Robust decrease of CD8 effector T cells and increase of
immunosuppressive Tregs distinguished tumors implanted in
P2X7R null host. Conversely, P2X7R antagonism caused a rise
of effector T cells while leaving unaltered CD8+ cells and Tregs
numbers, suggesting that P2X7R inhibition was directly affecting
effector T-cell expansion (De Marchi et al., 2019). Notably,
P2X7R stimulation in tumor-specific T cells within the TME
resulted in stress-induced cellular senescence that limited the
expansion of tumoricidal cells. This mechanism was dependent
on mitochondrial reactive oxygen species (ROS) generation and
p38 MAPK-dependent upregulation of cyclin-dependent kinase
inhibitor 1A (Cdkn1a, encoding for p21Waf 1/Cip1) (Romagnani
et al., 2020) (Figure 1B). It was previously shown in primary

human T cells that inhibition of p38 MAPK could limit DNA
damage and senescence-associated dysfunction independently of
T cell exhaustion induced by PD1 (Lanna et al., 2014; Henson
et al., 2015). More recently, inhibition of p38 MAPK activity
was shown to positively influence cell expansion, differentiation,
oxidative stress, and genomic stress of antitumor T cells,
thereby improving the tumoricidal activity of mouse T cells and
enhancing the competence of human tumor-reactive and gene-
engineered T cells (Gurusamy et al., 2020). Lack of P2X7R activity
in T cells correlated with a transcriptional signature associated
to enhanced cytotoxic T cell response in human solid tumors.
Thus, targeting of P2X7R in effector TILs might provide a unique
rejuvenating signal able to sustain the tumoricidal response
(Romagnani et al., 2020).

CONCLUDING REMARKS

Signaling by eATP is diffused in all tissues; it is difficult to find a
cell type that is insensitive to eATP. P2X receptors appeared very
early in evolution and are present in Dictyostelium, Schistosoma,
and algae (Burnstock and Verkhratsky, 2009). P2X7R is widely
expressed in the different cell types constituting the TME.
Dissecting the outcome of P2X7R signaling for therapeutic
purposes within this complex and evolving environment
represents a problematic task. Nevertheless, the knowledge
acquired on P2X7R activity in various cell subsets constituting the
TME might be applied to cell-targeted therapeutic approaches or
for conditioning T cells in adoptive cell therapy protocols.
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