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Molting is of great importance for the survival and development of nematodes.
Nematode astacins (NAS), a large family of zinc metalloproteases, have been proposed
as novel anthelmintic targets due to their multiple roles in biological processes
of parasitic nematodes. In this study, we report a well conserved nas-33 gene
in nematodes of clade V and elucidate how this gene is involved in the molting
process of the free-living nematode Caenorhabditis elegans and the parasitic nematode
Haemonchus contortus. A predominant transcription of nas-33 is detected in the larval
stages of these worms, particularly in the molting process. Knockdown of this gene
results in marked molecular changes of genes involved in cuticle synthesis and ecdysis,
compromised shedding of the old cuticle, and reduced worm viability in H. contortus.
The crucial role of nas-33 in molting is closely associated with a G protein beta subunit
(GPB-1). Suppression of both nas-33 and gpb-1 blocks shedding of the old cuticle,
compromises the connection between the cuticle and hypodermis, and leads to an
increased number of sick and dead worms, indicating essentiality of this module in
nematode development and survival. These findings reveal the functional role of nas-
33 in nematode molting process and identify astacins as novel anthelmintic targets for
parasitic nematodes of socioeconomic significance.

Keywords: nematode astacin, nas-33, gpb-1, molting, anthelmintic target

INTRODUCTION

Both free-living and parasitic nematodes develop through four to five larval stages, which are
distinguishable by their different size and separated by the temporal shedding of cuticle (ie.,
molting). The cuticle is a crucial structure that maintains post-embryonic body shape, acts as an
exoskeleton, and permits mobility and elasticity of nematodes (Bird and Bird, 1991; Page and
Johnstone, 2007), whereas molting is a series of biological processes including separation of the
surface coat from the epidermis (i.e., apolysis), synthesis of a new cuticle during an inactive stage
(i.e., lethargus), and shedding of the old cuticle (i.e., ecdysis) (Page, 2001). Proper synthesis of
cuticle and regular molting between two life stages are essential for the survival and development
of nematodes in the environment or within host animals. In particular, the cuticle of parasitic
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nematodes is the interface of host-parasite interactions, playing
roles in immune recognition and immune evasion within
host animals (Maizels, 2013). A wealth of information about
the cuticle and the molting process is now available for
nematodes, predominantly based on the nematode model
organism Caenorhabditis elegans (Politz and Philipp, 1992).

Molecules involved in molting include zinc metalloproteases,
leucine amino-peptidases and cysteine proteases (Rogers, 1982;
Gamble et al., 1989; Lustigman, 1993). Astacins are a large family
of zinc metalloproteases belonging to the M12A family, which
was first reported in the crayfish Astacus astacus (Pfleiderer et al.,
1967; Mohrlen et al.,, 2006). In C. elegans, there are 40 genes
coding for nematode astacins (nas), representing six subgroups
(I, IL, III, 1V, V, and VI) of astacin-like proteins based on the
deduced domain architectures (Mohrlen et al., 2003). These
molecules have been reported predominantly expressed in the
pharynx, intestine, body wall muscle and hypodermis, with a
few of them expressed in neurons and the reproductive tissues
of C. elegans (Park et al., 2010). Members of the astacin family
exhibit numerous physiological functions in hatching, digestion,
peptide processing and pattern formation. In particular, dpy-
31 (also known as nas-35), nas-36 and nas-37 have been
reported to be involved in the nematode molting process (Maeda
et al., 2001; Kamath et al., 2003). Specifically, worms lacking
dpy-31/nas-35 showed a dumpy appearance (Novelli et al.,
2004, 2006), whereas suppression of nas-36 and nas-37 led
to molting defect and temperature-sensitive lethal phenotype
(Davis et al, 2004; Suzuki et al., 2004). By contrast, only
a few astacin-coding genes have been identified in parasites,
such as Brugia malayi (a filarial worm of medical importance),
Haemonchus contortus and Teladorsagia circumcincta (highly
pathogenic worms of veterinary significance) (Stepek et al., 2010,
2011), and little is known about their functional details in
parasitic nematodes. Nonetheless, chemical inhibition of DPY-
31/NAS-35 in these parasitic nematodes elicited severe dumpy
and immobile phenotypes (France et al., 2015; Stepek et al.,
2015), suggesting the possibilities of NAS as drug targets in
major parasitic worms of socioeconomic importance. Protease
inhibitors that can specifically bind to certain proteases have been
used in the therapeutic treatment of parasitic diseases (Shamsi
et al., 2016; Deu, 2017). For instance, vinyl sulfone cysteine
protease inhibitor K11777 (a substrate-based inhibitor of the
gut-associated cathepsin B1 cysteine protease) showed significant
efficacy on schistosomiasis in murine model (Abdulla et al.,
2007). In addition, screening of inhibitory compounds targeting
essential proteases has been an emerging area for Plasmodium
falciparum (Sharma et al., 2015; Roy, 2017; Singh et al., 2021).
Therefore, a better understanding of the functional roles of nas
genes in free-living and parasitic nematodes should underpin the
biological understanding of this metalloprotease-coding gene and
lay a basis for the discovery of novel interventions.

In this study, we report a zinc metalloprotease coding gene
nas-33 that is well conserved in clade V parasitic nematodes, and
elucidate the essential roles of this gene in molting process in
the free-living nematode C. elegans and the parasitic nematode
H. contortus. Novel insights into the essentiality of nas-33, which
represents a conserved nematode-specific gene family, should

lay a solid foundation for the discovery and development of
novel anthelmintics.

MATERIALS AND METHODS

Nematodes

Caenorhabditis elegans N, strain was acquired from the
Caenorhabditis Genetics Center (CGC), maintained on
nematode growth media (NGM) plates at 20°C following
the standard protocol (Brenner, 1974). Gravid worms were
bleached with hypochlorite solution to collect eggs, which were
then incubated in M9 buffer on a rotator for 24 h at 20°C to
synchronize all animals at the first larval (L1) stage (Sulston and
Hodgkin, 1988). By contrast, H. contortus (Z] strain; anthelmintic
susceptible) were maintained in Hu sheep under a helminth-free
condition as described previously (Yan et al., 2014). Adult worms
were collected from the abomasa of infected sheep, and eggs were
isolated from the uteri of adult female worms, placed on 2% agar
plates and cultured at 28°C for 7 days to synchronize all worms
at the third larval (L3) stage.

Molecular Cloning and Sequence

Analysis

Genomic DNA and total RNA were extracted from the adult
worms of H. contortus using a TIANamp Genomic DNA kit
(Tiangen Biotech Co., Ltd., Beijing) and the Trizol reagent
(Invitrogen, United States), respectively. The first strand cDNA
was synthesized using a First Strand ¢cDNA Synthesis Kit
(Toyobo Co., Ltd., Japan). Rapid amplification of cDNA ends
(RACE) was conducted using the 5'- and 3/-Full RACE kit
(Takara Biotechnology Co., Ltd.) to extend a sequence fragment
HCISE01811400.t1 in the Sanger database', a potential nas-
33 homolog in H. contortus. PCR products were cloned into
a pMDI19-T vector and sequenced. Based on the obtained
sequence, primers were designed to perform a Genome Walking
experiment to acquire the flanking sequences. Primers used were
listed in Supplementary Table 1. Functional domain predictions
were carried out by searching the predicted amino acid sequences
against NCBI* and InterPro’ databases. Sequence alignment and
phylogenetic analyses were performed using MEGAS5.

Quantitative Real-Time PCR (qRT-PCR)

Arrested L1s of C. elegans were placed on NGM plates seeded
with Escherichia coli strain OP50 and cultured at 20°C. Nematode
samples were collected every 2 h until 40 h post incubation for
RNA extraction. Transcriptional alteration of Ce-nas-33 during
the development was determined by qRT-PCR using SYBR®
Green PCR Master Mix (Toyobo, Japan) on a T100 Real-Time
PCR System (Bio-Rad, United States). Actin coding gene act-1
was used as an internal control, and cathepsin L-like cysteine
protease coding gene cpl-1, nas-37 (apolysis), collagen coding
gene col-12 (late lethargus), thioredoxin reductase coding gene

Uhttps://www.sanger.ac.uk
Zhttps://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
3http://www.ebi.ac.uk/interpro/scan.html
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trxr-1 or glutathionine reductase coding gene gsr-1 (ecdysis) were
selected as markers for molting processes (Hashmi et al., 2002;
Davis et al., 2004; Stenvall et al., 2011). Differently, synchronized
L3s of H. contortus were used to orally infect sheep, and to
collect ~10,000 eggs, ~8,000 L1s, 8,000 L2s, 6,000 L3s, 100
L4s and adults for RNA extraction. For each sample, 0.5-1
ig of total RNA was used to prepared cDNA for qRT-PCR
performed to determine the transcriptional levels of Hc-nas-33
in different developmental stages of H. contortus. In particular,
transcription of Hc-nas-33 in larvae during L1, L1-L2 molting,
L2 and L2-L3 molting were measured. 18S rRNA was used as an
internal control in H. contortus. Primer sets used can be found
in Supplementary Table 1. All experiments were conducted at
least three times, and the qRT-PCR data were analyzed using the
27 2Ct method.

RNA Interference (RNAi)

A feeding method was employed to conduct the RNAi assay
on H. contortus (Zawadzki et al., 2012). Specific PCR primers
were designed to amplify Hc-nas-33 (613-1,569 nt). The PCR
products were cloned into the L4440 vector, then transformed
into E. coli HT115 strain (DE3) cells. Beta-tubulin isotype-
1 coding gene Hc-iso-1 was used as a positive control in
H. contortus RNAI assays (Samarasinghe et al., 2011), whereas
Bt-crylAc from Bacillus thuringiensis (GenBank Accession No.
GU322939.1) was used as an “irrelevant” control. Primers used
were listed in Supplementary Table 1. Eggs (n ~ 4,000) of
H. contortus were sterilized with antibiotic-antimycotic, washed
thoroughly, and incubated with the transformed bacteria at 28°C
for 6-10 days. Hatching rate and subsequent larval development
of H. contortus were monitored under a microscope on days
1, 3, and 7. On day 3, ~4,000 larvae were harvested for the
extraction of RNA and synthesis of cDNA. Gene knockdown
of Hc-nas-33 and associated transcriptional alterations of genes
involved in cuticle synthesis (col-12, col-14, cuticle procollagen
coding gene dpy-5 and dpy-13), ecdysis (serine/threonine protein
kinase coding gene nekl-2, ankyrin repeat and sterile alpha motif
domain containing protein coding gene mlt-3 and tropomyosin
coding gene lev-11) and remodeling of cuticle-epidermis linkage
(muscle attachment abnormal associated gene mua-3 and
myotactin coding gene let-805) in RNAi-treated worms were
assessed by qRT-PCR.

Yeast Two-Hybrid Screening

Total RNA was isolated from the L3s of H. contortus to construct
a cDNA library, which was then transformed into the Y187 yeast
strain. The full-length nas-33 cDNA was amplified and subcloned
into pGBKT7, then transformed into yeast strain Y2H Gold. The
NAS33 protein was used as a bait to screen the yeast cDNA
library according to the manufacturer’s user guide (Matchmaker®
Gold Yeast Two-Hybrid System User Manual). Clones grown on
the SD/-Leu/-Trp/-His/-Ade plates were confirmed by further
selection and used to extract plasmids for sequencing inserts.
Among the candidate genes after library screening, one insert
was predicted to encode a 321 amino acid polypeptide that shares
homology with the guanine nucleotide-binding protein subunit
beta-1, which was renamed here as Hc-gpb-1.

In vitro Pull-Down Assay

Bait protein (GST-fused Hc-NAS-33) was expressed using a
Bac-to-Bac Baculovirus Expression System, immobilized with
GST beads at 4°C for 4 h and then washed by phosphate
buffer saline (PBS) containing 1% Triton X-100. Potential prey
protein (HA-tagged Hc-GPB-1) was produced in HEK 293T cells
transfected with pGEX-4t-1-Hc-gpb-1. Immobilized bait protein
was incubated with 300 pl cell lysates containing HA-tagged
protein at 4°C for 2 h, followed by washing with PBS. Protein-
protein interaction complex was eluted, resuspended in 40 pl
2 x SDS loading buffer, boiled and separated by SDS-PAGE. Anti-
GST and Anti-HA antibodies were used to analyze the interaction
of Hc-NAS-33 and He-GPB-1.

Co-immunoprecipitation (Co-IP)

HA-tagged Hc-NAS-33 and FLAG-tagged Hc-GPB-1 proteins
were prepared from transfected HEK 293T cells, then incubated
with anti-FLAG agarose at 4°C for 2 h. After that, the proteins
were washed with immunoprecipitation buffer (136.89 mM NaCl,
2.67 mM KCl, 8.1 mM Na2HPO4, 1.76 mM KH2PO4 and 0.5%
Tween 20) for eight times, mixed with 50 ul 5 x SDS loading
buffer and boiled for 10 min. Protein samples were separated
by SDS-PAGE, and subjected to Western Blot analysis. Anti-HA
and anti-FLAG antibodies were used to detect fused proteins Hc-
NAS-33 and Hc-GPB-1, respectively. Co-IP of Hc-NAS-33 and
Hc-GPB-1 with exchanged tags was also performed.

Co-localization

Promoters of Ce-nas-33 (sequence between K04E7.4 and Ce-
nas-33 start codon) and Ce-gpb-1 (sequence between F44E5.14
and Ce-gpb-1 start codon), as well as sequences 2,000 nt
upstream Hc-nas-33 and Hc-gpb-1 were used to drive gene
expression of Hc-nas-33 and Hc-gpb-1 in C. elegans, respectively.
Plasmid expressing Hc-NAS-33-GFP (pPD95_77-Cep-Hc-nas33)
was constructed by inserting the promoter of Ce-nas-33 cloned
from C. elegans DNA and Hc-nas-33 full-length cDNA into the
germline expression vector pPD95_77 via BamH I and Kpn I
restriction site successively. As the same, the promoter of Ce-gpb-
I was cloned into pPD95_77 at BamH 1 restriction site and Hec-
gpb-1-mCherry overlapped sequence was inserted afterward to
obtain plasmid expressing Hc-GPB-1-mCherry (pPD95_77-Cep-
Hc-gpbl-mCherry). Recombinant plasmids were microinjected
into the gonads of young adult worms as described previously
(Mello et al., 1991), together with pRF4 plasmids (50 ng/jl)
introducing mutant allele of rol-6 gene. F2 larvae with a roller
phenotype were selected to examine the expression patterns of
fusion proteins in the transgenic worms using a fluorescent
microscope (Zeiss LSM 780). In addition, Hc-nas-33 and He-gpb-
1 was cloned into C,-EGFP vector and pcDNA3 (+)-mCherry
vector, respectively. Recombinant plasmids were co-transfected
into the human embryonic kidney 293T (HEK 293T) cell line
using Lipofectamine 2000 (Invitrogen). Transfected cells were
further cultured at 37°C in 5% CO; for 24-48 h, then stained
with DAPI for 30 min at room temperature. GFP and mCherry
expression in HEK 293T cells were analyzed using a fluorescent
microscope (Zeiss LSM 780).
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Transmission Electron Microscopy (TEM)
About 2000 RNAi-treated and -untreated worms were collected
on day 5, washed in physiological saline and fixed in 2.5%
glutaraldehyde and 1% Triton X-100 and 0.1 M sodium
phosphate buffer at 4°C for 7 days. Fixed samples were mounted
into agar blocks and postfixed in 1% OsO4 and 0.1 M sodium
phosphate buffer for 2 h, and further processed for dehydration
and infiltration. Processed specimens were placed in Eppendorf
tubes containing Spurr resin and heated at 70°C overnight, then
sectioned and stained with uranyl acetate for 5 min and alkaline
for 10 min. TEM scanning was performed using a Hitachi Model
H-7650 TEM microscope. Micrographs (n = 4) captured at the
middle of worms were selected for analysis. Thickness of the
worm cuticle was measured using the Image].

Developmental and Survival Assay

Separate (Hc-nas-33 or Hc-gpb-1) and simultaneous (Hc-nas-
33 + Hc-gpb-1) RNAi assays were conducted on the early
larval stage of H. contortus using the feeding method described
above. Gene knockdown analyses were performed to estimate
the transcriptional association of these two genes in the treated
worms, using qQRT-PCR as described above. Primer sets used were
listed in Supplementary Table 1. Developmental and survival
variations of treated worms were assessed in terms of the
morphology, molting and morbidity (i.e., sickness and death)
of free-living L1s, L2s, and L3s (infective) of H. contortus. In
brief, three sub-samples of 200 pl culture medium (containing

about 200 larvae) were taken from the culturing system and
transferred into 6-well culture plate on days 3 and 7. The
treated larvae were examined by microscopy, in aspects of larval
development and survival. Experiments were repeated for three
times on different days.

Statistical Analysis

Data were presented as mean =+ standard deviation (SD).
Statistical analyses of gene transcription, cuticle thickness and
larval development were carried out by Student’s t-test with the
GraphPad Prism 8 (GraphPad Software, United States). P < 0.05
was considered as statistically significant difference.

RESULTS

nas-33 Is Relatively Conserved in
Free-Living and Parasitic Nematodes

Apart from C. elegans, orthologs of nas-33 were commonly
identified in nematodes of clade V, including the free-living
Pristionchus pacificus and the parasitic Ancylostoma caninum,
A. ceylanicum, and H. contortus. Specifically, the cDNA-
confirmed Hc-nas-33 was 1714 bp (GenBank accession No.
MT891116) with a 66-bp 5 UTR and a 79-bp 3’ UTR
(Supplementary Figure 1), which encoded a protein containing
a ZnMc-astacin_like domain, an EGF domain and a CUB domain
(Figure 1A). Notably, there was a missing thrombospondin
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FIGURE 1 | Developmental transcription analysis of nas-33 in Caenorhabditis elegans and Haemonchus contortus. (A) Schematic diagram for domain architectures
of Ce-NAS-33 and Hc-NAS-33. (B) Ce-nas-33 shows a tightly regulated transcriptional pattern across four molting periods (black arrows) of C. elegans.
(C) Transcriptional alterations of marker genes nas-37, col-12, trxr-1 for apolysis, late lethargus and ecdysis, and nas-33 during the molting of C. elegans.
(D) Transcription levels of Hc-nas-33 in different development stages of H. contortus. (E) Hc-nas-33 shows a transcriptional peak during the first molting of
H. contortus. (F) Transcriptional alterations of marker genes nas-37, col-12, gsr-1 for apolysis, late lethargus and ecdysis, and nas-33 during the first molting of
H. contortus. Error bars indicate mean =+ standard deviation (SD). A Non-linear Curve Fit is performed to indicate the dynamic transcriptional changes of marker
genes involved in the molting processes.
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type-1 (TSP1) repeat in the deduced Hc-NAS-33, compared
with the domain architecture of Ce-NAS-33 (Figure 1A). The
alignment of protein sequence with other nematode homologs
showed a relatively high similarity within the predicted domains
(Supplementary Figure 2).

nas-33 Is Highly Expressed During Late
Lethargus

Developmental transcription analyses showed predominant gene
expression of nas-33 in the larval (i.e., L1, L2, L3, and L4) stages
of both C. elegans and H. contortus (Figures 1B,D). Specifically,
four transcriptional peaks were identified for Ce-nas-33 across
the development from the activated L1 stage to the adult stage
of C. elegans (Figure 1B). In particular, Ce-nas-33 appeared to
play a role in the late lethargus phase, with reference to the
transcriptions of marker genes (i.e., nas-37, col-12, and trxr-1)
for molting process (i.e., apolysis, late lethargus and ecdysis)
(Figure 1C). A transcriptional peak was also found during the
L1-L2 molting of H. contortus (Figure 1E). By contrast, unlike
the peaked transcriptional level of nas-33 between apolysis and
late lethargus steps in C. elegans, Hc-nas-33 appeared to be

highly transcribed between late lethargus and ecdysis processes
in H. contortus, which were defined based on the transcriptions
of marker genes nas-37, col-12, and gsr-1 (Figure 1F).

Knockdown of nas-33 Leads to Molting
Defects in H. contortus

Compared with the untreated worms, two layers of cuticles
were observed in the nas-33 RNAi-treated larvae of H. contortus
(Figure 2A). To confirm the association between phenotypic
change and RNAi-mediated knockdown of nas-33 in
H. contortus, transcriptional levels of nas-33 and iso-1
(positive control) were measured by qRT-PCR. Both of the
two genes showed a significant (P < 0.05) decrease in the
RNAi-treated larvae (Figure 2B), with the thickness of the L2
cuticle significantly (P < 0.001) thinner than that of untreated
larvae (Figure 2C). In addition, successful gene knockdown
of nas-33 led to marked transcriptional alterations of genes
involved in the molting process of H. contortus. Specifically,
lower transcriptional level of nas-33 (P < 0.01) in the RNAi-
treated worms was linked to significant downregulation of four
genes col-12 (P < 0.05), col-14 (P < 0.01), dpy-5 (P < 0.001),

1.5
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and dpy-13 (P < 0.01) involved in cuticle synthesis, three genes
nekl-2 (P < 0.01), mlt-3 (P < 0.01), and lev-11 (P < 0.001)
involved in ecdysis, and one gene mua-3 (P < 0.05) involved
in junction remodeling (Figure 2D). In addition, suppression
of nas-33 significantly compromised the molting process of L1s
in H. contortus. Particularly, gene knockdown of Hc-nas-33
resulted in obvious molting defects (e.g., failure of shedding
the old cuticle and corset phenotype), compared with negative
control (Figure 3).

Hc-NAS-33 Interacts With a G Protein

Subunit in vitro and in vivo

By screening the yeast two-hybrid cDNA library of H. contortus,
several proteins were identified as candidates interacting with
Hc-NAS-33, including a guanine nucleotide-binding protein
subunit beta-1 (GPB-1). The interaction between Hc-NAS-33

and Hc-GPB-1 was verified by the GST pull-down assay
in vitro (Figure 4A), and confirmed with the co-IP assay
in vivo (Figure 4). In addition, protein expression analyses
of Hc-NAS-33 and Hc-GPB-1 in both HEK 293T cells and
tissues of C. elegans to some extent showed a similar protein
distribution. In cells, Hc-NAS-33 was consistently colocalized
with Hc-GPB-1 in the cytoplasm (Figure 4B), whereas in
worms, scattered co-localization of Hc-NAS-33 and Hc-GPB-
1 was observed in the intestine of adult worms but not in
the pharynx area (Figure 5). Low efficiency and no activity
were observed for the possible promoter sequences of Hc-nas-33
and Hc-gpb-1. Driven by promoters of Ce-nas-33 and Ce-gpb-1,
heterologous protein expression of Hc-NAS-33 and Hc-GPB-
1 were achieved in C. elegans, and confirmed by western blot
(Supplementary Figure 3). Tissue distribution of Hc-GPB-1 is
mostly consistent with the sites of Ce-gpb-1 promoter activity in

arrows. (G,H) Phenotype of untreated larvae of H. contortus.

FIGURE 3 | Knockdown of nas-33 leads to molting defects in Haemonchus contortus. (A-D) Defects in the first molting of H. contortus led to larva death. (E,F)
Defects in the first molting of H. contortus resulted in attachment of the old cuticle to the second stage larva. Cuticles failed to be shed are marked with white
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FIGURE 4 | Hc-NAS-33 interacts with Hc-GPB-1 in vitro and in vivo. (A) Pull-down assay showing the interaction of Hc-NAS-33 and Hc-GPB-1. (B) Co-localization
of Hc-NAS-33 and He-GPB-1 in HEK 293T cells. Scale bar: 5 um. (C,D) Co-IP assay verifying the interaction of Hc-NAS-33 and Hc-GPB-1 in vivo.
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FIGURE 5 | Co-localization of Hc-NAS-33 and He-GPB-1 in C. elegans. GFP, green fluorescent protein; mCherry, monmer cherry fluorescent protein.
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worms, whereas interestingly, a discrepancy between Ce-nas-33
promoter activity and Hc-NAS-33 protein distribution was
identified (Supplementary Figure 4).

Knockdown of NAS-33 and GPB-1
Blocked Development and Survival of

Infective Larvae

In particular, suppression of Hc-nas-33 and Hc-gpb-1 led to
obvious molting defects in treated H. contortus (Figure 6).
Specifically, in nas-33 RNAi-treated worms, both old and
new cuticles were found closely attached to the hypodermis
(Figure 6B). In gpb-1 RNAi-treated worms, only one layer of
cuticle was observed, with a loose connection to the hypodermis
(Figure 6C). In nas-33 and gpb-1 RNAi-treated worms, both two
layers of the cuticle and a loose connection to the hypodermis
were identified (Figure 6D). In particular, compared with
negative control, independent RNAi of gpb-1 was linked to
a significant (P < 0.05) upregulation of nas-33 in treated
worms, whereas knockdown of nas-33 resulted in significant
(P < 0.05) downregulation of gpb-1 in H. contortus. Notably,
simultaneous RNAIi of nas-33 and gpb-1 significantly enhanced
the knockdown efficacies of both nas-33 (P < 0.05) and gpb-1
(P < 0.0001) (Figure 7A).

Defects in larval molting resulted in developmental and
survival variations in treated H. contortus (Figures 7B,C). In
particular, simultaneous knockdown of nas-33 and gpb-1I resulted
in delayed larval development, decreased mobility and sickness.
Compared with negative control, increased number (~40%) of
sick larvae (P < 0.01) and decreased healthy larvae (P < 0.01)
were found in RNAi-treated groups on day 3 (Figure 7B),
and increased number (~50%) of dead larvae (including the
free-living L2s and the infective L3s) and decreased number
of healthy larvae (P < 0.001) in treated groups on day 7
(Figure 7C). No significant difference was found between
independent and simultaneous RNAi of nas-33 and gpb-1, in
terms of phenotypic changes.

DISCUSSION

In this study, we report an essential zinc metalloprotease
NAS-33 in nematode species. Our findings elucidated that
this metalloprotease is likely to play a role in the larval
molting process of the free-living C. elegans and the parasitic
H. contortus. In particular, Hc-NAS-33 interacts with Hc-GPB-
1 to control shedding of the old cuticle and remodeling of
the connection between the new cuticle and the hypodermis of
worms. Suppression of the Hc-NAS-33-GPB-1 module resulted
in molting defects and a moderate lethal phenotype, suggesting
the essentiality of nas genes in nematodes.

The astacin-like protein coding gene nas-33 is relatively
conserved in free-living and parasitic nematodes. In C. elegans,
nas-35, -36, and -37 encode astacins of subgroup V (NAS-33
to -38) which have the N-terminal astacin-like, C-terminal EGF
(epidermal growth factor), CUB (C1r/Cls, embryonic sea urchin
protein Uegf, Bmp-1) and TSP1 domains in order, implying
an essential role of astacins of subgroup V in the molting,
survival and development of nematodes. Compared with the

domain architecture of Ce-NAS-33, Hc-NAS-33 lacks a TSP1
domain. This domain is usually found in extracellular matrix
proteins (Zhang et al., 2020) and a number of proteins involved
in the complement pathway (Patthy, 1988). In particular, the
thrombospondin type 1 repeat containing proteins ADAMTS (a
disintegrin-like and metalloprotease domain) have been proved
to be principal mediators of ECM destruction (Apte and Parks,
2015; Liu et al., 2015). In nematodes, cuticle components are
synthesized, secreted and modified in the extracellular matrix,
and TSP1 of Ce-NAS-33 might function in the modification and
arrangement of cuticle proteins during late lethargus. However,
it is still not clear whether the difference in NAS-33 protein
sequence is associated with the unique life cycle and living
conditions of parasitic nematodes.

The gene nas-33 appears to play a role in the molting
processes of H. contortus. First, predominant transcription of
nas-33 in larval stages indicated that this gene might play roles
in larvae development and survival. In C. elegans, genes involved
in molting (apolysis, late lethargus and ecdysis) usually have
a dynamic expression pattern (Hendriks et al., 2014; Turek
and Bringmann, 2014). For instance, higher mRNA levels of
Ce-nas-33 were detected in the apolysis and late lethargus
stages. However, apart from body-size changes, no significant
difference related to molting was observed in C. elegans after
knockdown of Ce-nas-33 (Supplementary Figure 5), which
might be explained by functional redundancy of nas genes in
this free-living nematode. Interestingly, it was found that the
mRNA level of He-nas-33 was higher in the late lethargus and
early ecdysis (based on the transcription of marker genes nas-37,
col-12 and gsr-1) in H. contortus, which is different from that of
Ce-nas-33 in C. elegans, indicating subtle functional differences
in molting between these two species. Second, downregulation
of collagen-associated genes (col-12, col-14, dpy-5, and dpy-13;
Johnstone and Barry, 1996; Mcmahon et al., 2003; Page and
Johnstone, 2007) in RNAi-treated worms suggests that Hc-nas-
33 is required in the synthesis of cuticle structure elements (Cox
et al, 1981; Page, 2001), which is further confirmed by the
change of cortical zone thickness. In addition, it was reported
that nekl-2 and mlt-3 genes involved in nekl-mlt kinase network
(Yochem et al., 2015; Lazetic and Fay, 2017), and lev-11 involved
in muscle contraction spinning and flipping behavior (Frand
et al., 2005; Barnes et al., 2018; Watabe et al., 2018) are essential
for molting in C. elegans. Reduced expression of nekl-2, mit-
3 and lev-11 were observed in the Hc-nas-33RNAi experiment,
indicating that Hc-nas-33 might be involved in ecdysis via muscle
contraction regulation. These findings indicate that Hc-nas-33
and associated metalloproteases might be a target for reducing
the population of H. contortus infected larvae, suggesting a
possible approach to the prevention of haemonchosis, although
it warrants further investigations.

Hc-NAS-33 and He-GPB-1 are required for cuticle synthesis
and cuticle-epidermis linkage remodeling. This statement can
be supported by the decreased thickness of cortical zone in
Hc-nas-33 RNAi-treated worms and decreased thickness of
both epicuticle and cortical zone in gpb-1 RNAi-treated worms
(Supplementary Figure 6A). These results indicate that Hec-
NAS-33 and Hc-GPB-1 are related to protein components
synthesis, with Hc-GPB-1 likely required for lipid and glycolipid
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FIGURE 6 | Transmission electron microscopy of nas-33 and gpb-1 RNA interference-treated Haemonchus contortus. (A) Cuticle structure of Bt-Cry1AC
RNAi-treated worm. (B) Two layers of cuticles of nas-33 RNAi-treated worm. (C) Loose connection between cuticle and epidermis in gpb-7 RNAi-treated worm.
(D) Two layers of cuticles and loose connection between cuticle and epidermis of nas-33 and gpb-1 RNAi-treated worm. L1C, L1 cuticle; L2C, L2 cuticle. Black
arrows point to the loose connections between cuticle and epidermis. Scale bar: 0.5 um.
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FIGURE 7 | Effects of nas-33 and gpb-1 RNA interference on the development and

**P < 0.001; ns, no significance.
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the relative mRNA levels (normalized by the transcriptional level of Bt-Cry1AC) of nas-33 and gpb-1, respectively. (B) Influences of separate (Hc-nas-33 or Hc-gpb-1)
and simultaneous (Hc-nas-33 + Hc-gpb-1) RNAI on the development and survival of H. contortus on day 3. (C) Influences of separate (Hc-nas-33 or Hc-gpb-1) and
simultaneous (Hc-nas-33 + He-gpb-1) RNAI on the development and survival of H. contortus on day 7. Sick phenotype includes developmental delay, decreased
mobility, abnormality and molting defect. Student’s t-test is used for the statistical analysis between treated and negative control. *P < 0.05; **P < 0.01;

survival of Haemonchus contortus. (A) Influences of nas-33 or gpb-1 RNAi on

synthesis during the molting process. Additionally, it has been
demonstrated that mua-3 and let-805/myotactin are component
of hemidesmosome-like structures (HDLSs) through which the
epidermis and cuticle are attached to each other. MUA-3 may

help to link collagens in the basal zone to the epidermal
cytoskeleton (Bercher et al., 2001), and LET-805 may guide the
remodeling of basement membrane attachments during molting
(Hresko et al., 1999). In the current work, silencing of Hc-nas-33
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led to a predominant downregulation of mua-3, whereas
knockdown of Hc-gpb-1 was linked to let-805 (Supplementary
Figure 6B), suggesting their roles in both cuticle synthesis and
the remodeling of basement membrane attachments.

Apart from molting, NAS-33 and GPB-1 might play additional
roles in nematode species. This is because that the two proteins
were partially co-localized in worms. Little has been reported on
other functional roles of NAS-33, although it might play a role
in embryogenesis or hatching as transcription of this gene was
detected in H. contortus eggs. By contrast, GPB-1 expression has
been observed in the neurons, hypodermal seam cells, gonad and
vulva in both larval and adult stages of C. elegans. Such expression
pattern is consistent with the phenotypes including abnormalities
in early embryogenesis, sterility and abnormalities in the germ
line caused by GPB-1 depletion (Zwaal et al., 1996). Additionally,
the distribution of GPB-1 at the cell membrane is dynamic
and asymmetric during the division of one-cell stage C. elegans
embryos (Thyagarajan et al., 2011). However, these functional
roles of NAS-33 or GPB-1 in H. contortus and associated parasitic
nematodes warrants further investigations.

In conclusion, we identified an essential astacin protein
NAS-33 in nematode species. Suppression of this protein and
associated G protein subunit resulted in molting defect and
death of infective larvae of a highly pathogenic strongylid
nematode. Our work provides comprehensive insights into the
essentiality of nas gene family in nematode molting and survival,
and thereby lays a foundation for the discovery of potential
targets for the prevention of parasitic diseases of socioeconomic
significance.
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Supplementary Figure 1 | Isolation of Hc-nas-33 DNA and cDNA from
Haemonchus contortus. (A) 5'- RACE. (B) 3'- RACE. (C) 5'- Genome Walking. (D)
3'- Genome Walking. (E) Cloning of Hc-nas-33 full length coding sequence by
overlapping PCR. 1, 1-213 nucleotide sequence of Hc-nas-33; 2, 207-1,569
nucleotide sequence of Hc-nas-33; 3, full length coding sequence of He-nas-33.
SP, specific primer; M, DNA marker.

Supplementary Figure 2 | Characterization of Hc-nas-33 in Haemonchus
contortus. (A) Schematic diagram of Hc-nas-33 gene structure (GenBank
accession No. MT891117). Black blocks represent exons and gray blocks
represent non-coding 5’- and 3'-untranslated region (UTR) sequence. (B)
Functional domain prediction and alignment of amino acid sequence of
Hc-NAS-33 and homologs in other nematode species.

Supplementary Figure 3 | Western blotting of Hc-NAS-33 and Hc-GPB-1
expressed in transgenic worms. M, standard protein marker.

Supplementary Figure 4 | Promoter activity analysis of pCe-nas-33,
pHc-nas-33, and pCe-gpb-1 in Caenorhabditis elegans. (A-C) Massive
expression of pCe-nas-33:GFP in the epidermis of C. elegans. (D,E) Weak
expression of pHc-nas-33:GFP in several intestine cells. (F,G) Specific expression
of pCe-gpb-1:mCherry in the head and tail of C. elegans.

Supplementary Figure 5 | Effects of Ce-nas-33 knockdown on Caenorhabdiitis
elegans. (A) Development of vulva showed no significant difference after
Ce-nas-33 RNAi compared with negative control (Bt-Cry1AC). (B,C)
Morphological changes (body width and body length) at 36 and 48 h after
Ce-nas-33 RNAI treatment. Student’s t-test is used for the statistical analysis
between treated and negative control. ***P < 0.001.

Supplementary Figure 6 | Analysis of cuticle thickness and junction remodeling
related genes after gpb-7 RNA interference. (A) Cuticle thickness (measured by
ImageJ) changes of the second stage larva after gpb-7 RNAI. SC, surface coat;
EP, epicuticle; CZ-CO, collagen rich layer of cortical zone; CZ-CU, cuticlin rich
layer of cortical zone. (B) Influences of gpb-1 RNAI on the transcription of junction
remodeling related genes (mua-3 and let-805). Student’s t-test is used for the
statistical analysis between treated and negative control. **P < 0.01;

#*P < 0.001; ns, no significance.

Supplementary Table 1 | Information on primer sets used in this study.
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