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Lung adenocarcinoma (LUAD) is the most common malignancy, leading to more than 1
million related deaths each year. Due to low long-term survival rates, the exploration of
molecular mechanisms underlying LUAD progression and novel prognostic predictors is
urgently needed to improve LUAD treatment. In our study, cancer-specific differentially
expressed genes (DEGs) were identified using the robust rank aggregation (RRA)
method between tumor and normal tissues from six Gene Expression Omnibus
databases (GSE43458, GSE62949, GSE68465, GSE115002, GSE116959, and
GSE118370), followed by a selection of prognostic modules using weighted gene co-
expression network analysis. Univariate Cox regression, least absolute shrinkage and
selection operator (LASSO), and multivariate Cox regression analyses were applied
to identify nine hub genes (CBFA2T3, CR2, SEL1L3, TM6SF1, TSPAN32, ITGA6,
MAPK11, RASA3, and TLR6) that constructed a prognostic risk model. The RNA
expressions of nine hub genes were validated in tumor and normal tissues by RNA-
sequencing and single-cell RNA-sequencing, while immunohistochemistry staining from
the Human Protein Atlas database showed consistent results in the protein levels.
The risk model revealed that high-risk patients were associated with poor prognoses,
including advanced stages and low survival rates. Furthermore, a multivariate Cox
regression analysis suggested that the prognostic risk model could be an independent
prognostic factor for LUAD patients. A nomogram that incorporated the signature and
clinical features was additionally built for prognostic prediction. Moreover, the levels of
hub genes were related to immune cell infiltration in LUAD microenvironments. A CMap
analysis identified 13 small molecule drugs as potential agents based on the risk model
for LUAD treatment. Thus, we identified a prognostic risk model including CBFA2T3,
CR2, SEL1L3, TM6SF1, TSPAN32, ITGA6, MAPK11, RASA3, and TLR6 as novel
biomarkers and validated their prognostic and predicted values for LUAD.
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INTRODUCTION

Lung cancer—with 1,800,000 new lung cancer cases worldwide
each year—is the most malignant cancer in males and females
(Torre et al., 2015; Sung et al., 2021). Lung adenocarcinoma
(LUAD), the most common histological subtype of non-small-
cell lung cancer, accounts for approximately 40% of lung cancer
patients. Although significant strides have been made in recent
decades, including surgical resection, chemotherapy, radiation
therapy, and immune-based therapies, the long-term survival
rate of LUAD patients remains unsatisfactory (Walder and
O’Brien, 2017). One possible reason is that only less than 25% of
LUAD patients harbor druggable molecular mutations, including
EGFR, BRAF V600E, MET, and ALK, resulting in there being no
possibility of the receipt of the targeted therapy for the majority
of LUADs (Cancer Genome Atlas Research Network, 2014; Singal
et al., 2019; Cavagna et al., 2021; Nassar et al., 2021). Currently, an
improved understanding of the molecular mechanisms involved
in tumorigenesis and the exploration of biomarkers are essential
to improve the survival rates of LUAD patients.

Recently, many biomarkers have been reported as playing
a critical role in oncogenicity and providing potential options
for targeted therapies (Xie et al., 2019; Hwang et al., 2020).
Complement C7, a newly detected tumor suppressor, has been
revealed to be highly associated with clinical features and
immune infiltration levels, presenting a strong therapeutic
potential for prostate cancer treatment (Chen et al., 2020a).
Furthermore, acetyl-CoA acetyltransferase inhibits the
proliferation and migration of clear cell renal cell carcinoma
cells in vitro and has been validated as a prognostic and
progression biomarker via significant correlation with overall
survival (OS) and disease-free survival rates (Chen et al.,
2019). In addition, it was uncovered a nine-gene signature
comprising MET, KLK10, COL17A1, CEP55, ANKRD22,
ITGB6, ARNTL2, MCOLN3, and SLC25A45 has been
identified as predicting the survival of pancreatic cancer
(Wu M. et al., 2019), providing possible therapies. Hence,
it is urgent to discover molecular markers highly associated
with survival to contribute to improving the effect of targeted
therapeutic approaches.

In this study analyzing the gene expression profiles of six
Gene Expression Omnibus (GEO) datasets, we identified 1,219
differentially expressed genes (DEGs) between LUAD tumors
and normal tissues. A weighted gene co-expression network
(WGCNA) network analysis was conducted to explore the
module related to clinical traits. Univariate Cox regression,
least absolute shrinkage and selection operator (LASSO), and
multivariate cox regression analyses revealed nine key genes
highly associated with the LUAD prognosis. Moreover, a
prognostic risk model was built on hub genes levels, acting as
an independent factor for LUAD prognosis. It was indicated
that the risk model and nine hub genes were correlated with
immune cell infiltration. Additionally, potential small molecular
drugs were detected for the possible targeted therapy. Thus, our
findings suggested a prognostic risk model including CBFA2T3,
CR2, SEL1L3, TM6SF1, TSPAN32, ITGA6, MAPK11, RASA3,
and TLR6 serves as a novel biomarker and uncovered their

prognostic and predictive values to provide molecular evidence
of new potential clinical strategies for LUAD.

MATERIALS AND METHODS

Collection of Data
The LUAD RNA expression profile and corresponding clinical
characteristics were obtained from The Cancer Genome Atlas
(TCGA) (Tomczak et al., 2015). Specifically, our work contained
585 LUAD samples and 594 RNA-sequencing data. Datasets
met the following criteria were eligible: (1) the microarray data
should include mRNA; (2) datasets included the data from
human LUAD and adjacent normal tissues; (3) a minimum of 5
pairs of tissues was enrolled. Meanwhile, six eligible microarray
datasets [GSE43458 (Kabbout et al., 2013), GSE62949 (Mansfield
et al., 2015), GSE68465 (Director’s Challenge Consortium for
the Molecular Classification of Lung et al., 2008), GSE115002
(Cui et al., 2019), GSE116959 (Moreno Leon et al., 2019),
and GSE118370 (Xu et al., 2018)] were obtained from GEO
databases for the expression of mRNA in LUAD patients. Single-
cell transcriptome file of GSE149655 was obtained from GEO
database (Dost et al., 2020).

Identification of Robust Differentially
Expressed Genes
The R package “limma” was utilized to normalize the data and
analyze DEGs based on the series matrix files of datasets (Ritchie
et al., 2015). Six GSE datasets were then combined and filtrated
by a robust rank aggregation (RRA) (Kolde et al., 2012), and
DEGs met the criteria of |log 2-fold change (FC)| > 0.8 and
FDR (False Discovery Rate) -adjust P value <0.05. The R package
“OmicCircos” was applied to visualize the locations of DEGs in
the chromosome. Moreover, “Seurat” package in R was used for
quality control, statistical analysis, and exploration of the single-
cell RNA-seq data. The batch effect from studies was removed
with regularized negative binomial regression by the “Seurat”
package (Butler et al., 2018). Non-linear dimensional reduction
was performed with the UMAP method. Cluster biomarkers were
found by the “Seurat” package.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Analyses
We performed gene ontology (GO) enrichment analysis
comprised of biological process (BP), cellular components (CC),
molecular function (MF), and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis for DEGs to explore the
high-level functions and utilities of the biological system by using
the R package “clusterProfiler” (Harris et al., 2004; Kanehisa
et al., 2016).

Weighted Gene Co-expression Network
and Key Module Identification
We selected the top low p-value 4000 genes based on the
results of RRA to construct a co-expression network with the
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weighted gene co-expression network (“WGCNA”) package in
R, determining the clinical trait–related modules and hub genes
among the DEGs. The samples were clustered by a hierarchical
clustering after outliers were eliminated at the threshold of 90
and minimal number of samples were 50. A soft-threshold power
with a scale-free R2 above 0.9. The unsigned network was built
with blockwiseModules function with “WGCNA” package, which
was set the soft-threshold power as 4, cut height as 0.25, and the
minimal module size as 30 for network construction and module
detection. The module with the highest correlation with LUAD
was considered the key module. Hub genes were analyzed with
softConnectivity function by “WGCNA” package in R software.

Construction and Validation of Hub
Genes and the Prognostic Model
A univariate regression analysis was performed to identify
the potential prognostic genes. To detect key genes for the
construction of a prognostic model, glmnet from the R software
package was used for LASSO, and multivariate regression analysis
were employed. The coefficient was analyzed by the survival
coxph and step function of “survival” package in R. The risk
scores for LUAD patients were calculated with the mRNA levels
weighted by the estimated regression coefficient in the multiple
Cox regression analysis. Meanwhile, univariate and multivariate
regression analyses were applied to determine the independent
prognostic factors for LUAD patients. A receiver operating
characteristic (ROC) analysis was used to estimate the accuracy
and clinical utility of the model for prognosis.

Validation of Protein Expressions of Hub
Genes
To detect the protein expression of the hub genes, the
Human Protein Atlas (HPA) database provided the

immunohistochemistry results for LUAD tumors and
normal tissues.

Mutation Profiles
The cBio cancer genomics portal (cBioPortal1) is a tool that
analyzes genomic alterations from various cancer samples
(Cerami et al., 2012). We investigated the mutation landscape
of genes in LUAD.

Construction and Evaluation of a
Predictive Nomogram
Nomogram and calibrate curves were established with the “rms”
package in R software to identify independent predictive factors.
The validation of the sensitivity and specificity of the nomogram
in predicting OS was detected by the ROC curve analysis.

Correlation Between Gene Expression
and Immune Cell Infiltration
The tool Cell-type Identification By Estimating Relative Subsets
Of RNA Transcripts (CIBERSORT) was applied to investigate the
correlation between these hub genes and 22 immune cells. We
examined the correlation between expression of the hub genes
and tumor-infiltrating immune cells by TIMER2, which included
different types of cancer samples accessible in the TCGA cohort.

Identification of Small Molecular Drugs
Connectivity Map (CMap) was applied to access molecule drugs
highly associated with certain diseases (Lamb et al., 2006). The
small molecule drugs, meeting the criteria of |mean| ≥ 0.40,
instances (n) ≥ 5, and P < 0.05, were considered as potential
treatments for LUAD patients.

1http://cbioportal.org
2https://cistrome.shinyapps.io/timer/

FIGURE 1 | The workflow of this study.
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TABLE 1 | Characteristics of the included datasets.

Series
accession ID

Country Number of samples Analyzed
genes

Platform
ID

Tumor Normal

GSE43458 United States 80 30 23305 GPL6244

GSE62949 United States 28 28 15562 GPL8432

GSE68465 United States 442 14 12548 GPL96

GSE115002 China 52 52 21752 GPL13497

GSE116959 France 57 11 32077 GPL17077

GSE118370 China 6 6 21653 GPL570

Statistical Analysis
All the values were presented as means ± the standard deviation
(SD). The t-test together with a one-way analysis of variance was
applied to assess the differences in the two groups. A value of
P < 0.05 was considered a significant difference. All calculations
were performed using R software.

RESULTS

Identification and Chromosome
Locations of DEGs
After reviewing the GEO database, six eligible microarray
datasets (GSE43458, GSE62949, GSE68465, GSE115002,

GSE116959, and GSE118370) were included in our study, and
the workflow is shown in Figure 1. The main characteristics
of included GEO datasets are summarized in Table 1. There
were 665 LUAD and 141 normal tissues analyzed in our work
to explore the DEGs. Based on the results of the RRA analysis
with |log 2-fold change (FC)| > 0.8 and adjust P value < 0.05,
1,219 significant DEGs, including 496 upregulated and 723
downregulated, were identified (Supplementary File 1 and
Supplementary Figure 1). SPINK1 ranked first among all
upregulated genes (P = 2E-17, adjusted P = 8.69E-13), while
TMEM100 (P = 1.42E-14, adjusted P = 3.45E-10) was the most
significant downregulated gene in LUAD tissues. Moreover,
the top 20 upregulated and downregulated DEGs from the six
datasets were shown on a heatmap (Figure 2A).

The top 50 upregulated and downregulated genes were
selected to visualize their expression patterns and chromosomal
locations (Figure 2B). The top five upregulated genes (SPINk1,
MMP1, CXCL13, SPP1, and MMP12) were located in
chromosomes 5, 11, 4, 4, and 11. Meanwhile, the top five
downregulated genes (TMEM100, SLC6A4, BCHE, PCOLCE2,
and TNNC1) were distributed in chromosomes 17, 17, 3, 3, and 3.

Enrichment Analysis of DEGs
The biological functions of DEGs were explored using
GO annotation. Enriched BPs were extracellular structure
organization, extracellular matrix organization, renal system
development, urogenital system development, and kidney

FIGURE 2 | Identification and chromosomal positions of DEGs in the integrated microarray analysis. (A) Heatmap showed the top 20 upregulated and
downregulated DEGs in GEO series accessions. Each row denoted one DEG and each column represented one dataset. The color changed from red to blue
indicated the dysregulation from up to down. The numbers in the box standed for logarithmic fold change; (B) Circos plot of expression patterns and chromosomal
positions of top DEGs. The outer circle represented chromosomes, and lines coming from each gene pointed to their specific chromosomal locations. GSE43458,
GSE62949, GSE68465, GSE115002, GSE116959, and GSE118370 were presented from the outside to the inside. The red lines in the inner layer indicated
adjusted P-value of each gene. According to adjusted P, the top five up-regulated genes (red) and the top five down-regulated ones (blue) were connected with red
and blue lines in the center of the Circos plot.
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development (Figure 3A). Concerning CC, there were collagen-
containing extracellular matrix, collagen trimer, apical plasma
membrane, the apical part of the cell, and the cell-cell junction
(Figure 3B). In terms of MF, the DEGs were enriched in
glycosaminoglycan binding, heparin binding, extracellular
matrix structural constituent, sulfur compound binding, and
extracellular matrix structural constituent conferring tensile
strength (Figure 3C). Additionally, enriched KEGG pathways
were protein digestion and absorption, ECM (extracellular

matrix) -receptor interaction, cytokine-cytokine receptor
interaction, cell adhesion molecules, and viral protein interaction
with the cytokine and cytokine receptor (Figure 3D).

WGCNA and Key Module Identification
To detect the key modules highly associated with clinical traits
of LUADs, a WGCNA was conducted on the TCGA-LUAD
dataset incorporating the DEGs (Figure 4A). By setting the
soft-threshold power as 4 (scale-free R2 = 0.94, slope = −1.51;

FIGURE 3 | Functional enrichment analysis of top 300 DEGs. (A) BP of GO analysis; The outer circle was a bar plot where the height of the bar indicated the
significance of GO terms. The inner ring showed a scatter plot of the expression of DEGs in each enriched gene ontology term; (B) CC of GO analysis, (C) MF of GO
analysis; (D) Top 5 enriched KEGG pathways for DEGs.
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FIGURE 4 | Identification of key modules associated with clinical traits in the TCGA-LUAD dataset by WGCNA. (A) Clustering dendrograms of samples; (B) Analysis
of the scale-free fit index and the mean connectivity for various soft-thresholding powers; (C) Checking the scale-free topology when β = 4; (D) Dendrogram of all
DEGs clustered with dissimilarity measure based on topological overlap; (E) Heatmap of the correlation between module eigengenes and clinical traits. Each row
denoted a module eigengene, each column represented a clinical trait and each cell contained the correlation coefficient and P-value; (F) Gene significance in
different modules (bottom); (G) Scatter plot of genes in yellow module.

Figures 4B,C). A total of 30 modules were acquired from
the co-expression network after merging similar modules
according to a cut height of 0.25 (Figure 4D). According
to a heatmap of module–trait correlations, we considered
that the yellow module containing 287 DEGs was the most
negatively correlated with clinical traits, particularly including

the stage (correlation coefficient = −0.22, P = 6E−05) and
T (correlation coefficient = −0.32, P = 2E−09) (Figure 4E
and Supplementary File 2). Additionally, the module
significance of the yellow module was higher compared
with other ones, implying there was a significant correlation
with T (Figure 4F). Moreover, the correlation and p-value
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between the module membership and gene significance
values were 0.79 and 1.7E-62, respectively (Figure 4G).
Thus, the yellow module was the most negative module with
clinical traits.

Functional Enrichment Analysis of the
Yellow Module
To further explore the biological functions of DEGs
from the yellow module, GO annotation was conducted.

The top BP enrichment terms were “lymphocyte
differentiation,” “B cell differentiation” and “B cell activation”
(Figure 5A). Concerning CC were “external side of plasma
membrane,” “recycling endosome” and “immunological
synapse” (Figure 5B). In terms of MF, the DEGs were
“enriched in NAD + nucleotidase,” “cyclic ADP-ribose
generating,” “NAD(P) + nucleosidase activity” and
“NAD + nucleosidase” (Figure 5C). Additionally, KEGG
pathways showed that DEGs were highly enriched in
the chemokine signaling pathway, followed by the B cell

FIGURE 5 | Functional enrichment of the yellow module. (A) Bubble plots of BP of GO analysis; (B) Bubble plots of CC of GO analysis, (C) Bubble plots of MF of GO
analysis, (D) Bubble plots of KEGG pathways.
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FIGURE 6 | Establishment and assessment of the prognostic risk model. (A) Forest plot of 9 hub genes related to the survival of LUADs analyzed by univariate cox
regression; (B) Forest plot of 9 hub genes analyzed by multivariate cox regression (C) The Kaplan-Meier curve of the prognostic model; (D) The ROC curve for
assessing the reliability of the prognostic model; Distribution of risk score (E), survival status (F), and the 9 genes expression (G).
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receptor signaling pathway and cytokine-cytokine receptor
interaction (Figure 5D).

Establishment of a Prognostic Risk
Model
To more ideally reveal the prognostic value of DEGs from
the yellow module in LUAD, the correlation of the mRNA
levels and the prognosis was explored after a univariate Cox
regression analysis with the cut-off criteria of P < 0.05,
resulting in 64 DEGs with P < 0.05 from the yellow module
(Figure 6A). The prognosis-related genes were further analyzed
with a LASSO Cox regression algorithm from the expression
of TCGA-LUAD and normal tissues (Supplementary Figure 2).
To further select the DEGs with the greatest prognostic value,
a multiple stepwise Cox regression was conducted to determine
their importance, and nine key genes (CBFA2T3, CR2, SEL1L3,
TM6SF1, TSPAN32, ITGA6, MAPK11, RASA3, and TLR6) were
obtained consisting of the prognostic signature (Figure 6B).
The LUAD patients from TCGA were divided into high-
and low-risk groups based on the median level of the risk

score. The formula of calculating risk scores was as follows: -
0.283625763 ∗ CBFA2T3 – 0.162111327 ∗ CR2 – 0.231743871
∗ SEL1L3 -0.527168072 ∗ TM6SF1– 0.614785144 ∗ TSPAN32 –
0.169271203 ∗ ITGA6+ 0.528539595 ∗ MAPK11+ 0.323227079
∗ RASA3+ 0.3453755 ∗ TLR6. A Kaplan–Meier survival analysis
from this model detected that the patients in the high-risk group
resulted in poor prognostic outcomes compared with those in the
low-risk group (Figure 6C). To determine the predictive accuracy
of the 5-year OS ROC curves were built, and the area under the
curve (AUC) value was 0.764 (Figure 6D). Risk score, survival
status, and each gene in the formula in LUAD patients were
additionally analyzed (Figures 6E–G). To validate the reliability
of the risk model from the TCGA-LUAD, we determined the
model with a GSE68465 dataset, which suggested that patients
with high-risk scores suffered from higher mortality rates than
low-risk score patients (Supplementary Figure 3).

Validation of Hub Genes
The expression of CBFA2T3, CR2, ITGA6, MAPK11, TM6SF1,
and TSPAN32 were significantly higher LUAD samples

FIGURE 7 | Verification of the expression and genetic alterations of 9 hub genes in tumor and normal tissues. (A) The boxplot showed the expression of 9 hub
genes between tumor and normal tissues in TCGA database; (B) The protein levels of hub genes were presented by immunohistochemical staining analysis from
Human Protein Atlas database; (C) A visual summary across a set of LUAD from TCGA showed the genetic alterations connected with the 9 hub genes which were
altered in 60 (10.66%) of 536 sequenced patients.
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compared to normal tissues, while no difference existed in
the levels of RASA3, SEL1L3, and TLR6 between LUAD
and normal tissues (Figure 7A). The correlation of the
expression of hub genes and the tumor-node-metastasis (TNM)
stage is shown in Supplementary Figure 4. Additionally,
immunohistochemistry staining obtained from HPA
determined the consistent protein levels of eight other hub
genes without TLR6 due to the lack of staining on HPA
(Figure 7B). In order to analyze genomic alternations,
we measured the alteration rates based on the cBioPortal.
There were 10.66% (60/563) genetic alterations totally,
and CR2 was the most common alteration (3%) in LUAD
patients (Figure 7C).

To understand heterogeneous cell populations and measure
the cell-to-cell expression variability of thousands of genes,
single-cell RNA-sequencing has emerged as a powerful method
to perform transcriptome profiling at a single-cell level. We
downloaded and analyzed the single-cell transcriptome data
from two patients with LUAD from GSE149655. Cluster-
specific genes were used to annotate cell types with classic
markers described in previous studies (Lambrechts et al.,
2018; Chen et al., 2020b): epithelial (CAPS, KRT8, and
KRT18) and endothelial (CLDN5, FCN3, and RAMP2).
The analysis identified different clusters of tumor and
non-tumor cells (Figure 8A), epithelial and non-epithelial

(Figure 8B), and endothelial and non-endothelial cells
(Figure 8C). Notably, the expression of nine key genes in
the epithelial cells (Figure 8D) and epithelial cells from tumor
and non-tumor (Figure 8E) cells were nearly consistent
with the levels of mRNA by RNA-sequencing from TCGA
(Figure 7A). The expression of each gene is presented in
Supplementary Figure 4.

Prognostic and Clinicopathological
Differences Between High-Risk and
Low- Groups
A heatmap was presented to reveal the differences describing
clinicopathological features and the levels of nine genes.
Strikingly, the high-risk group was strongly correlated with
immunoscore, stromalscore, the M, N, T, TNM stage, and status
(Figure 9A). The univariate Cox analysis indicated the TNM
stage, T, N, M, and risk score were significantly associated with
survival (Figure 9B). However, the multivariate Cox regression
model showed the risk score (P < 0.001, HR = 1.319, 95%
CI = 1.205–1.444) was the only independent prognostic factor
for LUAD (Figure 9C). Meanwhile, the association between
the risk scores and several clinicopathological features were
explored. Patients with an advanced TNM stage (P = 1.1E-0.4),
T (P = 0.003) and N (P = 2.328E-0.4) tended to have

FIGURE 8 | Validation of the expression by single cell RNA-seq. (A) Clustering of tumor and non-tumor cells using Uniform Manifold Approximation and Projection
(UMAP); UMAP showing the epithelial and non- epithelial cells (B); endothelial and non-endothelial cells (C); The expression of 9 hub genes in the epithelial cells (D),
and epithelial cells (E) from tumor and non-tumor.
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FIGURE 9 | Clinical significance and the expression of hub genes in risk groups. (A) The expression of 9 hub genes in the Heatmap and clinicopathologic features of
high- and low-risk groups; (B) Univariate Cox analysis was used to evaluate the prognostic value of common clinical parameters and hub genes; (C) Multivariate Cox
analysis was conducted to evaluate the prognostic value of common clinical parameters and hub genes; (D) Distribution of risk scores stratified by stages, T, N, and
M; (E) the immunoscore in high- and low-risk groups (D). *p < 0.05, **p < 0.01, and ***p < 0.001.

higher risk scores (Figure 9D). Strikingly, the immune scores
were significantly higher for the high-risk group than those
of the low-risk group (Figure 9E), suggesting that the risk
model might play a vital role in the process of the tumor
microenvironment.

Nomogram Construction
To establish a clinical strategy to predict the survival probability
with LUAD patients, a nomogram was created based on
the TCGA cohort to evaluate the probability of the 3-
and 5-year OS. The predictors of the nomogram contained
seven prognostic factors including stage, T, N, M, gender,
age, and risk score (Figure 10A). The calibration curves
for the 3-year and 5-year OS rates uncovered favorable
consistency between the actual observation and predictive
value (Figures 10B,C). Furthermore, the prediction accuracy

of the nomogram was assessed using the ROC curve. The
results revealed that the AUCs of the nomogram score
for 3-year and 5-year were 0.764 and 0.701, respectively
(Figures 10D,E). After a comprehensive assessment of prognostic
value, the risk model was considered as predicted biomarkers
for LUAD patients.

Correlation Between Levels of Hub
Genes and Immune Cell Infiltration
In order to determine the role of risk scores in tumor
microenvironments, we finally explored the association between
risk scores and 22 immune cells. Notably, activated CD4 memory
T cells, resting NK cells, M0 macrophages, M1 macrophages, and
activated mast cells were enriched in the samples of the high-risk
group, while the samples in the low-risk group were significantly
correlated with resting CD4 memory T cells, activated NK
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FIGURE 10 | Nomogram and calibration plots of the prognostic model. (A) Nomogram to predict 1-year, 3-year, and 5-year OS in the TCGA cohort; Calibration plots
of the nomogram to predict OS at 3 years (B) and 5 years (C); ROC curves and AUC for 3-year (D), and 5-year (E) The survival of the nomogram.

cells, monocytes, resting dendritic cells, and resting mast cells
(Figure 11A). Additionally, it was indicated that all nine hub
genes were associated with tumor purity, B cells, CD8 + T cells,

CD4+ T cells, macrophages, neutrophil, and dendritic cells. The
results showed a high correlation with the level of immune cell
infiltration (Figures 11B,C).
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FIGURE 11 | Association of hub genes’ expression with immune infiltration in LUAD. (A) The comparisons of 22 infiltrated immune cells between the high- and
low-risk groups; (B) the correlation of every hub gene and 22 immune cell types. The point size represented P-value and shade of color represented Pearson
correlation index r; (C) The relationship between the hub gene and the infiltration amount of six types of immune cells.
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Strong Therapeutic Potential Shown by
13 Small Molecule Drugs
Highly associated molecule drugs were identified by CMap.
In total, 13 molecule drugs were screened, including
vorinostat, lynestreno, sulfamerazine, amiodarone, cefalexin,
chlorpropamide, tetracycline, Fenbufen, cephaeline, diazoxide,
vincamine, fluocinonide, and josamycin (Table 2), and they were
identified as potential novel drug candidates for LUAD treatment.

DISCUSSION

In our study, we identified 1,219 significant DEGs between LUAD
tumors and normal tissues. Then a WGCNA was built, and nine
hub genes was explored by univariate regression, LASSO and
multivariate regression analysis. Moreover, the prognostic risk
model, acting as an independent factor, was highly correlated
with immune cell infiltration. A prognostic risk model including
CBFA2T3, CR2, SEL1L3, TM6SF1, TSPAN32, ITGA6, MAPK11,
RASA3, and TLR6 serves as a novel biomarker and showed the
prognostic and predictive values for LUAD.

We first analyzed the expression profiles from six high-quality
GEO datasets to explore key genes related to LUAD. The most
upregulated gene SPINK1 has been determined to promote cell
growth and metastasis of LUAD, acting as a novel prognostic
biomarker (Xu et al., 2018; Guo et al., 2019). Meanwhile, the
most downregulated gene TMEM100 is minimally expressed
in non-small cell lung cancer and enhances the sensitivity to
chemotherapy in gastric cancer (Han et al., 2017; Zhuang et al.,
2020), which is a finding highly similar to ours. There was a
similar conclusion with our findings that the top dysregulated
genes are distributed in chromosomes 3 (Song et al., 2019).
After exploring the enrichment of the DEGs in GO and
KEGG pathways, we found that DEGs might correlate with
tumor development. The WGCNA allowed us to identify the
co-expression module associated with clinical traits. In the
module, genes were enriched in lymphocyte differentiation, the
chemokine signaling pathway, and the B cell receptor signaling
pathway, indicating the potential roles in tumor environments.

Based on the univariate Cox regression, LASSO, and
multivariate Cox regression analyses, nine hub genes (CBFA2T3,

TABLE 2 | Potential small molecular drugs for LUAD patients.

Cmap name Mean n Enrichment p Specificity %non-null

Vorinostat −0.553 12 −0.701 0 0.0885 91

Lynestreno 0.435 5 0.774 0.0013 0.0056 80

Sulfamerazine 0.464 5 0.772 0.00136 0 80

Amiodarone 0.458 5 0.768 0.0015 0.0069 80

Cefalexin 0.415 5 0.748 0.00236 0 80

Chlorpropamide 0.442 6 0.667 0.00381 0 83

Tetracycline −0.525 5 −0.708 0.00457 0.0189 80

Fenbufen 0.402 6 0.611 0.01087 0 66

Cephaeline 0.439 5 0.619 0.02373 0.4795 80

Diazoxide −0.555 5 −0.608 0.02597 0.0427 80

Vincamine 0.423 6 0.539 0.03693 0.162 66

Fluocinonide 0.413 5 0.584 0.03839 0.0746 80

Josamycin −0.401 5 −0.562 0.04908 0.1 60

CR2, SEL1L3, TM6SF1, TSPAN32, ITGA6, MAPK11, RASA3, and
TLR6) were obtained to explore the prognostic value in LUAD.
CBFA2T3 (MTG16), CBFA2/RUNX1 Partner Transcriptional
Co-Repressor 3, has not been clearly studied in lung cancer
(Zhang et al., 2018) although the CBFA2T3-GLIS2 fusion
transcript is well proven as a novel common feature in pediatric
cytogenetically normal acute myeloid leukemia (AML) (Gruber
et al., 2012; Masetti et al., 2013; Smith et al., 2020). In breast
cancer, the expression of CBFA2T3 is lower in normal breast
tissue compared to the primary tumors, consistent with our
finding in the clusters of epithelial and endothelial cells by
analyzing single-cell RNA-sequencing data (Kochetkova et al.,
2002). The receptor for complement C3 (CR2), a receptor for
the Epstein-Barr virus on human B cells and T cells, activates B
lymphocytes (Barel et al., 1995; Wu et al., 2002). Notably, genetic
variations of CR2 were associated with susceptibility to systemic
lupus erythematosus type 9 (SLEB9), while the alteration rates of
CR2 was highest as much as 3% for LUAD patients among nine
hub genes in our work. The suppression of Lin-12-like protein
(SEL1L3), has been demonstrated as a member of a prognostic
signature and involved in the development of melanoma and
immune response (Mei et al., 2021). TM6SF1, transmembrane 6
Superfamily Member 1, has been found to be a DNA promoter
hypermethylation marker in breast cancer (de Groot et al., 2014,
2016). Meanwhile, the expression of TM6SF1 in AML samples
has been much higher than that in normal samples (Cheng et al.,
2020). TSPAN32 has been found as a potential tumor suppressor
in Wilms tumors, while the expression was higher in tumor
samples compared to normal tissues in our study (Charlton et al.,
2015). It has been discovered that higher levels of Integrin alpha
6 (ITGA6) are expressed in the highly invasive pancreatic cancer
cells than in less invasive cells, resulting in a poor prognosis in
pancreatic patients via TCGA (Wu Y. et al., 2019). However,
based on our data, there was no significant difference in the
mRNA levels of ITGA6 between tumor and normal tissues by
TCGA and single-cell RNA-sequencing. Furthermore, there was
a similar observation with our finding that mitogen-activated
protein kinase 11 (MAPK11) was highly expressed in metastatic
breast cancer patients and in the breast cancer cell lines (He et al.,
2014). RAS P21 Protein Activator (RASA3) has been determined
to be a novel tumor suppressor with low expression in colorectal
and bladder tumor (Yao et al., 2007; Tang et al., 2014). Of note, we
additionally identified low expression in LUAD tumor samples.
Furthermore, a decrease of TLR6 expression in colorectal tumor
samples has been found compared to normal colon tissues. Thus,
the nine hub genes examined in our study are key biomarkers
in the development and prognosis of cancer, which has been
supported by several previous findings, including on colorectal
cancer, AML, and melanoma.

To further explore the prognostic value of identified genes,
a risk model was established depending on the expression of
key genes. After a comprehensive analysis of clinical features,
the patients in the high-risk group had a less positive overall
survival and had advanced tumor stages, which indicated the
prognostic model was highly reliable for prognosis prediction.
Interestingly, the immune scores were much higher in the
high-risk group. It validated our hypothesis that the risk
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model consisting of nine hub genes might be closely associated
with tumor microenvironments. The nomogram developed in
our study showed an ideal performance in OS prediction at
three and five years.

Increasing attention has been paid to tumor microenvironments,
including immune cell infiltration, in recent decades. We found
that high-risk-score LUAD patients had higher proportions
of activated CD4 memory T cells, resting NK cells, M0
macrophages, M1 macrophages, and activated mast cells,
confirming that the risk model had a regulatory effect on
tumor microenvironments. In addition, all nine hub genes
were highly associated with B cells, CD8 + T cells, CD4 + T
cells, macrophages, neutrophil, and dendritic cells, which
provided a possible use for cancer immunotherapy. Strikingly,
tumor-infiltrating immune cells in lung cancer are likely to be
important determinants of both the prognosis and response
to immunotherapies (Bremnes et al., 2016; Liu et al., 2017;
Muppa et al., 2019). However, the intricate mechanisms of
the new biomarkers and immune cells need to be explored in
further experiments.

Concerning the vital roles of hub genes and the risk model in
the prognosis and prediction of LUAD, we assessed possible small
molecular drugs depending on the expression of genes using
CMap. Vorinostat is a histone deacetylase inhibitor, approved to
treat cutaneous T-cell lymphoma (Olsen et al., 2007; Kim et al.,
2018). Simultaneously, Pembrolizumab plus vorinostat have
demonstrated preliminary antitumor activity in advanced non-
small cell lung cancer and metastatic head and neck squamous
cell carcinomas in clinical trials, which is highly consistent
with our assessment (Gray et al., 2019; Rodriguez et al., 2020).
Although several assessed drugs in our study did not show a clear
effect on previous cancers, there might be a certain value in the
combination of other anti-LUAD drugs.

Nevertheless, several limitations need to be noted in our work.
First, even though we enrolled as many patients as possible
according to the inclusion criteria, more samples may enhance
the confidence levels of our conclusions. Moreover, subsequent
fundamental researches are required to validate and corroborate
the results in vitro and vivo. Third, the interaction between the
nine hub genes and the potential mechanisms in LUAD has not
been explored clearly and should be examined in the future.

CONCLUSION

In summary, we identified nine hub genes highly associated with
the progression of LUAD. A prognostic risk model established

for the nine key genes was validated as an independent factor
for LUAD and highly correlated with immune infiltrating, which
suggested potential guidance for LUAD prognosis and molecular
targeted therapy. However, further biological explorations are
required to prove the functions of the predictive genes in the
progression of LUAD.
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