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A tumor microenvironment (TME) is composed of various cell types and extracellular
components. It contains tumor cells and is nourished by a network of blood vessels. The
TME not only plays a significant role in the occurrence, development, and metastasis of
tumors but also has a far-reaching impact on the effect of therapeutics. Continuous
interaction between tumor cells and the environment, which is mediated by their
environment, may lead to drug resistance. In this review, we focus on the key cellular
components of the TME and the potential strategies to improve the effectiveness of drug
therapy by changing their related factors.

Keywords: tumor microenvironment, cancer-associated fibroblasts, tumor-associated macrophages, drug
therapy, targeted therapy

INTRODUCTION

Tumor microenvironment (TME) refers to the cellular environment in which tumor cells
and cancer stem cells (CSCs) exist. It can directly promote angiogenesis, invasion, metastasis,
and chronic inflammation, and help maintain the stemness of the tumor (Denton et al.,
2018). Different TMEs have not only adverse effects on the occurrence of tumors but also
favorable consequences for patients. The composition of TME includes local stromal cells (such
as resident fibroblasts and macrophages), remotely recruited cells (such as endothelial cells),
immune cells (including myeloid cells and lymphoid cells), bone marrow-derived inflammatory
cells, extracellular matrix (ECM), blood vessels, and signal molecules (Del Prete et al., 2017).
Among them, tumor-associated myeloid cells (TAMCs) also include five different myeloid cell
groups: tumor-associated macrophages (TAMs), monocytes expressing angiopoietin-2 receptor
Tie2 (Tie2 expressing monocytes or TEM), myeloid suppressor cells (MDSCs), and tumor-
associated dendritic cells (Kim and Bae, 2016). Together, they surround tumor cells while
being nourished by a network of blood vessels. The TME plays a key role in the occurrence,
development, and metastasis of tumors. It also has a far-reaching impact on the effect of
therapeutics, and recent studies have shown that targeted the TME is clinically feasible (Table 1).
Non-malignant cells in the TME usually stimulate uncontrolled proliferation of cells and play a
tumor-promoting function in the overall processes of carcinogenesis. In contrast, malignant cells
can metastasize to healthy tissues in other parts of the body through the lymph or circulatory
system (Tu et al., 2014). As TME plays a decisive role in the progress of tumor treatment,
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it is essential to further understand the components associated
with TME in order to provide more precise treatment for
different types of cancer.

CANCER STEM CELLS AND TUMOR
MICROENVIRONMENT

Bonnet and Dick (1997) first confirmed the existence of CSCs in
patients with acute myeloid leukemia and subsequently detected
CSCs in other primary tumor tissues and cell lines (Kinugasa
et al., 2014; Lau et al., 2017). CSCs refer to the subpopulations of
tumor cells present in tumor masses, which are characterized by
tumorigenicity and self-renewal properties (Magee et al., 2012).
There is increasing evidence that CSCs play a key role in tumor
recurrence, metastasis, and therapeutic resistance (Najafi et al.,
2019a). TME induces the interaction between cancer cells and a
variety of tissue cells. The functional characteristics of CSCs are
affected by differentiated cancer cells and activated extracellular
signals mediated by fibroblasts, macrophages, epithelial cells,
endothelial cells, and blood cells, which provide the necessary
growth elements for tumor cells and play an important role in
promoting and maintaining the stemness of CSCs (Rafii et al.,
2002; Byrne et al., 2005; Kopp et al., 2006; Huang et al., 2010).
Recent studies have shown that in addition to changes in proto-
oncogenes, the occurrence and metastasis of tumors are closely
related to their microenvironment.

In the TME, cancer-associated fibroblasts (CAFs) can promote
and maintain the stem cell-like properties of liver cancer
cells through the IL-6/STAT3/Notch signaling pathway (Xiong
et al., 2018). In contrast, TAMs activate STAT3 and the
hedgehog signaling pathway by secreting milk fat globule
surface growth factor 8 and IL-6, thereby affecting the self-
renewal and chemotherapy resistance of CSCs (Jinushi et al.,
2011). Fan et al. (2014) also found that TAMs in liver cancer
promote CSC phenotypes through the induction of epithelial–
mesenchymal transition (EMT) by transforming growth factor
β1 (TGF-β1). Moreover, IL-6 and NO secreted by MDSCs
can activate STAT3 and NOTCH signaling pathways, stimulate
the expression of microRNA101 in CSCs, and promote the
expression of C-terminal binding protein-2 (CtBP2). The CtBP2
protein acts as a transcriptional auxiliary inhibitor factor that
can directly target the core genes of stem cells Nanog and
Sox2, and ultimately lead to the enhancement of the stemness
of CSCs (Cui et al., 2013; Peng et al., 2016). Remarkably,
these microenvironmental factors can also maintain the dryness
of CSCs through Wntβ-catenin, FGFR, and MEK signaling
pathways (Borah et al., 2015; Krishnamurthy and Kurzrock,
2018; Jin, 2020). CSCs can also regulate the expression and/or
secretion of cytokines such as NFAT, NF-κB, and STAT signaling
pathways through SOX2 and other genes, thereby regulating
TME and recruiting TAMs to create an environment for the
further development of tumors (Mou et al., 2015; Zeng et al.,
2018). This undoubtedly supports the close connection between
CSCs and TME. Considering that CSCs play a key role in
the process of tumor occurrence, development, and recurrence,
the microenvironment regulation strategy for the growth of

CSCs is expected to become an effective means of tumor-
targeted therapy.

CANCER-RELATED FIBROBLASTS

Cancer-associated fibroblasts are the most common type of host
cells in the TME. It is now generally accepted that CAFs are
a heterogeneous population with distinct functions which can
serve as positive and negative regulators of tumor progression
(Kalluri, 2016). Under the influence of the microenvironment,
CAFs obtain an activated phenotype that is different from that
of normal fibroblasts. It can promote tumor progression and
regulate the composition of ECM by secreting soluble factors
and interacting with other types of cells (Piccard et al., 2012).
In patients with prostate cancer, CAF in the TME can promote
cell proliferation and sphere formation through paracrine signals,
thus promoting the growth of tumor stem cells. Studies have
confirmed that the presence of a large amount of CAF in
the tumor stroma is associated with poor prognosis in lung,
breast, and pancreatic cancer (Räsänen and Vaheri, 2010). CAF
can promote tumor progression by maintaining the continuous
proliferation and growth of tumor cells at the metastatic site
(Li and Wang, 2011).

Source and Function of CAF
Most activated CAFs originate from resident fibroblasts, which
can recruit and activate many growth factors and cytokines,
such as transforming growth factor β, fibroblast growth factor-
2, and platelet-derived growth factor (PDGF). It has been
found that these growth factors and cytokines are abundant
in TME (Räsänen and Vaheri, 2010). CAFs can also be
derived from bone marrow mesenchymal stem cells (Figure 1),
transforming from resident epithelium or endothelial cells in the
tumor stroma via EMT or endothelial–mesenchymal transition
(EndMT), respectively (Kidd et al., 2012). The functions of
activated CAFs include the synthesis and secretion of ECM
and the release of proteolytic enzymes, such as heparanase and
matrix metalloproteinases (MMPs), leading to ECM remodeling
(Kessenbrock et al., 2010; Wu and Dai, 2017).

Cancer-associated fibroblasts can interact with tumor cells
through direct contact and can also secrete a variety of cytokines
through paracrine methods to promote the occurrence and
development of cancer (Kalluri, 2016; Salimifard et al., 2020).
Orimo et al. (2005) have shown that CXCL12 (stromal cell-
derived factor-1, SDF-1) secreted by CAFs directly stimulates
tumor growth by acting through the cognate receptor, CXCR4,
which is expressed by carcinoma cells. In addition, CAF-secreted
vascular cell adhesion molecule-1 (VCAM-1) also promotes
the proliferation, migration, and invasion of tumor cells by
activating the AKT and MAPK signals of lung cancer cells
(Zhou et al., 2020). Recently, Seino et al. (2018) found that
CAFs can provide a Wnt-producing niche to support the in vivo
growth of the Wnt-deficient pancreatic ductal adenocarcinoma
(PDAC) organoid mode. CAFs are also an important source
of growth factors and cytokines [including hepatocyte growth
factor (HGF), vascular endothelial growth factor (VEGF), PDGF,
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TABLE 1 | Most recent clinical trials of TME targeted therapies.

Target Inhibitors/antibodies Clinical trial phase Reference

Treg cells

PD-1/PD-L1 Nivolumab (PD-1 inhibitor)
Pembrolizumab (PD-1 inhibitor)
Durvalumab (PD- L1 inhibitor)
Atezolizumab (PD- L1 inhibitor)
Avelumab (PD- L1 inhibitor) Cemiplimab
(PD-1 inhibitor)

FDA-approved

CTLA4 Ipilimumab (anti-CTLA4 monoclonal
antibody)

FDA-approved

LAG-3 Relatlimab (anti-LAG-3 mAb)
Eftilagimod alpha (LAG-3Ig fusion
protein)

Phase I/II clinical trial Phase II
clinical trial

NCT01968109 NCT02614833

OX40 MEDI6383 (OX40 agonist) Phase I clinical trial NCT02221960

IDO Navoximod (IDO inhibitor) Linrodostat
mesylate (IDO inhibitor)

Phase I clinical trial Phase III clinical
trial

NCT02048709 NCT03661320

CAFs

MMPs Rebimastat (MMP inhibitor) Phase II clinical trial NCT00040755

CXCR2 Reparixin (CXCR1/2 inhibitor ) Phase II clinical trial NCT01861054

BMS-813160 (CXCR2 antagonist ) Phase I/II clinical trial NCT03496662

AMD3100 (CXCR4 Inhibitor) Phase I/II clinical trial Lecavalier-Barsoum et al., 2018

CXCL12/CXCR4 LY2510924 (CXCR4 antagonist) Phase II clinical trial Phase I clinical
trial Phase II clinical trial

NCT01439568 NCT01837095
NCT02826486

Balixafortide (CXCR4 antagonist)
Motixafortide (CXCR4 antagonist)

TGF-β GC1008 (anti-TGF-β monoclonal
antibody)

Phase II clinical trial NCT01401062

TAMs

CSF-1R PLX3397 (CSF-1R inhibitor) Phase I/II clinical trial NCT01596751

CSF-1R AMG820 (anti-CSF-1R monoclonal
antibody)

Phase I/II clinical trial NCT02713529

Deplete macrophages Zoledronate, clodronate, ibandronate Phase III clinical trial NCT00127205 NCT00009945

TLR7 852A (TLR7 agonist) Imiquimod (TLR7
agonist)

Phase II clinical trial NCT00319748 NCT00899574
NCT00821964

CCR2 PF-4136309 (CCR2 inhibitor) Phase I clinical trial NCT01413022

MDSCs

PDE-5 Tadalafil (PDE-5 inhibitors) Phase II clinical trial NCT00752115

iNOS and arginase NCX4016 (Nitric oxide-releasing aspirin
derivative)

Phase I clinical trial NCT00331786

MDSC differentiation All-trans retinoic acid Inducing Phase II clinical trial NCT00617409

Hypoxia

Hypoxia TH-302 (hypoxia-activated prodrug)
AQ4N (hypoxia-activated prodrug)

Phase III clinical trial Phase I/II
clinical trial

NCT01746979 NCT00394628

ECM

Hyaluronan PEGPH20 (recombinant hyaluronidase) Phase II clinical trial Phase III clinical
trial

NCT01839487 NCT02715804

Tumor vasculatures

VEGFRs, PDGFRs, KIT Sorafenib (tyrosine kinase inhibitor)
Sunitinib (tyrosine kinase inhibitor)

FDA-approved

DLL4 OMP21M18 (anti-DLL4 monoclonal
antibody)

Phase I clinical trial NCT01189968

Notch1 OMP52M51 (anti-Notch1 monoclonal
antibody)

Phase I clinical trial NCT01778439

γ -Secretase MK0752 (γ -secretase inhibitor) Phase I clinical trial NCT00106145

PD-1, programmed cell death-1; PD-L1, programmed death-ligand 1; CTLA4, cytotoxic T lymphocyte-associated antigen-4; LAG-3, lymphocyte activation gene-3; IDO,
indoleamine 2,3-dioxygenase; CAFs, cancer-associated fibroblasts; MMPs, matrix metalloproteinases; SDF-1, stromal-derived factor 1; CXCR, chemokine (C-X-C motif)
receptor; TGF-β, transforming growth factor beta; CSF-1R, stimulating factor-1 receptor; TLR7, Toll-like receptor 7; MDSC, myeloid-derived suppressor cell; PDE-5,
phosphodiesterase-5-inhibitor; ECM, extracellular matrix; VEGFR, vascular endothelial growth factor receptor; PDGFR, platelet-derived growth factor receptor; DLL4,
Delta-like 4.
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FIGURE 1 | Major cellular constituents and matrix component of the TME, including cancer cells, immune cells (T-cells, B-cells, NK cells, dendritic cells, MDSCs,
TAMs), CAFs and ECM. CAF derived from bone marrow mesenchymal stem cells and transform through epithelial–mesenchymal transition (EMT) or endothelial
mesenchymal transition (EndMT) from resident epithelium or endothelial cells (A). When macrophages are exposed to LPS, MAMPs, IL12, TNF, IFNG, or another
TLR agonists, they will transition to M1-like. When exposed to IL4, IL5, IL10, IL13, CSF1, TGFβ1, and PGE2, it will transition to M2-like state (B).

etc.], which can stimulate the growth of tumor cells in vitro
and lead to therapeutic drug resistance (Straussman et al., 2012;
Erez et al., 2013; Paraiso and Smalley, 2013).

Angiogenesis in tumor tissues can provide oxygen and
nutrients for tumor cell metabolism and promote tumor growth
and metastasis. Many studies have shown that CAFs can release
a variety of stimulating factors that promote angiogenesis and
play an important role in the recruitment and proliferation of
tumor vascular endothelial cells and the formation of vascular
sprouts (Benyahia et al., 2017). CAFs promote angiogenesis by

recruiting endothelial progenitor cells (EPCs) into carcinomas,
an effect mediated in part by CXCL12 (Orimo et al., 2005).
CXCL12 can activate the PI3K/AKT signaling pathway in tumor
cells, upregulate the expression of VEGF in tumor tissues,
and promote angiogenesis (Wen et al., 2019). VEGF activates
the main signaling pathway in tumor angiogenesis by binding
to its cognate receptor, VEGFR (Claesson-Welsh and Welsh,
2013). Mirkeshavarz et al. (2017) found that CAFs can secrete
interleukin-6 (IL-6) and VEGF to induce angiogenesis in oral
cancer, and that IL-6 can induce the secretion of VEGF in
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CAF cell lines. CAF can also release active growth factors
from the ECM by expressing MMPs, which indirectly promotes
angiogenesis (Najafi et al., 2019b) and serves as one of the sources
of MMP9 (Boire et al., 2005) and MMP13 (Vosseler et al., 2009).
Both these substances have been shown to release VEGF from the
ECM to increase angiogenesis in tumors (Lederle et al., 2010).

Cancer-associated fibroblasts interact with tumor cells
through inflammatory signals, thereby affecting tumor cell
migration and invasion. The CAF-mediated CXCL12/CXCR4
axis plays a key role in tumor cell proliferation, invasion, and
migration. The CXCL12/CXCR4 axis can activate the MEK/ERK,
PI3K/AKT, and Wnt/β-catenin pathways to promote EMT,
thereby promoting tumor invasion and metastasis (Guo et al.,
2016; Zhou et al., 2019; Mortezaee, 2020). It also activates the
PI3K, MAPK, and ERK1/2 signaling pathways, promotes the
secretion of MMPs, reduces the adhesion of tumor cells, and
increases their invasion and metastasis ability (Wu and Dai,
2017). In addition, a recent study found that CAF-secreted
CXCL-1 can stimulate the migration and invasion of oral
cancer cells, that there is an interdependent relationship
between CAFs and cancer cells in the oral squamous carcinoma
microenvironment, and that CXCL-1 can upregulate MMP-1
in CAF expression and activity (Wei et al., 2019). In addition,
CAFs can change the structure and physical properties of the
ECM, thereby affecting tumor cell migration and invasion
(Egeblad et al., 2010).

Drug Resistance and Targeted Therapy
of CAF
The fight against drug resistance remains a major challenge in
tumor treatment. CAFs mediate a variety of tumor resistance
to chemotherapeutic drugs. CAFs can act on tumor cells by
secreting cytokines, activating downstream signaling pathways in
tumor cells, and promoting tumor resistance (Chen and Song,
2019). Studies have shown that CAFs can enhance EMT and
cisplatin resistance in non-small cell lung cancer induced by
transforming growth factor β by releasing high levels of IL-
6, while cisplatin, in turn, promotes cancer cells to produce
transforming growth factor β, resulting in CAF activation
(Figure 1). CAFs can also promote chemotherapy resistance
in tumor cells by secreting exosomes. Gemcitabine (GEM) is
currently a chemotherapy drug that is commonly used in the
treatment of pancreatic cancer. Fang et al. (2019) found that
exosomal miR-106b derived from CAFs plays an important
role in GEM resistance in pancreatic cancer. Recently, Zhang
et al. (2020) showed that exosomal miR-522 secreted by CAFs
prevents the death of cancer cells by targeting ALOX15 and
blocking the accumulation of lipid-ROS. In addition, a new
mechanism for obtaining gastric cancer drug resistance through
the intercellular signaling pathways of USP7, hnRNPA1, exo-
miR-522, and ALOX15 has been observed.

Direct ablation of CAF can promote the regression of
immunogenic tumors (Feig et al., 2013), which has been explored
in several recent studies, where these cells are cleared by injection
of diphtheria toxin or targeting FAP-specific chimeric antigen
receptor T cells; direct ablation of CAF, however, can lead to

significant side effects due to lack of specificity, such as cachexia
and anemia (Roberts et al., 2013; Tran et al., 2013). Because of
the lack of specific markers for CAF, this method is not feasible
at present, so the need to know more about the mechanism by
which CAF works remains important for the development of
more targeted treatments.

In a parallel study, pharmacological stimulation of the VDR
was successfully performed in activated pancreatic stellate cells
(PSCs). VDR is the main genomic inhibitor that is activated by
PSCs. In addition, treatment with the VDR ligand calcipotriol
induced matrix remodeling, which can inhibit tumor-related
inflammation and fibrosis, and also improves the transport of
gemcitabine to the tumor area, thus reversing chemotherapy
resistance in the pancreatic ductal adenocarcinoma model
(Sherman et al., 2014). Due to the complex interaction between
CAF and other cells in the tumor environment, targeting some
CAF subsets may cause multiple responses in the TME, which
may have multiple effects depending on the individual. To
eradicate cancer, the synergistic combination of CAF-targeted
therapy and other effective treatments (such as immunotherapy)
should also be considered.

Furthermore, the CXCL12/CXCR4 axis activates multiple
signaling pathways to promote tumor cell proliferation, invasion,
distant metastasis, and inhibit apoptosis. Therefore, the screening
of antagonists targeting the CXCL12/CXCR4 signaling pathway
is a promising target for tumor therapy. Lecavalier-Barsoum
et al. (2018) found that the CXCR4 inhibitor AMD3100 can
inhibit the CXCL12/CXCR4 axis in the treatment of patients
with advanced disseminated high-grade serous ovarian cancer,
and the combination of AMD3100 and low-dose paclitaxel can
inhibit the growth of ovarian cancer cells. In osteosarcoma,
AMD3100 blocks the invasion and metastasis of osteosarcoma
to the lung by inhibiting the JNK and AKT pathways (Liao
et al., 2015). Another CXCR4 antagonist, AMD3465, can inhibit
the proliferation, colony formation, invasion, and migration of
bladder cancer cells through the CXCL12/CXCR4/β-catenin axis
(Zhang et al., 2018).

Micro RNA and siRNA can silence gene expression through
post-transcriptional regulatory mechanisms, which may be
another viable way to inhibit CXCR4 expression. In breast
cancer cells, siRNA targeting CXCR4 inhibited the migration
of breast cancer cells in vitro (Burger et al., 2011). miR-126
can also inactivate the RhoA signaling pathway in colon cancer
by reducing the expression of CXCR4 and inducing a tumor
suppressor effect (Yuan et al., 2016). These studies show that
miRNA or siRNA targeting CXCR4 is of great significance in
tumor treatment research. CTCE-9908 is composed of dimers of
CXCL12, which is a competitive inhibitor of CXCL12 targeting
CXCR4 and can inhibit the secretion of CXCL12 (Guo et al.,
2016). Huang et al. (2009) reported that CTCE-9908 can target
the CXCL12/CXCR4 axis and inhibit primary tumor growth and
metastasis of breast cancer. Hassan et al. (2011) also found that
CTCE-9908 combined with the anti-angiogenic agent DC101 also
reduced the volume of the primary tumor and distant metastasis
compared with DC101 alone. Moreover, an in vitro experiment
proved that CTCE-9908 can inhibit the growth, invasion, and
metastasis of prostate cancer (Wong et al., 2014). This evidence
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supports CTCE-9908 as an efficacious novel agent to prevent and
treat the spread of metastatic cancer. At present, cancer treatment
methods targeting CAFs and the CXCL12/CXCR4 axis are being
explored and developed rapidly.

TUMOR-ASSOCIATED MACROPHAGE

Tumor-associated macrophages account for a large proportion
of most malignant tumors. They promote tumor progression at
different levels by promoting genetic instability, cultivating CSCs,
supporting metastasis, and taming protective adaptive immunity
(Mantovani et al., 2017). TAMs can be divided into M1-like
and M2-like types. When macrophages are exposed to cytokines
such as bacterial lipopolysaccharide (LPS), microbe-associated
molecular patterns (MAMPs), IL12, TNF, interferon-γ (IFNG),
or other Toll-like receptor (TLR) agonists, they will be in a
pro-inflammatory and anti-tumor state, hence M1-like. When
exposed to IL4, IL5, IL10, IL13, CSF1, TFGB1, and prostaglandin
E2 (PGE2), it transitions from a pro-inflammatory state to an
anti-inflammatory and pro-tumor state, that is, to an M2-like
state (Murray et al., 2014). TAMs have a high degree of functional
plasticity and can quickly adapt to changing microenvironment
(Gubin et al., 2018). The necrotic and anoxic regions of the
TME contain M2-like TAMs, with low fluidity, limited antigen
presentation ability, and secrete a large number of tumor support
factors (Wenes et al., 2016). The metabolic spectrum of TAMs is
in a dynamic model, which can change with the nutritional needs
of malignant tumor cells and changes in TME. It also has a far-
reaching impact on the survival of TAMs, cancer progression, and
tumor-targeted immune response.

The most abundant inflammatory or immune cell type is
near the CAF-populated areas in the tumor stroma, indicating
a close interaction between TAMs and CAF. In prostate cancer,
CAF-mediated CXCL12/CXCR4 axis induces the differentiation
of monocytes and possibly M1 cells into pro-tumor M2 cells.
Conversely, TAMs with the M2 phenotype activate CAFs, thereby
promoting tumor malignancy (Augsten et al., 2014; Comito et al.,
2014). In vitro co-culture experiments showed that CAF-like
BM-MSCs enhanced the invasiveness of TAM-like macrophages.
These macrophages strongly stimulate the proliferation and
invasion of CAFs, thereby synergistically promoting the
development of neuroblastoma (Hashimoto et al., 2016).

Tumor-associated macrophages release TNF-α to increase
MMPs secreted by tumor cells and tumor stromal cells, destroy
basement membrane tissue, and promote tumor metastasis
(Shuman Moss et al., 2012). TAMs also stimulate vascular
endothelium to secrete VEGF by synthesizing and secreting the
Wnt7b protein to regulate angiogenesis (Yeo et al., 2014). TNF-
α binds to tumor necrosis factor receptor 1 (TNFR-1), activates
the VEGFC/VEGFR3 pathway, and promotes lymphangiogenesis
(Ran and Montgomery, 2012). In addition, transforming (TGF-β)
secreted by TAMs can induce EMT of colorectal cancer cells,
thereby promoting the invasion and metastasis of colorectal
cancer cells (Yang et al., 2019). Notably, exosomes are one of the
components in TME, which carry a variety of active substances
and are the mediator of information transmission between cells

(Sun et al., 2018). The exosomes of tumor cells can stimulate
TAMs to secrete cytokines and enhance tumor invasion and
metastasis (Trivedi et al., 2016).

Drug Resistance and Targeted Therapy
of TAM
Tumor-associated macrophages can promote tumor repair
response by coordinating tissue damage and limit the anti-
tumor activity of conventional chemotherapy and radiotherapy
by providing a protective niche for CSCs (Mantovani et al.,
2017). There is increasing evidence that macrophages play a
central role in both normal and diseased tissue remodeling,
including angiogenesis, basement membrane rupture, leukocyte
infiltration, and immunosuppression. Therefore, TAMs have
become a promising target for the development of new anticancer
treatments. These methods are mainly focused on the depletion
of M2-like TAMs and/or promotion of their transformation to
M1-like phenotype (Cassetta and Pollard, 2018; Pradel et al.,
2018). However, the effectiveness of this method may be limited
by a variety of factors, such as alternative immunosuppressive
cells that can compensate for TAMs, the existence of innate
and acquired drug resistance mechanisms, and the emergence of
strong immunosuppression after cessation of treatment (Quail
and Joyce, 2017). PLX-3397 is a small-molecule inhibitor of
the CSF-1 pathway. It is not only an effective tyrosine kinase
inhibitor of CSF-1R, but also targeted at cKit and FLT3.
Blocking CSF-1/CSF-1R can reduce TAMS and reprogramming
TAMS in the TME and enhance the activation of T cells in
the TME by enhancing antigen presentation. The downstream
effect blocked by CSF-1/CSF-1R hinders the growth of the
tumor (Zhu et al., 2014). In a mouse model of preclinical
lung adenocarcinoma, PLX-3397 has been shown to change
the distribution of TAMs in the TME and reduce tumor
load (Cuccarese et al., 2017). In the syngeneic mouse model
of BRAFV600E mutant melanoma, PLX-3397 combined with
adoptive cell metastasis immunotherapy showed a decrease in
TAMs (Mok et al., 2014). In similar melanoma mouse models,
PLX-3397 combined with BRAF inhibitor PLX4032 significantly
reduced M2 phenotypic macrophage recruitment, resulting in
significant tumor growth inhibition (Ngiow et al., 2016). In
addition, recent studies have shown that M2-like TAMs, which
seem to be regulators of lysosomal pH, express high levels
of vacuolar ATP enzymes and are expected to become a new
drug target (Kuchuk et al., 2018; Liu et al., 2019). Targeting
TAMs has proven to be a promising strategy, and with the
deepening of preclinical development of TAM-targeted drugs
and the new progress in the study of TAM mechanism, TAM-
targeted therapy will become an important supplement to
anticancer drugs.

MYELOGENOUS SUPPRESSOR CELLS

Myelogenous suppressor cells (MDSCs) are a heterogeneous
population composed of bone marrow progenitor cells and
immature bone marrow cells (IMCs) (Gabrilovich et al., 2012).
Under normal physiological conditions, IMCs produced in the
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bone marrow can rapidly differentiate into mature granulocytes,
macrophages, or dendritic cells. In tumors and other pathological
conditions, IMCs cannot normally differentiate into mature bone
marrow cells under the action of cytokines, thus forming MDSCs
with immunosuppressive functions, including T cell suppression
and innate immune regulation (Kumar et al., 2016). In the TME,
immunosuppressive cytokines such as IL-10 and TGF-β secreted
by MDSCs are important factors that inhibit the anti-tumor
immune response and promote tumor progression (Yaseen et al.,
2020; Salminen, 2021). Studies have shown that TGF-β can
inhibit the cytotoxic activity of cytotoxic T and NK cells by
reducing the production of interferon-γ (IFN-γ). On the other
hand, TGF-β can also inhibit the proliferation of anti-tumor
immune active cells and inhibit anti-tumor immunity from the
root (Salminen et al., 2018). Bone marrow mesenchymal stem
cells play a role in inducing proliferation in the TME due to
the interaction between cytokines and chemokines in the tumor
inflammatory environment. Conversely, MDSCs can stimulate
angiogenesis by producing matrix metalloproteinase 9, pro-factor
2, and VEGF, which further induces the migration of cancer cells
to endothelial cells and promotes the metastasis of cancer cells
(Lee et al., 2018; Yang et al., 2020).

Myelogenous suppressor cells produce high levels of
inhibitory molecules, such as Arg1, reactive oxygen species
(ROS), inducible nitric oxide synthase (iNOS), and prostaglandin
E2 (PGE2), to directly inhibit the anti-tumor immune response
induced by effector T cells (Kusmartsev et al., 2004; Gabrilovich
and Nagaraj, 2009; Condamine et al., 2015; He et al., 2018).
MDSCs can also inhibit the immune response by inducing
regulatory T cells (Tregs), promoting the development of
macrophages into M2 phenotypes, and differentiating into
TAMs (Huang et al., 2006; Weber et al., 2018). Deng et al.
(2017) found that MDSC-exosomes can directly accelerate
the proliferation and metastasis of tumor cells by delivering
miR-126a, which indicates that MDSCs have a new regulatory
mechanism on tumor cells. MDSC-induced immunosuppression
promotes tumor progression by promoting EMT, accelerating
immune escape, and enhancing the formation of metastatic
lesions (Veglia et al., 2018). Additionally, MDSCs enhance the
stemness of tumor cells, promote angiogenesis by secreting IL6
and NO, and promote tumor growth, invasion, and metastasis
directly or indirectly by inhibiting T cells or natural killer cells
(Condamine et al., 2015, 2016).

Drug Resistance and Targeted Therapy
of MDSC
The key roles played by MDSCs in the TME show that
it is necessary to target them effectively by blocking or
deleting them. Although they play a key role in tumor
progression, there are no FDA-approved drugs or treatments
that directly target MDSCs. At present, clinical trials are
underway to target the activities of iNOS Arg1 and STAT3,
metabolism through CD36, transport through CXCR2, and other
mechanisms for different types of cancer (Fleming et al., 2018).
The antisense oligonucleotide STAT3 inhibitor AZD9150 has
been used in phase 1b clinical trials of diffuse large B-cell

lymphoma in combination with immune checkpoint inhibitors.
Systemic administration of AZD9150 significantly decreased
granulocyte MDSCs in peripheral blood mononuclear cells
(PBMCs) (Reilley et al., 2018). Current targeting strategies mainly
include induction of differentiation into mature cells, inhibiting
its expansion and recruitment, and blocking its immune
characteristics. Studies have shown that some neutralizing
antibodies or inhibitors targeting chemokine systems (CXCR4,
CXCR2, and CCL2) and tumor-derived factors (CSF1, GM-CSF,
and IL-6) can inhibit the expansion or recruitment of MDSC
(Bayne et al., 2012; Sumida et al., 2012; Highfill et al., 2014).
For example, the chemokine receptor CCR5 plays a key role
in the chemotaxis of MDSCs to TME (Weber et al., 2018).
However, not all MDSCs express CCR5. In melanoma mice,
MDSCs expressing CCR5 have stronger immunosuppressive
ability than MDSCs that do not express CCR5. Blocking CCR5
can inhibit the recruitment and immunosuppressive activity of
MDSCs and improve the survival rate of melanoma patients
(Blattner et al., 2018).

It has been found that some drugs, such as phosphodiesterase-
5 inhibitors (sildenafil, cyclooxygenase-2 inhibitors
(acetylsalicylic acid and celecoxib), vardenafil and tadalafil and
bardoxolone methyl, can directly block the immunosuppressive
activity of MDSCs and restore T cell response (Serafini et al.,
2006; Nagaraj et al., 2010; Fujita et al., 2011; Obermajer et al.,
2011). Recent studies have found that MDSC-specific peptide-Fc
fusion protein therapy can completely deplete MDSCs in the
blood, spleen, and tumor without affecting other immune cells,
and inhibit tumor growth process (Qin et al., 2014), which
provides a new idea for inhibiting tumor growth in vivo. In
patients and animal models, the failure of anti-angiogenic
therapy based on inhibition of the VEGF pathway is often
concomitant with an increase in the number of MDSCs or
TAMs infiltrating tumor tissues (Lu-Emerson et al., 2013;
Gabrusiewicz et al., 2014). Along this line of thinking, anti-VEGF
therapy is thought to upregulate alternative angiogenic factors
(prokinin-1 and proagonin-2) produced by myeloid cells, which
may accidentally produce anti-angiogenic effects and limit
tumor recurrence.

Recent studies have shown that the accumulation of MDSCs
in tumors limits the effect of anti-programmed death 1 (PD1)
in the treatment of rhabdomyosarcoma checkpoint blockage.
Inhibition of MDSC metastasis with an anti-CXCR2 antibody can
enhance the efficacy of anti-PD1 (Highfill et al., 2014). In a tumor
model of tolerant mice, the removal of MDSCs with gemcitabine
combined with immunotherapy can effectively break the self-
tolerance and induce strong anti-tumor immunity (Ko et al.,
2007). Several chemotherapeutic drugs, such as anthracyclines,
platinum derivatives, and doxorubicin, can induce immunogenic
cell death, thus activating an effective anti-tumor adaptive
response (Kroemer et al., 2013). The chemical process for
enhancing the anticancer effect of these drugs includes increasing
the antigen presentation ability of dendritic cells and the
subsequent CD8+ T cell response (Bracci et al., 2014). Although
the current targeted therapy targeting only MDSCs does not
strengthen clinical outcomes, it may play an important role in
anticancer immunotherapy in the future.
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CONCLUSION

Most of the treatments are focused on a certain aspect of
the TME. Although some of these therapeutic responses
have produced positive results, a more effective way is to
promote inflammatory innate immune cells, such as CD8+
T cells, and to alter many aspects of TME through a
strong inflammatory response. Breakthrough drug resistance
remains a major clinical challenge. The response of tumor
cells to treatment depends not only on the regulation
of the TME but also on the aberration of its genome.
Targeted therapy cannot focus on the complete depletion
of all inherent cells in the TME, as this may cause
severe complications in the patient. The solution must
be a complex combination, with focus on developing
multidrug management that targets both tumor cells and
TME to overcome resistance and improve prognosis as
much as possible.
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