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The importance of mechanical force in biology is evident across diverse
length scales, ranging from tissue morphogenesis during embryo development to
mechanotransduction across single adhesion proteins at the cell surface. Consequently,
many force measurement techniques rely on optical microscopy to measure forces
being applied by cells on their environment, to visualize specimen deformations due
to external forces, or even to directly apply a physical perturbation to the sample via
photoablation or optogenetic tools. Recent developments in advanced microscopy offer
improved approaches to enhance spatiotemporal resolution, imaging depth, and sample
viability. These advances can be coupled with already existing force measurement
methods to improve sensitivity, duration and speed, amongst other parameters.
However, gaining access to advanced microscopy instrumentation and the expertise
necessary to extract meaningful insights from these techniques is an unavoidable hurdle.
In this Live Cell Imaging special issue Review, we survey common microscopy-based
force measurement techniques and examine how they can be bolstered by emerging
microscopy methods. We further explore challenges related to the accompanying data
analysis in biomechanical studies and discuss the various resources available to tackle
the global issue of technology dissemination, an important avenue for biologists to gain
access to pre-commercial instruments that can be leveraged for biomechanical studies.

Keywords: biomechanical force, fluorescence microscopy, mechanobiology, light-sheet fluorescence
microscopy, super-resolution microscopy

INTRODUCTION

Mechanical forces play important roles in many aspects of biology. They are known to modulate
homeostasis (Guillot and Lecuit, 2013), intracellular signaling pathways (Liu et al., 1999; Han et al.,
2004; Thompson et al., 2012), gene expression (Goldspink et al., 1992; Tajik et al., 2016), cell-cell
interaction (Basu et al., 2016; Angulo-Urarte et al., 2020; Markovic et al., 2020), cancer progression
(Kumar and Weaver, 2009; Jain et al., 2014), cardiovascular functions (Bishop and Lindahl, 1999;
Pesce and Santoro, 2017; Beech and Kalli, 2019), and development (Mammoto and Ingber, 2010;
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Agarwal and Zaidel-Bar, 2021). Yet, studies of biomechanical
force can be rife with unique challenges (Roca-Cusachs et al.,
2017). Specifically, (i) mechanical forces themselves cannot
be directly labeled for visualization as with other biological
components, (ii) the magnitude of many biological forces
necessitates exquisite sensitivity for accurate quantification, (iii)
integrating force measurement assays with live cell microscopy
is often a complex engineering challenge, (iv) measuring forces
can unwittingly perturb the biological systems or processes being
studied, and (v) the complexity of subsequent data analysis can
often hinder interpretation of results.

Assays that quantify biomechanical forces are often the
result of interdisciplinary work that combines framing a
biological hypothesis, synthesizing a force-sensing substrate or
sensor, designing or adapting imaging instrumentation or other
readout mechanisms, and careful analysis to extract meaningful
information from the data. Many of the currently available force
measurement tools have previously been expertly discussed (Bao
and Suresh, 2003; Polacheck and Chen, 2016; Roca-Cusachs
et al., 2017). Here, we will provide a brief synopsis of these
force measurement methods as an overview. However, one of
the most notable commonalities of many force measurement
assays is their reliance on optical instrumentation to visualize
and quantify cellular mechanical force. As a result, the choice of
optical instrumentation matters immensely in determining the
accuracy and sensitivity of the experimental readout. In light of
this, our Review focuses on the constraints that microscopy places
on many mechanobiological techniques, and how emerging
advanced microscopy methods can be leveraged to overcome
some of these limitations. Additionally, we will offer a guided
tour of how readers can access this cadre of instruments, some
of which have yet to be commercialized. Unfortunately, the
hurdles facing biologists do not end with restricted access to
emerging imaging technologies. The data size and complexity
produced by modern microscopes can be daunting (Ouyang
and Zimmer, 2017). We discuss some of the considerations that
should be made when handling and analyzing this deluge of
data. We will conclude by offering a perspective of remaining
challenges, and how they may provide important opportunities
for future development.

FORCE MEASUREMENT TECHNIQUES

The proper function of biological systems requires the intricate
coordination between biochemical and mechanical signaling.
Together, these signals allow living systems to respond to external
and internal cues that span a wide range of biological length
scales (Ingber, 2003; Discher et al., 2005; Guillot and Lecuit,
2013; Cho et al.,, 2017; Agarwal and Zaidel-Bar, 2021; Evers
et al., 2021). Unlike many biochemical readouts, biomechanical
forces must be measured in situ, in context, and transiently.
Furthermore, the magnitude of these forces spans a large dynamic
range (Du Roure et al., 2005; Sun et al., 2005; Rauzi et al,
2008; Xia et al., 2018). Yet, mechanical forces cannot be directly
visualized, and are usually dependent on innovative methods to
infer and quantify their location, direction, and magnitude. While

some of these mechanobiology methods are capable of directly
measuring small magnitude forces, most methods require light
microscopy for visualization and quantification (Polacheck and
Chen, 2016; Roca-Cusachs et al., 2017). Conversely, microscopy
can also act as a limiting factor for the precision and
sensitivity of force measurement methods. Here, we will survey
commonly used force measurement techniques (Figure 1) with
an emphasis on how their implementations are dependent upon
fluorescence microscopy.

A plethora of tools have been developed to apply and measure
forces at the cellular and sub-cellular level. One class of tools
can be broadly described as perturbative - that is, the sample
is actively deformed by some external means (Figure 1A).
Physically perturbative techniques can be further categorized
into whether the method can measure forces without light
microscopy. Techniques such as atomic force microscopy (Krieg
et al., 2019) and magnetic tweezers (Gosse and Croquette, 2002)
directly measure the magnitude of the dynamically applied force
without fluorescence microscopy. However, they can also be
coupled with light microscopy to add additional dimensionality
to an experiment (Beicker et al., 2018; Nelsen et al., 2020).
Other physically perturbative techniques, such as micropipette
aspiration (Hochmuth, 2000), substrate stretching (Caille et al.,
1998; Moraes et al., 2010), and single-pipette micromanipulation
(Neelam et al., 2015) necessitate fluorescence imaging to visualize
the deformation of a sample. This supports the quantification
of intracellular strains, stresses, and viscoelastic properties (Wu
et al, 2018; Krieg et al,, 2019). These dynamic methods are
well-suited for replicating scenarios wherein samples experience
perturbative forces from their environment. However, these
capture only a subset of the conditions in which a cell may be
subject to an external force.

To introduce additional molecular specificity, the illumination
source in most modern microscopes can be leveraged to optically
induce in situ perturbations through light-mediated potentiation
of molecular motors (Figure 1A) with high spatiotemporal
resolution. This is usually achieved with various optogenetic tools
(Airan et al., 2009; Wu et al., 2009; Fenno et al., 2011; Oakes
et al., 2017). These techniques also allow the experimenter to
subsequently perform rapid live-cell observation. For example,
photoactivatable Racl has been developed to induce and study
cell motility, protrusions, and ruffling (Wu et al, 2009). It
is also important to note that the maintenance of force
(isometric tension) can play an equally important biomechanical
role as transient force generation. Tension is a steady-state
phenomenon, and even though it can be measured across larger
platforms such as cell monolayers (Kolodney and Wysolmerski,
1992; Goeckeler and Wysolmerski, 1995), the in situ tension
will be more effectively visualized upon its disruption. One
means of targeting this disruption is through photoablation,
which uses high-intensity focused light to break molecular bonds
(Miiller et al., 1991; Vogel and Venugopalan, 2003; Vogel et al.,
2005). Subsequent observation of the relaxation area surrounding
the ablation then allows one to infer the tension and forces
prior to disruption.

Another interesting consideration is that under physiological
conditions, perturbative forces can be exerted both dynamically
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Perturbative Approaches
A
Dynamic Perturbations
Physical Optical
Example: Atomic Force Microscopy Example: Photoablation
Static Perturbations
B Example: Constricted Migration
c Platform-Based Approaches
Example: Traction Force Microscopy
Target-Based Approaches FRET Tension Sensors
D E
High FRET, low force
Low FRET, high force

FIGURE 1 | Methods of measuring forces in biology. Perturbative techniques can be either (A) dynamic or (B) static. (A) Dynamic methods such as atomic force
microscopy (AFM) use external physical probes to measure the force required to deform the sample. Dynamic optical perturbations use either photoablation to reveal
underlying tension (as shown) or optogenetic tools to activate force generation. (B) Static perturbations (e.g., constricted migration assays) use rigid physical barriers
to induce large-scale shape changes as cells navigate their environment. (C) Platform-based approaches, such as Traction Force Microscopy (TFM), monitor
displacements of fiducial markers to measure mechanical forces cells apply to their surroundings. (D) Target-based approaches (e.g., liquid droplets) measure the
deformation of micron-scale particles (green) to infer forces generated within tissues or during target engagement. (E) FRET tension sensors use molecular springs
between donor and acceptor fluorophores to convert FRET signals to intracellular forces.
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and statically. In the case of cells undergoing significant shape
changes to navigate through tight interstitial spaces, the cells
are subjected to self-generated forces against static barriers
(Figure 1B; Paul et al,, 2017). One means of mimicking such
forces is the use of microfabricated substrates with micron-
scale features and chemoattractant gradients (Heuzé et al., 2011;
Davidson et al., 2015; Paul et al.,, 2016). Among many things,
this class of force measurement techniques has historically been
useful in measuring how cells dynamically respond to static
perturbations (McGregor et al., 2016; Paul et al., 2017). Physically
perturbative techniques, both static and dynamic, can leverage
microscopy to visualize the deformations being induced upon a
sample, but do not give insight into the magnitudes of and means
by which cells apply forces to their surroundings. Accomplishing
this necessitates a shift from visualizing the deformation of the
sample to the deformation of the environment.

Measuring the force cells exert on their surroundings
requires an experimental milieu that contains fluorescent fiducial
markers and is deformable by cell-scale forces. These “platform-
based” approaches primarily make use of optical tracking
and computational modeling to monitor deformations induced
by the biological samples and extract biomechanical forces
(Figure 1C). Traction force microscopy (TFM) is one of the
most well-established, platform-based methods, originating from
the observation that migrating cells can deform thin, elastic
substrates (Harris et al., 1980; Dembo and Wang, 1999). These
methods rely on embedding fluorescent beads in a substrate
upon which cells migrate (Munevar et al., 2001a,b). Forces
exerted on the substrate lead to translation of the fiducial
markers, which is then computationally converted into force
vectors (Han et al., 2015). TFM can be used not only to map
forces in two (2D) and three dimensions (3D) (Franck et al.,
2011; del Alamo et al., 2013; Legant et al, 2013; Toyjanova
et al., 2014), but also as a function of time (Peschetola et al.,
2013). Another commonly used platform-based approach is
micropillar arrays. Conceptually related to TFM, these assays
use microscopy to track the bending of flexible micropatterned
pillars (Tan et al., 2003; Xiao et al, 2018), which is then
converted to force information through computational modeling
(Schoen et al., 2010). This can be expanded for use with cell
monolayers (Saez et al., 2010). Furthermore, magnetic actuation
of post arrays can facilitate simultaneous force application and
measurement in this type of assay (Sniadecki et al., 2007;
Monticelli et al., 2018). Collectively these assays are tailored
for investigating force generation (Shiu et al., 2004; Du Roure
et al., 2005; Jannat et al., 2011; Umeshima et al., 2019). However,
biomechanical forces occur under a multitude of other, more
complex physiological conditions, thus necessitating additional
methods beyond platform-based approaches.

In measuring intercellular forces within complex tissue or
whole organisms, many investigators have turned toward “target-
based” approaches (Figure 1D). The premise of target-based
methods is to measure the shape change of an introduced object
with a known stiffness. This has been achieved with liquid
microdroplets or micron-scale polyacrylamide spheres, enabling
investigators to study phenomena such as tissue morphogenesis
(Campas et al., 2014; Serwane et al., 2017; Mongera et al., 2018;

Triber et al., 2019; Hofemeier et al., 2021), interstitial pressure
in tumor growth (Dolega et al, 2017; Lee et al,, 2019), and
phagocytosis (Vorselen et al., 2020, 2021). However, none of the
methods discussed so far directly identify the molecular source
from which a force is potentiated. Accomplishing this requires
introducing a genetically encoded mechanical sensor.

One of the most sensitive types of intracellular force sensors
utilizes Forster Resonance Energy Transfer (FRET). FRET is a
process by which energy from one fluorophore (the donor) is
transferred to a neighboring fluorophore (the acceptor), typically
when they are less than 10 nm apart (Jares-Erijman and Jovin,
2003). This allows for precise quantification of proximity, which
can be leveraged to quantify mechanical forces (LaCroix et al.,
2015; Gayrard and Borghi, 2016). Such “FRET tensions sensors”
(Meng and Sachs, 2012; Cost et al.,, 2019) consist of a donor
and acceptor fluorophore joined by a linker capable of sensing
intramolecular tension within a molecule of interest (Figure 1E;
LaCroix et al., 2015; Gayrard and Borghi, 2016). By calibrating the
molecular spring stiffness, one can sensitively measure changes
in force with single pN sensitivity (Freikamp et al., 2017; Ringer
et al., 2017). For comparison, the detection range of TFM spans
100s of pN to 10s of nN (Style et al, 2014). FRET sensors
have been of particular interest for studying tension across focal
adhesions and their associated proteins (Grashoff et al., 2010;
Ringer et al., 2017).

One important message from the technical survey above is that
the accuracy and sensitivity of many of these assays is dependent
on the capacity of the microscope to deliver the appropriate
readout. In fact, the optical detection step is often the ultimate
limitation of a force measurement assay. Further problems can
often arise if microscopy instruments are not chosen carefully
or the most appropriate instrument is not available. The optimal
integration of light microscopy into a mechanobiological assay
requires an equally detailed understanding of the microscope
performance. In the following sections, we will discuss the
major imaging parameters to consider when performing force
measurements, and how advanced microscopy methods can be
leveraged to improve them in complex biological systems.

INTEGRATING ADVANCED LIGHT
MICROSCOPY WITH FORCE
MEASUREMENTS

Fluorescence microscopy is fundamentally a game of trade-
offs between several key imaging parameters, such as speed,
dimensions, resolution, and phototoxic effects. The optimal
balance is wusually determined by both the quantitative
experimental question as well as the characteristics of the
sample. No single microscopy method is ideally suited to
balance these imaging parameters for all specimens. Since
the effects of biomechanical forces can manifest in countless
biological processes, a broad diversity of samples - ranging
from single cells to developing embryos - necessitates unique
microscopy techniques. In this Review, we detail some of the
imaging parameters critical for force measurements, and how
the new generation of microscopes can tackle these previously
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unattainable parameters. In addition, we provide case studies
wherein well-considered use of microscopy is beneficial to
mechanobiological studies.

Resolution

Biology encapsulates a broad range of length scales, from
individual molecules spanning mere nanometers to whole
embryos measuring millimeters in length. Any method for
visualizing biological processes, however, is subject to the physics
of light - diffraction places a fundamental limitation on the
minimum distance at which two objects can be distinguished,
known as resolution. Resolution is a function of both the
microscope numerical aperture (NA) and the wavelength
of the emitted light (Amos et al, 2012; Goodwin, 2014),
and is conventionally limited to a few hundred nanometers.
As a consequence, the final, acquired image is not a true
representation of the object being imaged. Due to light
diffraction, the image is blurred by (i.e., convolved with) the
point spread function (PSF) of the microscope (Pawley, 2006).
Furthermore, most microscopes do not offer isotropic resolution,
with the axial resolution being more severely compromised
(Amos et al, 2012). When using microscopy to measure
biological forces, any limitations in resolution will constrain the
sensitivity and accuracy of force measurements. Therefore, in
studying forces occurring on particularly small length scales, such
as those across individual focal adhesions during cell migration
(Beningo et al., 2001), the resolution of the microscope must be
appropriately matched to the scale of the forces of interest.

A variety of techniques in recent years have been developed
to surpass the diffraction limit. One class of these methods is
collectively known as enhanced resolution techniques (Figure 2).
Such techniques provide a maximum twofold improvement
in spatial resolution in all directions, but are still ultimately
bound by diffraction. Examples of such enhanced resolution
methods include Structured Illumination Microscopy (SIM)
(Figures 2A,B; Gustafsson, 2000; Gustafsson et al.,, 2008) and
Image Scanning Microscopy (ISM) (Figures 2C,D; Sheppard,
1988; Miiller and Enderlein, 2010; Sheppard et al., 2013) - of
which the most popularized commercial system is the Zeiss
Airyscan module (Huff, 2015). These methods are particularly
well-suited for force measurements as they are relatively fast and
are, in general, compatible with live samples.

As an example of the power of coupling enhanced resolution
microscopy with force measurements, let us consider the recent
work by Colin-York et al. (2019). Recognizing that many cellular
processes occur on length scales below the diffraction limit,
Colin-York et al. sought to improve the accuracy and resolution
of TFM in all three directions with enhanced resolution
microscopy (Figure 3A). The method of choice in this instance
was 3D-SIM, as it allows for rapid, multicolor 3D imaging (11 ms
per frame, 15 frames per SIM image plane). In TEM, the density
of the beads in the substrate dictates the sensitivity of the force
measurement (Colin-York and Fritzsche, 2018). In practice, the
maximum bead density that can be incorporated into a traction
force measurement is fundamentally dictated by the resolving
power of the microscope, as higher resolution is needed to
distinguish neighboring beads at a higher density. In studying the

force generated during cell adhesion (Figures 3C,D), 3D-SIM-
TFM enhanced the accuracy of measuring the normal and shear
stresses over time (Figures 3E,F). The application of 3D-SIM was
particularly necessary to more accurately determine the stresses
perpendicular to the substrate, which are nominally much smaller
than the shear stresses measured in 2D-TFM (Colin-York et al.,
2019). Similar performance has recently been achieved through
the incorporation of astigmatism in conjunction with TFM
(Li et al,, 2021). Astigmatism induces a shape change in the
PSF that depends on axial position (Kao and Verkman, 1994;
Holtzer et al.,, 2007). This optical distortion allows for high-
precision determination of forces perpendicular to the substrate.
Measuring these axial forces is important for revealing non-
canonical mechanisms of cell motility (Legant et al., 2013).
Though not quantified in the study shown in Figure 3, 3D-SIM-
TEM is well-positioned to improve mechanistic insights with its
unique capability of linking, with high resolution, biomechanical
forces with morphological changes in the actomyosin network.

However, SIM and ISM can only improve the spatial
resolution of a microscope by at most a factor of two. If additional
resolving power is necessary, users may turn to a class of
techniques collectively known as super-resolution microscopy.
Super-resolution microscopy comes in a variety of adaptations,
each designed to transcend the diffraction limit and achieve
resolutions on the scale of tens of nanometers. One such
adaptation is single molecule localization microscopy (SMLM)
(Sauer and Heilemann, 2017). SMLM techniques, such as PALM
(Betzig et al., 2006) and STORM (Rust et al., 2006), repeatedly
image photo-switchable fluorophores to reconstruct biological
features with near molecular-scale precision. The computational
methods associated with localization-based microscopy have
been leveraged to track particle deformations, for example in
the context of phagocytosis (Vorselen et al., 2020), and recent
strides have been made in coupling SMLM with DNA-based
molecular force sensors (Brockman et al., 2020; Schlichthaerle
etal., 2021). However, SMLM is still predominantly restricted to
fixed samples, rendering them ineffective for studying dynamic
force application.

On the other hand, stimulated emission depletion (STED)
microscopy (Hell and Wichmann, 1994) is a super-resolution
method that is compatible with dynamic force measurements.
By leveraging the photophysics of fluorophores and altering
the traditional illumination schemes, STED microscopy can
reach resolutions beyond SIM and ISM. However, due to the
relatively high light dose, STED microscopy provides only a brief
window of opportunity to study dynamic forces before incurring
photodamage. Despite this limitation, STED microscopy has
been combined with TFM (Colin-York et al., 2016). This allowed
for a fivefold increase in the density of the bead field relative
to diffraction-limited methods, improving the sensitivity of the
associated traction force measurements. This came at the cost of
severely limited imaging duration, as compared to 3D-SIM-TFM.
Such compromise is essential for mechanobiological studies
because photodamage can lead to significant alterations in both
morphology and function, ultimately leading to apoptosis in
some cases (Icha et al.,, 2017). In measuring forces, such light-
induced phenomena cannot be overlooked.
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FIGURE 2 | Methods of enhancing resolution in optical microscopy. (A) Structured lllumination Microscopy (SIM) is a widefield technique capable of up to twofold
resolution enhancement in all directions. It relies on projecting a sinusoidal illumination pattern onto the sample to generate Moiré interference. (B) The illumination
pattern is rotated and shifted over a series of 9-15 images to introduce extended frequency information into the Fourier space of the image. (C) Image Scanning
Microscopy (ISM) uses an illumination scheme identical to laser-scanning confocal microscopy; however, the scanned image is collected by an array detector in

single point detector, each pixel in an ISM array detector captures its own unique image of the sample from a slightly different angle. This information is

(D) In contrast to confocal microscopy wherein a single image is formed via a

Photodamage

The act of illuminating the sample for imaging will inherently
lead to photodamage to some extent. As a result, balancing the
inevitable photodamage with the required imaging parameters
will always be a necessary compromise. Photodamage
manifests itself in two primary forms - photobleaching and
phototoxicity — which can affect force measurements in distinct
ways. Photobleaching (Diaspro et al, 2006b; Waters, 2009)
causes a decrease in fluorescence signal-to-noise ratio (SNR),
which subsequently reduces contrast and sets the photon
budget of an experiment (Wait et al., 2020). This can in turn
severely compromise either the timescale of forces that can be
measured or the length of time one may observe and perform

measurements. Equally important, the poor SNR caused by
photobleaching can significantly increases the error in force
measurements. On the other hand, phototoxicity results from
light-induced damage to a live specimen. The unchecked
damage to specimen health and viability calls into question the
physiological relevance of the entire force measurement assay.
Unfortunately, assessing phototoxicity is often not trivial. In
practice, the specimen health is routinely assessed by empirical
observation of morphology, which is not always a reliable
phototoxicity metric (Icha et al., 2017). However, there are
now several studies that explore more robust, quantitative, and
sample-specific methods that focus on biological functions over
time (such as cell division and proliferation) at various doses of
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FIGURE 3 | 3D-SIM improves resolution and precision in measuring lateral and axial forces in TFM. (A) Schematic representation of 3D-TFM. (B) A comparison of
PSFs demonstrates the enhanced resolution of 3D-SIM as compared to widefield (WF) microscopy. Scale bar: 0.5 wm. (C) (Left) Volumetric rendering and axial
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and 3D-SIM highlights the enhanced resolution. The dashed box inset for both WF and 3D-SIM is shown for direct comparison. Scale bar: 5 um. (D) 2D translation
of fiducial markers is shown color-coded for time, demonstrating dynamic cell-generated forces. Scale bar: 5 um. (E) Normal and (F) shear stress fields from a
3D-SIM-TFM experiment. Top panels show the stress fields at different points in time. Middle panels show the full time series of stress maps for the region of interest
shown in the upper panels indicated by dashed boxes. The lower panels show the estimated error for each time point. Scale bar: 5 wm. Images are reproduced with

permission from Colin-York et al. (2019).

light (Tinevez et al., 2012; Douthwright and Sluder, 2017; Laissue
et al., 2017; Tosheva et al., 2020).

In principle, photodamage can be alleviated by lessening the
light dose on the sample (Icha et al., 2017). Unfortunately, many
widely used imaging methods are not fundamentally designed
to make lowering the light dose their primary operational
principle (Tinevez et al, 2012); in fact, several of these
common imaging techniques are particularly prone to incurring
photodamage. Confocal microscopy, for example, often induces
photodamage for two reasons. First, the light intensity at the
focal plane in confocal microscopy is usually in the range of

10%-10° W/cm? (Pawley, 2006; Ettinger and Wittmann, 2014),
essentially exposing the biospecimen to 10°-107 fold higher
irradiance than lifeforms on earth have evolved to withstand
(Seidlitz etal., 2001; Chen et al., 2014). Second, the excitation light
illuminates the sample both above and below the observational
plane. The confocal pinhole merely serves to block out-of-focus
emitted light and does not prevent the excessive excitation light
from damaging the sample outside of the focal plane. One means
of mitigating such excessive and unnecessary illumination is to
restrict the excitation light to the imaging plane. This can be
achieved in several ways.
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One method to confine the excitation light is total internal
reflection fluorescence (TIRF) microscopy (Axelrod, 1989). TIRF
operates by introducing light at or above the critical angle to
prevent its propagation into the sample. When this occurs,
only fluorophores at the cell-substrate interface are excited.
The advantages of using TIRF microscopy are twofold. First,
it reduces photodamage by limiting the excitation of the
sample solely to within a few hundred nanometers of the
coverslip. Second, this restricted excitation plane leads to a higher
signal-to-background ratio because unnecessary excitation of
fluorescent molecules beyond the focal plane is significantly
minimized. This improved contrast allows users to lower
the overall intensity of the excitation source. Together, these
combined benefits make TIRF microscopy an ideal technique
for minimizing photodamage. There are several canonical uses
of TIRF microscopy with force measurements, primarily with
TFM and FRET tension sensors. For example, coupling TIRF
microscopy with FRET tension sensors has been used to
study the distribution of forces generated by single integrins
(Morimatsu et al., 2013). In addition, the reduced photobleaching
associated with TIRF microscopy is particularly useful in
FRET applications as unequal photobleaching rates between
the donor and acceptor fluorophores can skew ratiometric
calculations over time. In a similar way, TIRF microscopy
facilitates correlating TFM with biological structures through
reduced background (Gutierrez et al., 2011). Coupling of TIRF
and TFM [and recently TIRE SIM, and TFM (Barbieri et al,
2021)] has been used extensively to improve biological force
measurements, demonstrating for example the colocalization
of nascent focal adhesions with traction stresses (Han et al,,
2015). Unfortunately, the specificity of TIRF illumination to
the sample-coverslip interface precludes its use when the forces
of interest have to be measured at a deeper plane away
from the coverslip.

To overcome this limitation, a class of imaging techniques
known either as light-sheet fluorescence microscopy (LSFM)
or selective plane illumination microscopy (SPIM) can be used
(Figure 4). These methods introduce a thin sheet of excitation
light across the specimen that is coplanar with the image plane
(Figure 4A). By sweeping the light sheet through the sample,
LSFM can provide optical sectioning and contrast comparable
to TIRF microscopy, but throughout the entire depth of the
specimen. There exists a breadth of LSFM implementations,
including multi-view LSFM (Figure 4B; Tomer et al., 2012;
Kumar et al, 2014) and single-objective LSFM (Figure 4C;
Bouchard et al,, 2015; Liu et al., 2019; Yang et al., 2019; Sapoznik
et al, 2020). Additionally, different light sheet profiles are
available (Figure 4D; Durnin et al., 1987, 1988; Huisken et al.,
2004; Planchon et al., 2011; Chen et al., 2014), each with their own
specific benefits and limitations. Furthermore, commercialization
of LSFM both through standalone systems as well as add-on
LSFM modules that can be merged with conventional inverted
microscopes (Fadero et al., 2018) has increased the accessibility
of this method. A full survey of LSFM methodologies is beyond
the scope of this Review; readers are encouraged to refer to
several excellent reviews of this class of microscopes (Santi, 2011;
Reynaud et al., 2014; Stelzer, 2014; Girkin and Carvalho, 2018).

With the increasingly widespread adoption of LSFM, the
benefits of minimizing light exposure have likewise been
leveraged in 3D biomechanical force studies. One such example
is the recent work of Shah et al. (2021). During tumor invasion
and metastasis, cells encounter interstitial spaces that force
the cell - and more specifically, the nucleus - to undergo
drastic deformations. This compression can often lead to nuclear
rupture and DNA damage (Denais et al., 2016). To study this
confined migration process and the associated DNA damage,
LSFM was used to follow cells as they navigated through narrow
pores within 3D collagen matrices (Figure 5A). The unique
capabilities of LSFM enabled imaging of multiple color channels
in 3D over the course of several hours. Laser-scanning confocal
microscopy, however, impeded similar experiments by restricting
the image to only a single plane (2D) due to photodamage.
3D LSFM imaging was essential for unambiguously detecting
formation of new DNA damage foci for two reasons. First,
confusion occurs when imaging this process in 2D, as the
appearance of foci in this case can be attributed either to a
new breakage in DNA or an existing damage site coming into
focus. 3D imaging disentangles these two scenarios. Second, it
is well documented that over-exposure of light itself can induce
DNA damage (Sinha and Héder, 2002), which can conflate
conclusion about the role of deformation. The reduced light
exposure with LSFM helped isolate the mechanism by which
damage sites were produced. Together, these benefits lent to
the conclusion that nuclear deformation alone, independent of
nuclear rupture, is sufficient to increase double-stranded DNA
breaks (Figures 5B,C). While the present study did not quantify
the magnitude of the forces that these cells underwent during
confined migration, coupling of LSFM with labeled matrices
would allow future investigators to quantify both the forces
applied to the cell by the matrix, as well as the forces that the
cell applies to generate motion. Such studies could then infer
the magnitude of forces necessary to induce DNA damage or the
mechanisms of force generation to facilitate movement through
narrow constrictions. The significant reduction in photodamage
offered by LSFM is an important technical advance, allowing
biologists to probe the roles of biomechanical forces during
morphogenesis (Bambardekar et al., 2015; Vedula et al., 2017; de
Medeiros et al., 2020), phagocytosis (Nelsen et al., 2020; Vorselen
et al, 2021) and T cell engagement (Tamzalit et al, 2019).
In general, the ability to observe biological specimens under
relatively low-stress conditions has opened new avenues for
biologists to pursue their questions within a more physiologically
relevant context while pushing the previous limitations on speed,
dimensionality, and depth.

Speed and Dimensionality

Studying complex biological processes often dictates 3D
observations in multiple color channels, while maintaining
sufficient temporal resolution, so that the dynamic interplay
among key molecular players can be visualized. Such demanding,
multi-dimensional experiments are essential for exploring a
range of biological length scales, from single cells to whole
organisms. In practice, however, greater image size and
dimensionality will come at the cost of reduced imaging speed.
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FIGURE 4 | Variants of Light-Sheet Fluorescence Microscopy (LSFM). (A) Using an illumination objective lens, conventional LSFM illuminates a thin section of the
sample that is coplanar with a separate detection lens. This restricts excitation to only the portion of the sample being imaged, thus improving contrast and

minimizing photodamage. (B) Multi-view LSFM (e.qg., diSPIM) can achieve multiple viewing angles by alternating the function of both objective lenses (as shown) or
by incorporating multiple detection objective lenses to image the sample. Computational fusion of these multiple viewing angles can enable isotropic resolution, as
well as mitigate attenuation artifacts. (C) Single-Objective LSFM (e.g., OPM) uses the same objective lens for both excitation and detection, providing adaptability for

a wide range of samples and external devices. (D) Light sheets can be formed with different beam profiles (e.g., Gaussian or Bessel beams) that offer unique

advantages for specific biological applications.
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FIGURE 5 | 3D LSFM combined with confined migration minimizes photodamage during force-based experiments. (A) LSFM images of an MDA-MB-231 cell
expressing GFP-tagged nuclear localization sequence (NLS-GFP), in green, and DNA damage marker (53BP1-mCherry), in red, navigating a 3D collagen matrix. The
white arrows indicate new sites of DNA damage. Scale bar: 5 um. (B) The percentage of MDA-MB-231 nuclei that show new sites of DNA damage when stationary
represents p < 0.0001 for a Fisher’s test. (C) The percentage of MDA-MB-231 nuclei that show DNA damage due to deformation alone or due to
nuclear rupture. * represents p < 0.05 for a chi-square test. Images are reproduced with permission from Shah et al. (2021).

.

or migratory.

Acquisition speed is a critical imaging parameter, as one needs
to accurately follow in time the forces being studied. For
certain physiological processes, the timescales are long enough
such that the trade-off between speed and dimensionality is
acceptable given conventional imaging methods. However, there

are biological events that occur on single-second timescales —
such as membrane tether rupture (Schmitz et al,, 2008) and
photoablation-induced tension relaxation (Kumar et al., 2006;
Zhang et al., 2020) - that are best addressed by more advanced
imaging methods.
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By design, the versatility and gentle illumination of LSFM
can be leveraged to tackle these demanding mechanobiological
phenomena. As previously mentioned, LSFM minimizes out-
of-plane fluorescence by restricting the excitation light to
a thin sheet, thereby greatly improves image contrast. In
comparison to widefield microscopy, this considerable contrast
improvement enables shorter exposure times and faster imaging
rates. While laser-scanning confocal microscopy can provide
similar contrast to LSFM, it fails to offer the high imaging
rates of LSFM. Together, the benefits of LSFM permit
multi-channel volumetric acquisitions of single cells with
rates approaching 1-5 s per volume. The work of Tamzalit
et al. (2019) is an excellent case study on the benefits of
improving speed and dimensionality in force measurements.
The investigators sought to measure the forces associated with
cytotoxic T lymphocyte (CTL) engagement with micropillar
arrays (Figure 6A) and dynamically characterize the formation
of synaptic protrusions. This experiment required multiple
channels to visualize the micropillars themselves as well
as track cellular structures associated with immune synapse
formation. The investigators used lattice light-sheet microscopy
(LLSM) (Chen et al, 2014), as it is particularly well-suited
for fast 3D sub-cellular imaging. This coupling of LSFM with
micropillar arrays gave sufficient temporal resolution to visualize
actin protrusions permeating the array of micropillars and
localize lytic granule fusion sites during synapse formation
(Figure 6B). Furthermore, LSFM was used to monitor CTL-
induced deformation of target cells, leading to quantification of
synapse volume as a function of time (Figure 6C). Intriguingly,
the investigators successfully used 2D confocal microscopy
to track micropillar flexure, but were unable to achieve the
necessary temporal resolution in 3D to monitor synapse
formation (unpublished data). This lays the groundwork for
using LSFM to quantify in 3D the full bending, twisting,
and translation of micropillar arrays, rather than only the
conventional 2D translations. This added dimensionality can be
used to extract axial forces and to determine the precise location
of force generation.

Recently, investigators have coupled AFM with LSFM (AFM-
LS) to either directly image the plane of applied force with up to
10 ms temporal resolution (Beicker et al., 2018), or collect multi-
channel volumetric images with simultaneous correlated force
measurements (Nelsen et al., 2020). The additional speed and
dimensionality that AFM-LS provides allowed investigators to
separate the roles of individual nuclear substructures in response
to an applied force (Hobson et al., 2020) as well as correlate actin
dynamics with engulfment forces during phagocytosis (Nelsen
et al.,, 2020). Similarly, LSFM was coupled with microparticle
traction force microscopy to both quantify the forces associated
with phagocytosis and identify novel actin structures responsible
for their generation (Figures 7A,B; Vorselen et al, 2021).
These examples display how microscopy can provide additional
insight into the cellular structures responsible for generating
or responding to mechanical stimuli. Furthermore, researchers
have combined FRET with the benefits of LSFM, and developed
publicly available software to analyze this challenging type
of data (O’Shaughnessy et al., 2019). This opens the door

for future studies to utilize FRET for quantifying molecular-
scale tension forces in 3D at unprecedented speeds. These
examples highlight how LSFM, in conjunction with force
measurement, unlocks information that traditional microscopy
cannot provide. We have thus far dwelled on mechanistic studies
at the cellular level; yet, biomechanical force is an indispensable
signal and regulator in morphogenesis and development as
well (Guillot and Lecuit, 2013; Heisenberg and Bellaiche, 2013;
Agarwal and Zaidel-Bar, 2021). When force measurements
must be performed in the physiological context of a whole
organism, the tissue heterogeneity, light scattering, and large-
scale specimen movement can easily affect the precision and
outcome. Overcoming these challenges will require further
technical advances.

Imaging Depth

Imaging whole tissues and embryos presents a gamut of
new challenges as compared to imaging single cells. While
techniques such as LSFM have begun to enable biomechanical
force measurements during tissue morphogenesis (Bambardekar
et al, 2015; Vedula et al., 2017; de Medeiros et al., 2020),
heterogeneity in large samples can cause significant aberrations
due to refraction, scattering, and absorption (Schwertner et al.,
2007). These complications will reduce spatial resolution and
contrast, rendering force measurement experiments significantly
less accurate or even impossible.

To gain better light penetration depth when imaging large
samples, one may turn to using two-photon (2P) excitation (Denk
et al., 1990; Diaspro et al.,, 2006a). In contrast to conventional
fluorescence, 2P excitation uses two photons of double the
required wavelength to excite a fluorophore. This permits deeper
imaging for two reasons. First, longer wavelength excitation
will generally experience fewer interactions with the sample.
Second, 2P excitation events are far more rare than traditional
fluorescence (Denk, 1996; Denk and Svoboda, 1997; Svoboda and
Yasuda, 2006); therefore, emission occurs within a much smaller
excitation volume. This minimizes background fluorescence,
particularly in deep tissue. 2P excitation light is typically raster-
scanned across the sample, similar to confocal microscopy.
However, it has also been implemented in LSFM configurations
to combine the benefits of both techniques (Truong et al,
2011; Mahou et al., 2014; Wolf et al., 2015). The predominant
use of 2P microscopy in measuring biomechanical forces is
through photoablation and measurement of subsequent tension
relaxation (Shen et al., 2005; Rauzi et al., 2008, 2010; Ratheesh
et al., 2012; Michael et al., 2016; Yamaguchi et al., 2020).
While many studies leverage ultra-violet pulsed lasers to ablate
specimen targets (Kichart et al, 2000; Hutson et al, 2003;
Fernandez-Gonzalez et al., 2009; Colombelli and Solon, 2013;
Smutny et al., 2015; Hara et al., 2016; Zhang et al., 2020),
the use of 2P microscopy improves both ablation depth and
precision. This is of particular importance when measuring
tension in vivo, as is exemplified by the work of Rauzi et al. (2008).
In this case, 2P microscopy permitted ablation of individual
Drosophila embryo cell-cell junctions during cell intercalation
without disrupting the plasma membrane (Figures 8A,B). This
led to the observation that tension is anisotropic within the tissue,
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FIGURE 6 | 3D LSFM coupled with micropillar arrays improves temporal sampling during force measurements. (A) Schematic representation CTL engagement with
micropillar arrays and the formation of synaptic protrusion and lytic granule fusion events. (B) LLSM of a CTL expressing Lifeact-mRuby2 (red) and pHluorin-Lamp1
(blue) engaged with a micropillar array (gray). The top row provides an x-y view from above. The bottom row shows an axial cross section of the region denoted by
the dashed line in the upper right panel. Yellow arrows indicate the site of a fusion event. Time is given in minutes:seconds, scale bars: 2 um. (C) (Left) LLSM of a
CTL expressing Lifeact-GFP (green) engaging with a target cell (red). The top row provides an x-y view from above with a surface rendering visualization. The bottom
row shows an axial cross section of the region denoted by the cyan dashed line in the upper right panel. Yellow arrows indicate protrusions into the target cell. Time
is given in minutes:seconds, scale bars: 2 um. (Right) Target cell volume plotted as a function of time. Each curve represents an individual CTL-target cell
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which was posited as a mechanism to promote tissue elongation
(Rauzi et al.,, 2008). However, 2P microscopy has rarely been
used in conjunction with other force measurement techniques
outside of photoablation. This is primarily due to the relative
scarcity of force probes that are specifically designed for whole
tissues. 2P microscopy furthermore has a limited repertoire for
biomechanical studies in deep tissue: its acquisition speed limited
by raster-scanning and its multicolor capability complicated by
large excitation overlap between fluorophores.

To push the multidimensional capability deeper into the
context of a whole organism, approaches based on adaptive
optics (AO) have been developed. The overall goal of AO is to
measure the image distortion induced by the sample and use
that information to counter the aberration, rendering crisper
and brighter images. One such method - the “guide star”
technique (Primmerman et al., 1991) - images point sources at
various locations in a sample to characterize the local wavefront
distortion. An adaptive element, such as a deformable mirror,
then applies the inverse of that distortion to recover the un-
aberrated image. AO can be integrated into both standard
microscopes (Azucena et al., 2011; Tao et al.,, 2011) as well as
more advanced systems, such as the lattice light-sheet microscope
(Liu et al., 2018). Likewise, AO can also be used to correct the
excitation light wavefront, which is particularly important for
methods that use some form of spatially structured excitation.
The next frontier of exploration into the complex physiology
of biomechanical force transduction will demand the strategic

integration of (i) purpose-designed in vivo force sensors, (ii)
advanced optical microscopes, and (iii) computational tools.

DATA ANALYSIS AND HANDLING

Any microscopy-based force measurement technique will require
image processing and analysis to achieve meaningful results. Two
of the most common techniques are particularly dependent in
this regard: (i) traction force microscopy (TFM) and (ii) FRET
tension biosensors. Both techniques require careful and often
complex image-based calculations to arrive at an accurate force
measurement. Here, we discuss the data handling and analysis
challenges of these two methods, particularly in the context of
their implementation with advanced imaging technologies.

Analysis of Traction Force Microscopy
Data

Measuring the displacement of embedded fiducial markers
provides a quantitative view into the minute forces cells exert on
their environment. As described previously, TFM is considered
one of the “classical” techniques of force measurement in
mechanobiology (Harris et al., 1980; Dembo and Wang, 1999).
The concept of TFM is deceptively simple: optical tracking of
fiducial markers provides data that can be mathematically related
to the physical forces that cells exert on a substrate. However,
this straightforward premise requires several complex decisions
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FIGURE 7 | 3D LSFM combined with microparticle traction force microscopy monitors target deformation during phagocytosis. (A) Maximum intensity projections of
RAW macrophages expressing Lifeact-mEmerald (white) engulfing deformable particles labeled with AlexaFluor 647 (blue) imaged with LLSM. Time is given in
minutes:seconds, scale bar: 5 wm. (B) Front and side view projections of target deformations and actin intensity around the target particle at various time points
during the engulfment process. Time denoted in minutes:seconds, scale bar: 3 pm. Images are reproduced with permission from Vorselen et al. (2021).
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in experimental design, analysis, and optical configuration to
achieve the most biologically relevant data.

First, the choice for fiducial markers is critical to data quality.
To maximize the force sampling density, it is recommended
that fiducials be smaller than the spatial resolution of the
optical system (e.g., 100 nm diameter). While larger particles
(e.g., 500 nm diameter) can be more easily localized in lower
resolution optical instruments, it restricts the maximum fiducial
density in the substrate. This is important because higher
density will provide better sampling of the minute changes in
the displacement field, which translates to more refined force
calculations. The maximum density of fiducials, and therefore
the ability to sample biomechanical force, is ultimately limited
by the optical resolution. However, two methods can circumvent
this barrier. First, beads of multiple colors can be placed within
the same substrate and imaged separately (Gardel et al., 2008;
Sabass et al., 2008; Plotnikov et al., 2012). This technique, referred
to as “high resolution TFM,” improves the force measurement

sampling by several fold (Plotnikov et al., 2014), but requires
accurate multi-channel alignment. Recent advances in optical
microscopy, such as SIM and ISM, enable similar gains in
fiducial density by enhancing the spatial resolution up to twice
the diffraction limit (Colin-York and Fritzsche, 2018; Colin-
York et al., 2019; Barbieri et al., 2021). A combination of
both enhanced-resolution microscopy and multi-color fiducial
markers would allow even higher fiducial densities beyond either
method alone. Fiducial density aside, it is also important to
consider the assumptions inherent to TFM analysis.

There are two important assumptions that must be made for
later force calculations. First, it is presumed that any motion of
the fiducial markers is due only to cell-generated forces. This
assumption does not always hold true; drift or degradation of the
substrate itself can lead to non-biological fiducial displacement.
Such effects can be identified either by imaging substrates without
cells attached or imaging a large enough field of view to capture
non-perturbed regions for comparison. The second potentially
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FIGURE 8 | Two-Photon photoablation reveals mechanical tension in vivo. Image sequences of Drosophila embryo expressing (A) MoeABD-GFP and

(B) E-cadherin-GFP during 2P photoablation of cell-cell junctions. The red arrow in the second panel from the left represents the site of photoablation. Kymographs
at the right (taken at the yellow arrows shown in first panel) show the release and retraction of the ablated region. Uncaging of fluorescein with three-photon
microscopy (panel 5) demonstrates that the cell integrity is not disrupted by the photoablation. Scale bar: 5 um. Images are reproduced with permission from Rauzi

et al. (2008).
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erroneous assumption is in the mechanical uniformity of the
substrate. Numerous substrates have been used to interrogate
specific behaviors, from simple polyacrylamide gels (PAAG) to
more complex patterned microsurfaces (Balaban et al., 2001;
Beningo et al., 2001; Tamzalit et al., 2019). To properly calculate
force, the analysis must assume that the material rigidity is
constant across the whole volume. In other words, TFM relies
on the presumption that every bead in the substrate will
experience an identical displacement from a given amount of
force. Mechanical homogeneity of the substrate can be assessed
by conventional stiffness measurement assays such as atomic
force microscopy (Tse and Engler, 2010).

For conventional TFM, individual beads are optically tracked
using localization or correlation-based particle image velocimetry
(Butler et al., 2002; Toli-Norrelykke et al., 2002). This analysis
produces a set of bead displacements over time. From there,
the mathematical and physical relationships that connect these
displacements to underlying forces must be applied properly
(Huang et al., 2019). These intensive calculations compound any
error in the initial optical measurement of the displacement field.
The use of optical-sectioning methods such as TIRF and LSFM
minimizes inaccuracies by dramatically increasing the fiducial
signal contrast and therefore localization precision (Gutierrez
et al., 2011; Han et al., 2015; Barbieri et al., 2021). Finite element
analysis, Bayesian models, or various regularization methods can
provide more sophisticated information to better represent the
true nature of complex biomechanical systems. It is beyond the
scope of this review to compare mathematical models used in
TFM which have been well-covered in the literature (Yang et al.,
2006; Zielinski et al., 2013; Kulkarni et al., 2018; Huang et al,,
2019). Better models and advanced instrumentation are necessary
to investigate more complex multi-cellular systems (Franck et al.,
2011; Tang et al., 2014), which require considering both cell-
substrate and cell-cell interactions. While TFM represents a
powerful technique to measure nanoscale forces exerted by

various biological systems, it lacks a means to identify the
source(s) of such forces with molecular specificity.

Analysis of FRET Tension Biosensor Data
Genetically encoded FRET-based biosensors can quantify
biological tension with molecular specificity and picoNewton
sensitivity (Cost et al., 2015, 2019; LaCroix et al., 2015; Gayrard
and Borghi, 2016; Gates et al., 2019). This technique relies on
microscopy to measure the sensor FRET efficiency, or the degree
of energy transfer occurring between the donor and acceptor
fluorophores to infer a tension force. However, analysis of such
data must be performed judiciously, and advanced imaging
methods can both complicate and ameliorate the generation of
meaningful biological conclusion.

Arguably the most common way to measure FRET efficiency
requires computing the ratio of acceptor-to-donor fluorescence
intensity (Hoppe, 2007). However, numerous factors can
render a naively calculated ratiometric image utterly non-
informative. First, cross-excitation and spectral overlap will
produce erroneous signal in both donor and acceptor channels.
To account for this, it is imperative to prepare proper control
samples labeled with tension sensors containing only donor or
acceptor fluorophores alone (O’Shaughnessy et al., 2019).

However, other factors will also affect the accuracy of
ratiometric FRET calculations. Microscope illumination intensity
may vary by a surprising amount across the field of view. To
account for this variability, homogeneous fluorescent samples
should be imaged in both donor and acceptor channels (Model
and Burkhardt, 2001) as a reference. Such “shade correction”
can be of particular importance in more advanced microscopes
such as LSFM or other patterned illumination systems that
can be especially prone to uneven excitation light. In addition,
the accuracy of ratiometric FRET measurements is dependent
on the precision of color channel registration. Enhanced
resolution techniques such as SIM and ISM can often reveal
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misalignments that are not apparent with lower resolution
techniques (Baddeley et al., 2011). Multicolor fiducial markers
provide a way to computationally register color channels with
sub-diffraction accuracy (Manders, 1997). Finally, it is also
important to normalize the measured donor signal by the overall
donor photobleaching rate within the cell (Zal and Gascoigne,
2004), although LSFM can often reduce photobleaching to near
negligible levels (Chen et al., 2014). While complex, such analysis
can be successfully implemented to create high-quality FRET
images. For example, O’Shaughnessy et al. (2019) have developed
freely available FRET analysis software that is well suited for
dealing with large volume LSFM data.

Other advanced imaging techniques can simplify ratiometric
FRET measurements and analysis. For example, spectral imaging
permits detection and computational extraction of both donor
and acceptor signals from a single acquisition (Ecker et al., 2004),
making image registration and crosstalk correction unnecessary.
However, spectrally resolved detection is most common in laser-
scanning confocal microscopes (Zimmermann et al, 2003),
with fewer implementations in other more advanced modalities.
Additionally, the presence of endogenous fluorescent molecules
in the sample can complicate accurate analysis (Rossetti et al.,
2020). Once an accurate ratio of donor-to-acceptor fluorophore
intensity has been established, an image of FRET efliciency can
be calculated (Chen et al., 2006).

Conversely, fluorescence lifetime imaging microscopy (FLIM)
is an alternative to intensity-based methods for measuring FRET
efficiency (Becker, 2012; Ebrecht et al., 2014). In this case, the
donor fluorescence lifetime, rather than the ratio of donor and
acceptor intensities, can be used to determine FRET efficiency
directly. FLIM is a powerful technique to characterize FRET-
based tension sensors and is subject to far fewer confounding
issues than ratiometric approaches. However, the necessary
instrumentation is more specialized and less commonly available
than other imaging technologies. It can also suffer from slower
acquisition speed compared to widefield or raster-scanning
techniques, although recent advancements have begun to address
this issue. For example, Mizuno et al. (2021) devised a system
whereby a sample was illuminated sinusoidally in time, with a
unique modulation frequency at each pixel location. Through
this, they were able to perform frequency domain FLIM without
serially scanning a focal spot across the sample, thereby greatly
improving FLIM speed over previous methods.

Regardless of the method chosen, an appropriate calibration
curve is required to translate a measured FRET efficiency into
force (Grashoff et al., 2010; Gayrard and Borghi, 2016). Such
a relationship is essential to establish because FRET efficiency
will not, in general, be linearly proportional to force. The most
common procedure to experimentally calibrate FRET tension
biosensors has been via the use of optical tweezers (Hohng
et al., 2007; Grashoft et al., 2010). While this procedure can
be technically challenging, a number of FRET-based tension
sensors have been previously characterized in the literature
(Grashoff et al.,, 2010; Ringer et al., 2017; Salmon and Bloom,
2017; Li et al, 2018), allowing subsequent users to more
easily translate their own measured image data into high
quality force maps.

DISCUSSION

Biomechanical forces underpin a wide array of life processes,
ranging from mediating cellular behavior, regulating signaling
pathways, sculpting morphogenesis, governing embryonic
development, facilitating immune response, to influencing the
pathogenesis of many diseases that include cancer, cardiovascular
failure, and musculoskeletal disorders. It is therefore no surprise
that mechanobiology continues to gain prominence and
the attention of biologists across many fields. Unlike many
biochemical signals, biomechanical forces cannot be directly
tagged for visualization and therefore must be inferred. The
methods discussed here provide innovative solutions for
measuring force with exquisite sensitivity. However, in practice,
their accuracy and precision are ultimately limited by the
capabilities of the accompanying microscope. In that regard,
many emerging microscopy techniques hold the promise
of considerable technological improvements which, when
appropriately integrated into a force measurement assay,
can reveal further biomechanical insights that have hitherto
remained out of reach.

One considerable barrier not commonly discussed in the
surveys of emerging microscopy technologies is the lack of
accessibility for most biologists to this cadre of instruments, many
of which are not commercially available. These instruments are
usually developed in engineering or biophysics laboratories that
historically have limited interaction with biologists. The inherent
academic compartmentalization between research disciplines as
disparate as life sciences and optical engineering can often
impede the adoption of the nascent imaging technologies
by mechano-biologists. This is especially the case when the
creation of new microscopy technology far outpaces the speed
of commercialization. However, with the idea of open science
continuing to gain prevalence, many initiatives have been
created to tear down these barriers. There are now numerous
international and regional initiatives dedicated to bridging the
chasm between technology development and adoption, thus
making advanced microscopes and the associated expertise
accessible to the broader life sciences community. Some of
these centers - e.g., the Advanced Imaging Center at HHMI
Janelia Research Campus (Chew et al., 2017) and the Advanced
Bioimaging Center at the University of California-Berkeley -
are specifically designed to provide peer-reviewed, proposal-
driven, free-of-charge accessibility to these emerging microscopy
technologies well before they become commercially available. For
initiatives such as these to make an effective impact, a myriad of
institutional support and imaging science expertise is essential,
requiring significant investment.

An alternative open-access model is the concept of a “traveling
microscope.” One effort by Huisken and colleagues, dubbed the
“Flamingo,” seeks to address instrument access by designing
a modular, portable light sheet system (Power and Huisken,
2019). The instrument is customizable and shipped with full
installation instructions to institutes across the world. While
this concept is limited to optical techniques that will survive
shipping, it can be a useful option for mechanobiologists who are
impeded by instrument access through any other means. Another
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laudable approach is the recent paradigm shift toward sharing
design blueprints of newly developed, pre-published microscopy
tools, through open access mechanisms (Pitrone et al., 2013;
Chew et al., 2017; Millett-Sikking et al., 2019; Voigt et al., 2019;
Kumar et al, 2021). For groups with the necessary expertise
and resources, replicating these instruments is a viable and
sustainable choice.

Taken together, the remarkable confluence of advanced
optics and the unprecedented access to microscopy resources
makes this the opportune time to sharpen the toolkit for
biomechanical force measurement. Advanced microscopy now
enables imaging with unprecedented versatility; developing force
probes that fully take advantage of such tools for in vivo
mechanobiological studies is a necessary next step. Overall,
synergistic development of force measurement techniques, new
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