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Terminally differentiated cells of the nervous system have long been considered to
be in a stable non-cycling state and are often considered to be permanently in G0.
Exit from the cell cycle during development is often coincident with the differentiation
of neurons, and is critical for neuronal function. But what happens in long lived
postmitotic tissues that accumulate cell damage or suffer cell loss during aging? In
other contexts, cells that are normally non-dividing or postmitotic can or re-enter the
cell cycle and begin replicating their DNA to facilitate cellular growth in response to
cell loss. This leads to a state called polyploidy, where cells contain multiple copies of
the genome. A growing body of literature from several vertebrate and invertebrate model
organisms has shown that polyploidy in the nervous system may be more common than
previously appreciated and occurs under normal physiological conditions. Moreover,
it has been found that neuronal polyploidization can play a protective role when cells
are challenged with DNA damage or oxidative stress. By contrast, work over the last
two and a half decades has discovered a link between cell-cycle reentry in neurons
and several neurodegenerative conditions. In this context, neuronal cell cycle re-entry
is widely considered to be aberrant and deleterious to neuronal health. In this review,
we highlight historical and emerging reports of polyploidy in the nervous systems of
various vertebrate and invertebrate organisms. We discuss the potential functions of
polyploidization in the nervous system, particularly in the context of long-lived cells and
age-associated polyploidization. Finally, we attempt to reconcile the seemingly disparate
associations of neuronal polyploidy with both neurodegeneration and neuroprotection.
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INTRODUCTION

The prolonged maintenance of a non-dividing state is critical for the proper functioning of
long lived cells in various tissues throughout the lifespan of an organism. The cells of the
nervous system; neurons and glia, are some of the longest lived in many animals. It is known
that maintaining a non-dividing state in these cells is critical for brain function (Frade, 2000;
Aranda-Anzaldo and Dent, 2017).

In a majority of adult metazoan cells including neurons, muscles, and most epithelial cells,
the G0 associated with terminal differentiation is thought to be permanent (Zacksenhaus
et al., 1996; Cunningham et al., 2002; Huh et al., 2004; Buttitta and Edgar, 2007; O’Farrell,
2011). These cells exit the cell cycle with a diploid (2C) DNA content. Studies over the past
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few years have suggested that there are several overlapping and
redundant biological pathways that influence the establishment
and maintenance of G0 in terminally differentiated tissues,
including the upregulation of the activity of negative regulators of
the cell cycle, as well as changes in transcription and chromatin
(Reviewed in Galderisi et al., 2003; Buttitta and Edgar, 2007;
Oyama et al., 2014; Davis and Dyer, 2010; Duronio and Xiong,
2013; Ruijtenberg and van den Heuvel, 2016).

ARE ALL TERMINALLY
DIFFERENTIATED NEURONS
PERMANENTLY DIPLOID, AND IN G0?

It has long been speculated that some neurons and glia in
the CNS may be polyploid (Mann and Yates, 1973a; Yates and
Mann, 1973; Bregnard et al., 1975). Recent work is beginning
to confirm this, as well as indicate that polyploid cells in
the nervous system may be more prevalent than previously
thought, and these findings have important implications in
the physiology and pathology of the nervous system. We
begin with an introduction to variant cell cycles and examples
of variant cell cycles in the nervous system across species
(Figure 1).

Variant Cell Cycles
The canonical cell cycle starts with a diploid cell containing
two copies of each chromosome, and at the end of one cycle,
results in two daughter cells, each diploid with two copies of
each chromosome. Exceptions to this can be seen in several
cell types and organisms across the animal and plant kingdoms
(Edgar and Orr-Weaver, 2001; Frawley and Orr-Weaver, 2015).
Variant cell cycles which give rise to a cell that contains more
than two copies of the genome are classified as endoreduplication
or endoreplication cycles. The resulting cell is polyploid in
DNA content. There are different types of endoreplication
cycles, and different contexts in which cells employ them to
become polyploid.

Endoreplication cycles utilize parts of the cell cycle machinery
to replicate DNA, but these cycles are curtailed and result
in one cell with increased DNA content instead of two
cells. Endoreplication cycles can involve only cycles of DNA
replication and growth (termed endocycles) resulting in
one nucleus with increased DNA content, or a cycle of
with replication mitosis without an ensuing cytokinesis
(termed endomitosis), resulting in two or more nuclei in one
cell (Figure 1).

Endocycles
Endocycles are variant cell cycles characterized by alternating
Gap and DNA synthesis phases (Edgar and Orr-Weaver, 2001).
In flies, endocycling is thought to be driven predominantly
by an oscillation of Cyclin E/CDK2 activity and controlled
by the transcriptional activity of E2F (Duronio and O’Farrell,
1995; Edgar and Orr-Weaver, 2001; Zielke et al., 2011; Moon
and Kim, 2019). Another important factor that plays a role
in endocycle progression is the APC/CFrz/cdh1 which ensures

not only the degradation of mitotic CDKs, but also the timely
degradation of geminin in S phase to prevent re-replication
(Edgar et al., 2014). In mammals, variant or non-canonical
E2Fs are employed specifically during endocycles implying a
specialized role for these regulatory factors (Pandit et al., 2012;
Matondo et al., 2018).

Several types of cells in various organisms employ endocycles
during development or in contexts of cellular damage.
Developmentally regulated endocycles occurs in some cells
during development to aid the growth of the organism–cells
generated by these endocycles usually possess several to several
hundred copies of the genome, and often grow very large in size.
It is interesting to note that developmentally regulated endocycles
can generate cells of vastly varying ploidies depending on the
tissue and context. While the enterocytes of the fly intestinal
epithelium show average ploidies of 32–64C, nurse cells of
the ovaries and cells of the salivary gland can be up to 1,024C
(Frawley and Orr-Weaver, 2015).

Some examples of developmentally regulated endocycles in
flies include the larval epidermis, salivary gland, fat body and
some Sub-perineurial glia of the blood brain barrier (Hammond
and Laird, 1985; Britton and Edgar, 1998; Lee et al., 2009;
Unhavaithaya and Orr-Weaver, 2012; Von Stetina et al., 2018).
In the adult fly, the enterocytes in the gut, the nurse and
follicle cells of the ovary in adult females (Royzman et al.,
2002; Fox and Duronio, 2013). These are all very large cells
which either serve a biosynthetic demand or crucial barrier
function. The cells resulting from these endocycles are usually
constitutively polyploid.

While developmental endocycles have been well studied in
Drosophila, they are also present and widespread in other
eukaryotes. Several tissues in plants such as leaves, roots and
trichomes have cells that endocycle after terminal differentiation
to support growth (De Veylder et al., 2011; Frawley and
Orr-Weaver, 2015; Lang and Schnittger, 2020). In mammals,
the most studied example of endocycling is hepatocytes in
the liver, and the trophoblast giant cells of the placenta.
Just like in the fly, the different polyploid cells in mammals
can exhibit varied levels of polyploidy. Polyploid hepatocytes
contain 4–8C DNA content, however, trophoblast giant cells
can have over 1,000 copies of the genome (Roszell et al.,
1978; Severin et al., 1984; Zuckermann and Head, 1986; Jensen
et al., 1989; Melchiorri et al., 1993; Zybina and Zybina, 1996;
Klisch et al., 1999; Celton-Morizur and Desdouets, 2010). It
is interesting to note here that highly polyploid cells such as
nurse cells and trophoblast giant cells which provide critical
trophic support are short lived, suggesting that the degree of
polyploidy may influence the longevity of a cell. As cases of
polyploidy continue to be uncovered, it is becoming clear this
is a widely used cellular mechanism, yet the polyploid state
remains poorly understood. Understanding the extent to which
polyploidy is used during normal development and in abnormal
conditions, will help reveal common features of the polyploid
state. To facilitate communication across research areas, we
have developed a searchable polyploidy literature atlas that
encompasses organisms and model systems across eukarya. We
envision this literature atlas could serve as a “living document,”
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FIGURE 1 | Variant cell cycles and polyploidy in neurons. (A) Cartoons showing the progression of the canonical cell cycle and two variant cell cycles: the endocycle
and the endomitotic cycle. Multiple repeated canonical cell cycles result in numerous daughter cells with diploid DNA content, whereas endocycles result in cells with
tetraploid or greater (>4C) DNA content and endomitosis can result in either binucleate or multinucleate cells. (B–F) Examples of polyploid neurons from the literature.
(B) Nuclear DAPI staining and quantification showing larger, polyploid pyramidal neurons in the rat cortical layer https://doi.org/10.1016/j.celrep.2017.08.069. Scale
bars = 25 and 5 µM for inset. (C) Polyploid neurons in the developing mouse neocortex from https://doi.org/10.1093/texcom/tgaa063. This study used a
combination of flow cytometry and FISH combined with immunostaining against various neuronal markers to determine polyploidy. NeuO is a neuronal marker.
Mouse neocortex has both polyploid neurons and non-neurons, both show increased number of red and green foci (FISH probes against loci on chromosomes 11
and 2, respectively). (D) Large polyploid purkinje neurons from rat cerebellum, outlined in red. Reprinted from Herman and Lapham (1973) with permission from
Elsevier. License Number 5079560753665 (to author LB). (E) Red outlines and black arrows indicate polyploid supramedullary neurons of pufferfish Diodon
holancthus stained with toluidine blue. Scale bar = 100 µM. Reprinted from Cuoghi and Marini (2001) with permission from Elsevier. License number
5053261503241 (to author SN). (F) Giant neurons in an Aplysia (slug) brain, positive for BrdU in green. Nuclei are stained with DAPI in blue and cyan, and red
staining indicates FISH against mRNA of neurotransmitter achatin. Data from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622835. Scale bar = 125 µM.

an organizational structure and collection that will evolve as work
on polyploidy progresses1.

In addition to cells that undergo developmentally regulated
endocycles to become constitutively polyploid, some cells show
a capacity to enter an endocycle in contexts of wounding and

1https://sites.google.com/umich.edu/polyploidyatlas/home

damage (facultative). These will be discussed in the following
sections.

Endomitosis
Endomitosis is another variant cell cycle which differs from
endocycles in that it produces a cell with two or more
nuclei. Endomitoses comprise a G1, S, G2, and a mitosis
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without cytokinesis (Edgar and Orr-Weaver, 2001; Frawley and
Orr-Weaver, 2015). Thus, the regulation of endomitoses is
different from that of an endocycle. Endomitotic cell cycles are
characterized by a failure to undergo cytokinesis which results
in binucleate or multinucleate cells. Endomitotic cells are less
common than endocycling cells.

Endomitoses are best studied in the platelet-producing
megakaryocyte cells in mammals (Zhang et al., 1996; Zimmet and
Ravid, 2000; Ravid et al., 2002; Bluteau et al., 2009). Some SPGs in
the fly blood brain barrier are known to become multinucleate by
endomitosis (Eliades et al., 2010; Unhavaithaya and Orr-Weaver,
2012; Von Stetina et al., 2018). Examples of endomitosis giving
rise to binucleate cells are cardiomyocytes in mouse and human
hearts, lactating mammary epithelial cells and the binucleate cells
of the Drosophila accessory gland (Stephen et al., 2009; Pandit
et al., 2013; Paradis et al., 2014; Taniguchi et al., 2014, 2018; Box
et al., 2019).

Polyploidy in the Nervous System: From
Mollusk to Man
Slugs do It Best
Sea slugs of the Aplysia species have long been used in studies
of olfaction and memory formation (Coggeshall et al., 1970;
Nagle et al., 1993; Sattelle and Buckingham, 2006; Moroz, 2011;
Yamagishi et al., 2012, 2011; Kukushkin et al., 2019). These slugs
possess giant neurons (roughly the size of one fly brain) which
are perhaps the most extreme example of somatic polyploidy,
possessing up to 600,000 copies of the genome (600,000C)! While
we still do not know exactly why these neurons are so large, it is
speculated that in “simpler” animals, one large cell can perform
the functions of several smaller cells, trading off “complexity” for
capacity (Frade and López-Sánchez, 2010; Mandrioli et al., 2010).

Drosophila
Endocycling has been observed in the Drosophila peripheral
nervous system in the bristle cell lineage. Bristle cells are
mechanoreceptive cells in the fly thorax. While it has been known
for over 30 years that these cells become polyploid (up to 8C)
during development (Fung et al., 2008), recent work has provided
mechanistic insight into how these cells become polyploid. The
bristle lineage consists of a neuron, a glial cell, a sheath cell, and
one socket and one shaft cell. The shaft and socket cells become
polyploid in a Cyclin A/CDK2 dependent manner, unlike most
other tissues in fly which employ CyclinE/CDK2 oscillations to
become polyploid (Audibert et al., 2005; Furman and Bukharina,
2008; Sallé et al., 2012).

The Sub-perineurial glia that form the protective blood brain
barrier for the CNS in the fly become highly polyploid during
development (Unhavaithaya and Orr-Weaver, 2012). These large
cells adopt either an endocycle or an endomitosis depending on
their location (Von Stetina et al., 2018) to become polyploid and
support the rapidly growing larval brain during development.
Inhibition of polyploidization in these cells results in impaired
blood brain barrier function.

Our recent work has shown that neurons and glia become
polyploid in the fly brain, specifically in the adult (Nandakumar
et al., 2020). Our study found that the optic lobes show higher

levels of polyploidy than the central brain and the ventral nerve
cord. We also showed that an increase in polyploidy occurs within
the first week after eclosion. In addition, exogenous DNA damage
and oxidative stress can induce even higher levels of polyploidy,
and the polyploid cells are protected from cell death.

Teleost Supramedullary Neurons
Several species of teleosts are also known to possess a small
number of highly polyploid neurons called supramedullary
neurons on the dorsal surface of the spinal cord or the rostral
spinal cord (Nakajima et al., 1965; Bennett and Nakajima, 1967;
Mola et al., 2001; Dampney et al., 2003). Depending on the
species of fish, these neurons can have anywhere between 100
to over 5,000 copies of the genome. These neurons are very
small in number, and have been proposed as a good in vivo
model for electrophysiology studies due to their prominent
size and convenient location. These large cells are thought to
have a neuro-endocrine function as some species of puffer fish
produce noradrenalin (Mola et al., 2002; Mola and Cuoghi, 2004).
The need for biosynthesis of large amounts of adrenaline may
underlie the polyploidy in these cells, however, this has not been
functionally tested.

Other Vertebrates and Mammals
Initial observations of polyploidy in vertebrate brains involved
the study of neurons and glia in the cerebellum by three
different groups in the 1960s and 1970s (Lapham, 1963, 1968;
Herman and Lapham, 1969, 1973; Lentz and Lapham, 1969,
1970; Lapham et al., 1971; Mann and Yates, 1973a,b, 1979;
Mann et al., 1976; Swartz and Bhatnagar, 1981). While these
studies reported differing numbers, they concluded that the
cerebellum does indeed possess polyploid cells. One study
measured the proportion of polyploid cells at different ages in
the human cerebellum and found that there was no increase in
the proportion of polyploid of neurons or glia between ages 8
and 72, suggesting that unlike the liver and heart, the proportion
of polyploidy remains constant in the human brain with age.
These early studies speculated that the polyploidization may
contribute to cerebellar memory and specialized function due to
their increased transcriptional output (Mann and Yates, 1973b).

In addition to cytometric measurements, studies in the
1900s also made histological observations of neuronal nuclear
hypertrophy in various mammals such as mice, rats, dogs,
rhesus monkeys and even humans (Verhaart and Voogd, 1962;
Lapham, 1963; Bregnard et al., 1975, 1979; Ribeiro, 2006;
Toscano et al., 2009).

In mammals, most observations of neuronal polyploidy or
hypertrophy report larger, mononucleate cells. However, there
are a couple of very interesting exceptions: neurons of the dorsal
root and pelvic ganglia, neurons of the superior cervical ganglion
(SCG), neurons of enteric ganglia, and neurons innervating
the heart (Bunge et al., 1967; Smith, 1970; Forsman et al.,
1989; Ribeiro, 2006; Hunter et al., 2018). Binucleate SCG
neurons have been observed in rats, rabbits, capybaras, guinea
pigs, and humans.

The observations of larger, mononucleate polyploid neurons
in the brain, and binucleate neurons in the autonomic nervous
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system also presents an interesting distinction worth exploring
in future studies. What is the function of neuronal binucleation
in involuntary actions? Does binucleation support secretory
functions in neurons?

Modern genetic approaches investigating potential cell cycle
re-entry in vertebrate brains began taking shape in the early
2000’s. In recent years, observations of bona fide polyploidy
in neurons of the retinal ganglion of the chicken and
mouse, cerebral cortex of the rat and neocortex of the
mouse have been made using modern flow cytometry and
high resolution imaging techniques (Morillo et al., 2010;
López-Sánchez and Frade, 2013; Ovejero-Benito and Frade,
2015; Martin et al., 2017; Jungas et al., 2020). Work from
the Frade lab has shown that the neurons of the retinal
ganglion become tetraploid in an E2F-dependent manner.
However, this endoreplication program is differentially regulated
in chick and mouse central nervous system, as p27kip1 is
necessary for tetraploidization in the chick, but not the
mouse RGCs (López-Sánchez and Frade, 2013; Ovejero-Benito
and Frade, 2013, 2015). Further advances in imaging and
flow cytometry techniques have identified polyploid pyramidal
neurons in the cerebrum of the rat, and the neocortex of
the mouse, but the function and underlying cause for their
polyploidy remain elusive (Sigl-Glöckner and Brecht, 2017;
Jungas et al., 2020). These studies show sufficient evidence
that polyploidization does indeed occur in higher vertebrates,
suggesting that neuronal polyploidization may be a well
conserved phenomenon. However, while these studies have made
detailed observations of polyploidy in neurons, the precise
function of polyploidization under each of these conditions
remains unknown.

Why Become Polyploid?
Increased Biosynthetic Capacity
Why do some cells become polyploid? What are the benefits
of entering a variant cell cycle rather than undergoing cell
division? Constitutively polyploid cells, as mentioned before,
mainly perform two important functions: they usually have
increased biosynthetic capacity, and they maintain barrier
function (Reviewed in Edgar and Orr-Weaver, 2001; Lee et al.,
2009; Øvrebø and Edgar, 2018). Polyploid cells with more
copies of the genome can increase cell size and metabolic
functions efficiently. Undergoing cell division involves cell
rounding, cytoskeletal rearrangements and potential loss of cell-
cell contacts (Sauer, 1935; Erenpreisa and Cragg, 2001; Lancaster
et al., 2013; Frawley and Orr-Weaver, 2015). This can be
problematic in cells performing important barrier functions.
Endocycling can therefore be a way for these cells to grow in size
and genome copy number without increasing in cell number.

Speculation about the role that tetraploidy plays in neurons
has varied from generation of neuronal diversity to increased
capacity for dendritic arborization. One study performed over
30 years ago (Szaro and Tompkins, 1987) compared the
dendritic arbors of two Xenopus species, one diploid species
and another which displays whole organism tetraploidy (where
the entire organism has a larger genome). This study showed
that while the brains from these two organisms were the same

size, the neurons from the tetraploid species showed longer
dendritic segments as well as larger dendritic arbors. This
could mean that tetraploid neurons are able to make more
synaptic connections and participate in larger neuronal networks,
contributing to functional diversity. Polyploid neurons could
also, as a virtue of increased biosynthetic capacity, increase
production of neurotransmitters, resulting in robust signaling.

In glial cells, increased biosynthetic capacity in wrapping
glia as a result of endocycling could ensure better sheathing of
axon bundles and enhanced neuronal conductivity. Similarly,
increased biosynthetic capacity could improve phagocytic glial
function and aid in better clearance of cellular debris in the adult
brain. Glial cells provide the bulk of the metabolic support to
the neurons in the brain. In flies, glial glycolysis has been shown
to be essential for neuronal survival (Volkenhoff et al., 2015)
in the adult brain. Glial polyploidization might be a way for
some glial cells in the central nervous system to increase their
metabolic capacity.

Wound Healing and Compensatory Growth
Cells in the Drosophila adult abdominal epithelium respond to
wounding by re-entering the cell cycle as well as undergoing cell
fusion to become polyploid, and close the wound. Induction of
the endocycle in these cells is dependent on the upregulation
of E2F by the Hippo/Yorkie pathway as well as the degradation
of mitotic cyclins by APC/CFzr. Polyploidization is also known
to play a role in wound healing in the mammalian corneal
endothelium, heart and keratinocytes (Werner et al., 2007; Losick
et al., 2013, 2016; Trakala and Malumbres, 2014; Trakala et al.,
2015; Losick, 2016; Gandarillas et al., 2019; Grendler et al.,
2019). Polyploid fat body cells of the Drosophila pupa and wax
moth larvae respond to wounding by migrating to lesion sites
and forming a “plug” to prevent infection by maintaining the
epithelial barrier (Rowley and Ratcliffe, 1978; Franz et al., 2018).

Endoreplication has also been implicated in alternate modes
of regeneration and response to cell loss. The liver remains
best studied in this context as well in mammals, but recent
studies have shown that polyploidization occurs in renal tubular
epithelial cells in response to ischemic damage (Melchiorri
et al., 1993; Lazzeri et al., 2018; Matsumoto et al., 2020).
Other examples of endocycling in response to cell loss include
the epicardium of the zebrafish heart (Uroz et al., 2019). In
Drosophila, the enterocytes of the intestinal epithelium, the
follicle cells of the ovary and the main cells of the accessory gland
can cope with induced cell death by engaging a compensatory
cellular hypertrophy or endocycle program to maintain tissue
size and homeostasis (Tamori and Deng, 2013; Edgar et al., 2014;
Shu et al., 2018; Øvrebø and Edgar, 2018; Box et al., 2019). In
the fly optic lobe, where increase in polyploidy is accompanied
by a steady loss of diploid cells, polyploidization may serve a
compensatory role by enabling neurons to form more synaptic
connections to compensate for cell loss to maintain visual acuity
(Nandakumar et al., 2020).

DNA Damage Resistance and Repair
One additional benefit of polyploidy is resistance to DNA damage
conferred by the number of copies of the genome–somatic
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mutations in one copy of a gene will not greatly impact the
capacity of the cell to function since it will have many other copies
of the genome. For over 80 years, scientists have observed that
polyploid cells are able to endure and survive DNA damage better
than diploid cells (Muntzing and Prakken, 1941). The resistance
to DNA damage is attributed, in most part, to the number of
copies of a gene that a polyploid cell has. If a cell has several
“spares”, DNA damage caused by random somatic mutation to
one copy of a crucial gene will not impede the cell’s ability to
function or survive, as it will have more copies of the gene
(D’Alessandro and d’Adda di Fagagna, 2017). The earliest studies
on the resistance polyploid cells show to DNA damage were
performed in the 1940s (Muntzing and Prakken, 1941). These
studies compared the response of whole organism tetraploids to
diploid rye plants and linked the resistance to radiation damage
to ploidy variations.

Functional studies in genetic model organisms have since
furthered our understanding of how some polyploid cells
may resist DNA damage. The most prominent model used
to understand the relationship between polyploidy and DNA
damage resistance has been the various polyploid tissues in
Drosophila. Studies in the follicle cells, fat body as well as
salivary glands in the fly have shown that endocycling cells do
not undergo apoptosis as a result of induced genome instability
(Mehrotra et al., 2008). These polyploid cells can tolerate high
levels of DNA damage, and harbor double strand breaks to their
DNA, but do not undergo apoptosis. Further studies have shown
that low levels of the tumor suppressor protein p53 in these
endocycling cells is responsible for conferring their resistance
to cell death (Mehrotra et al., 2008; Zhang et al., 2014). The
tumor suppressor p53 is responsible for activating the expression
of proapoptotic genes hid, reaper and grim in Drosophila, and
these proteins are in turn upstream of the caspase cascade. Low
levels of p53 in some Drosophila polyploid cells, combined with
chromatin-level silencing of the pro-apoptotic genes confer high
levels of resistance to DNA damage-induced cell death in these
cells (Mehrotra et al., 2008; Zhang et al., 2014; Park et al., 2019).

Studies of cancer cells show that polyploidy can be induced by
DNA damage. This is frequently observed in cancer cells which
lack cell cycle checkpoints. Failure of cytokinesis or premature
exit from the cell cycle without undergoing mitosis often results
in tetraploid cancer cells. Several types of carcinomas with
inactivated p53 or Rb have cells with hyperploid DNA content.
Severe telomere attrition has been implicated in these cases as the
source of DNA damage (Lazzerini Denchi et al., 2006; Davoli and
de Lange, 2011). Polyploid cells are protected from DNA damage,
and polyploidy can be induced by DNA damage. This suggests
that polyploidy has been employed in several types of tissues and
organisms as a robust adaptation to DNA damage.

Our recent work in Drosophila brains indicates that the rate
of accumulation of polyploidy in adults can be exacerbated by
damaging agents such as DNA damage or oxidative stress. Our
experiments demonstrated that exogenous DNA damage leads to
increased polyploidy, and that polyploid cells are protected from
DNA damage induced cell death. Exposure to paraquat and UV
both elicit a DNA damage response in the brain, and result in
increased polyploidy.

Other work in Drosophila has shown that transposon silencing
becomes compromised with age in the brain and has been linked
with conditions of aging, neurodegeneration and decline in brain
function (Abrusán, 2012; De Cecco et al., 2013; Li et al., 2013;
Krug et al., 2017; Chang and Dubnau, 2019; Chang et al., 2019).
This has been termed the “transposon storm” hypothesis of
aging and neurodegeneration. Transposon reactivation has also
recently been observed in aging fly guts, albeit at different levels
(Riddiford et al., 2020). Could transposon reactivation represent
a portion of the endogenous DNA damage that cells in the brain
have to endure and overcome as they age?

Another potential source of DNA damage is DNA damage
associated with high transcriptional activity (Hill et al., 2016;
Langellotti et al., 2016). Highly transcribed loci in the genome
are known to be susceptible to damage as a result of
RNA:DNA hybrid formation. Recent work has shown that
proteins implicated in neurodegenerative diseases such as TDP-
43 are involved in preventing and contributing to repair at
sites of transcription associated DNA damage. Age associated
decline in TDP43 (Herrup and Arendt, 2002; Bonda et al.,
2010a,b), coupled with high levels of transcription in neurons
could contribute to unresolved DNA damage resulting from
transcription-associated DNA lesions.

Transcriptional analysis of the aging fly brain shows age-
associated reduction ATP metabolism, oxidative phosphorylation
and cellular respiration (Nandakumar et al., 2020). This may
indicate compromised mitochondrial function, which is a known
hallmark of aging and a well known source of cellular oxidative
stress (López-Otín et al., 2013). Compromised mitochondrial
function can lead to increased levels of intracellular peroxide and
superoxide radicals which can lead to oxidative DNA damage.
Oxidized bases in DNA may evoke the need for base or nucleotide
excision repair pathways to repair lesions.

CONCLUSION AND FUTURE
PERSPECTIVES

Age-Dependent Accumulation of
Polyploidy–A Common Theme in
Long-Lived Tissues?
In the murine liver and the heart which have been extensively
studied in the context of polyploidy: most cells are diploid
at birth, with polyploidy appearing at the onset of weaning
and acquisition of sexual maturity. A similar pattern of onset
of polyploidization is also observed in the pancreas of mice
and rats, the lacrimal glands of male rats. In addition, an
increase in the proportion of polyploid cells with age has been
observed and reported in the adrenal and thyroid glands (Teir,
1949; Geschwind et al., 1958; Carriere and Patterson, 1962;
Paulini and Mohr, 1975; Gahan, 1977; Gilbert and Pfitzer, 1977;
Roszell et al., 1978; Bohman et al., 1985; Nguyen and Ravid, 2010).
In all of these cases, the proportion of polyploid cells increases
rapidly at first, and then gradually over age.

The liver and lacrimal glands exhibit endocrine dependent
onset of polyploidy, with the liver being dependent on thyroid
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FIGURE 2 | Is cell cycle re-entry both neuroprotective and neurodegenerative? (A) Neurons may enter the cell cycle and increase nuclear DNA content in response to
tissue damage. This polyploid state may be neuroprotective, while further progression in the cell cycle into mitosis or sustained cell cycle re-entry may lead to axonal
fragmentation and neurodegeneration. (B) We forced sustained cell cycle re-entry in postmitotic PDF neurons of the Drosophila brain and found this led to axonal
fragmentation (white arrows) and degeneration of these neurons in the adult brain, abrogating circadian rhythm regulation. Data from Grushko and Buttitta (2015).

and thymus function, and the lacrimal glands, on male gonads
for polyploidization. The liver shows diet-dependent increase
in polyploidy levels: rats on a restricted diet showed lower
levels of accumulated polyploidy whereas rats feeding ad libitum
showed higher levels of polyploidy accumulation with age,
suggesting that the polyploidization of the liver is dependent on
metabolic need and adaptive in nature (Paulini and Mohr, 1975;
Enesco et al., 1991).

Similarly, observations of polyploidy and binucleation in
cardiomyocytes have been made in several organisms (Brodsky
et al., 1991, 1994; Hirose et al., 2019; Derks and Bergmann,
2020; Gan et al., 2020). Recent work has linked the onset of
polyploidy to endocrine cues and show that the polyploidy is
also marked by a metabolic shift from glycolysis to oxidative

phosphorylation upon polyploidization (Hirose et al., 2019).
Induced polyploidy in zebrafish hearts results in reduced
regenerative capacity (González-Rosa et al., 2018). Further,
binucleate cells and polyploidy increase with age as well as
in diseased hearts (Clubb et al., 1987; Dzau and Gibbons,
1988; Lombardi et al., 1989; Brodsky et al., 1994; Derks and
Bergmann, 2020). This has led to the prevailing notion that
polyploidization in the heart is generally not beneficial. The
current opinion in the cardiology field that binucleation directly
hampers cardiac regeneration potential linking the lack of
binucleation or polyploidization with regenerative capacity may
be incomplete. Adult mammals and birds (endotherms) show
cardiac polyploidy while amphibians and teleosts (ectotherms)
do not (Derks and Bergmann, 2020). While most studies
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view polyploidization in the heart simply as a loss of regenerative
potential, the idea that perhaps the acquisition of polyploidy,
instead, is an adaptation to endothermic conditions and oxidative
stress warrants further inquiry. Cardiomyocytes and neurons are
among the longest lived cells in a mammalian body, perhaps
polyploidization may underlie their longevity?

Cell Cycle Re-entry and
Neurodegeneration
A large body of work over the last two decades has drawn a
link between cell cycle re-entry and neurodegeneration. The first
studies describing this showed increased immunostaining for
cell cycle proteins in conditions of neurodegeneration such as
Alzheimer’s disease (AD) or AD models (Yang et al., 2006; Herrup
and Yang, 2007; Khurana and Feany, 2007; Rimkus et al., 2008;
Chen et al., 2010; Moh et al., 2011; Herrup, 2012; Frade and
Ovejero-Benito, 2015). Since then, multiple models have been
developed and several groups have corroborated this finding:
brains exhibiting neurodegeneration also have cells that express
cell cycle genes and proteins associated with the cell cycle. An
enduring hypothesis emerged: that cell cycle re-entry in neurons
is aberrant, and a marker of neurodegeneration including in
human. Neurodegeneration is also marked by apoptosis and loss
of neurons. The most common conclusion is that aberrant cell
cycle re-entry causes cell death in neurons which, in turn, results
in neurodegeneration. This hypothesis could also explain the
appearance of neurons entering the cell cycle and bi-nucleate
neurons even in pre-clinical cases of Alzheimer’s disease (Nagy,
1999, 2000; Zhu et al., 2008).

Markers of cell cycle re-entry have been observed in several
other neuropathologies, including down’s syndrome (McShea
et al., 1999), vascular dementia (Pelegrí et al., 2008), Huntington’s
disease (Ranganathan and Bowser, 2003; Liu et al., 2015) and
amyotrophic lateral sclerosis (ALS) (Ranganathan and Bowser,
2003; Liu et al., 2015; Manickam et al., 2018, 2020). In addition,
neuronal cell cycle protein expression has been observed upon
induction of iron toxicity (McShea et al., 1997; Wen et al.,
2004), ischemia (Park et al., 2000; Marathe et al., 2015), and
excitotoxicity (Chow et al., 2019; Iqbal et al., 2020). Altered
metabolism and endocrine function have also been implicated
in aberrant cell cycle re-entry in neurons (Atwood and Bowen,
2015). These studies suggest that cell cycle re-entry in the
mammalian brain may be a common response to a plethora of
acute as well as chronic neurological stressors.

Is cell cycle re-entry associated with neurodegeneration always
deleterious? Most studies published in the past two decades
argue that cell cycle re-entry leads to cell death. However
additional S-phase entry in differentiating neurons is not always
associated with cell death (Ferguson et al., 2002; MacPherson
et al., 2003). An alternate hypothesis is that cell cycle re-entry
in neurons is not a cause, but rather a consequence of cell
loss. Consistent with this hypothesis, our work in Drosophila
has shown that neurons that undergo cell cycle re-entry and
become polyploid are protected from cell death (Nandakumar
et al., 2020), indicating that there are contexts where cell cycle re-
entry in neurons is protective (Ippati et al., 2021). Congruent with
our findings, a recent study using live imaging and fluorescent
cell cycle reporters in the mouse hippocampus has shown that
cell cycle entry in mature neurons protects cells from amyloid-
beta toxicity and resultant cell death (Ippati et al., 2021). One
possibility is that cell cycle re-entry that proceeds into mitosis
leads to neurodegeneration (Ruggiero et al., 2012), while partial
cell cycle re-entry is neuroprotective (Figure 2).

Currently the relationship between neurodegeneration-
associated cell cycle re-entry and neuronal polyploidy remains
unclear. Are these distinct phenomena? The inherent cellular
diversity of the mammalian brain, the diversity of approaches
and conditions used in the different studies cited make this
a challenging question to address. Future studies using a
combination of quantitative DNA content measurements,
modern imaging techniques and genetically tractable model
systems will shed light on the relationship between neuronal
polyploidization and neurodegeneration.
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