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T lymphocytes function as major players in antigen-mediated cytotoxicity and have
become powerful tools for exploiting the immune system in tumor elimination. Several
types of T cell-based immunotherapies have been prescribed to cancer patients with
durable immunological response. Such strategies include immune checkpoint inhibitors,
adoptive T cell therapy, cancer vaccines, oncolytic virus, and modulatory cytokines.
However, the majority of cancer patients still failed to take the advantage of these
kinds of treatments. Currently, extensive attempts are being made to uncover the
potential mechanism of immunotherapy resistance, and myeloid-derived suppressor
cells (MDSCs) have been identified as one of vital interpretable factors. Here, we discuss
the immunosuppressive mechanism of MDSCs and their contributions to failures of
T cell-based immunotherapy. Additionally, we summarize combination therapies to
ameliorate the efficacy of T cell-based immunotherapy.

Keywords: myeloid-derived suppressor cells, T cell-based immunotherapy, combination therapy, immune
checkpoint inhibitors, adoptive T cell therapy

INTRODUCTION

Immunotherapy intends to motivate immune cells to fight against tumor cells, instead of targeting
tumor cells directly. The main strategies for immunotherapy include strengthening the cytotoxicity
of T lymphocytes and eliminating immunosuppression induced by immune suppressive cells or
factors. Notably, T cells play irreplaceable roles in the treating process for their participation
in recognition of tumor antigens and final combat with tumor cells (Waldman et al., 2020). In
addition, it was interpreted that T cells enrichment in tumor sites was associated with favorable
responses in immunotherapy (Bruni et al., 2020). Based on this concept, multiple categories of T
cell-based immunotherapy are developed and prospered.

Currently, significant strides have been made in T cell-based immunotherapy for cancer
treatment since ipilimumab, an anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) antibody, was
approved by FDA for use in melanoma treatment. Subsequently, several categories of T cell-
based immunotherapy were under active investigations or came into clinical practice (Emens
et al., 2017). Such strategies are included: (i) blocking T cells suppressive signals with immune
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checkpoint inhibitors (ICIs) to emancipate existing T cells; (ii)
reinforcing cytotoxic T lymphocytes (CTLs) through adoptive
T cell therapy (ACT), such as the administration of tumor-
infiltrating lymphocytes (TILs), T cell receptor-modified T
(TCR-T) cells and chimeric antigen receptor T (CAR-T) cells;
(iii) inducing or generating the release of tumor antigen
to stimulate endogenous T lymphocytes by the application
of oncolytic virus and cancer vaccines; (iv) potentiating the
function of T cells by systematic administration of positive
modulatory cytokines, such as interleukin (IL) and interferon
(IFN). However, a number of patients quickly relapse after
the initial response or fail to show any regression. Only a
minority of patients benefit from these therapies (Li X. et al.,
2018; Pérez-Ruiz et al., 2020). The good response cancer types
include melanoma (Robert et al., 2015; Wolchok et al., 2017)
and non-small cell lung cancer (NSCLC) (Antonia et al.,
2017; Socinski et al., 2018). Extensive research is currently
undergoing to identify determinants of resistance to obtain a
superior efficacy in immunotherapy. Various factors are found
to be related to the outcome of T cell-based immunotherapy:
tumor mutation burden (TMB); antigen-presenting capacity;
immunological characteristics of the tumor microenvironment
(TME), including infiltration of effector tumor-killing cells
and their counterbalance against immunosuppressive network;
genetic and epigenetic alterations. In this review, we will
pay emphasis on the pillar of immunosuppressive network,
myeloid-derived suppressor cells (MDSCs) which often hijack T
lymphocytes and abandon their cytotoxic effect on tumor cells
(Colligan et al., 2020).

Myeloid-derived suppressor cell is a staple of the immune
profile in the TME, which is crucial in cancer genesis,
progression, and reaction to therapy (Kumar et al., 2016;
Ostrand-Rosenberg and Fenselau, 2018; Tcyganov et al., 2018).
In the earliest stage of tumorigenesis, cancer cells always succeed
in evading immune surveillance. Once established, tumor cells
release a battery of signals that induce the recruitment of immune
cells from bone marrow, including MDSCs, resulting in a tumor-
promoting milieu. Such is an elegant theory of immunoediting
conceptualized by Robert Schreiber, whereby malignant cells,
which evolve under selective pressure from immune system,
gain the capability of escaping immune recognition and taking
advantages of immune system in reverse (Desai et al., 2021).
Moreover, therapeutic interventions, including chemotherapy,
radiotherapy, and immunotherapy can simultaneously have an
effect on the whole process of the TME remodeling. Apart from
the direct inhibition of T cells, MDSCs can also foster the genesis
and maturation of regulatory T cells (Tregs) (Veglia et al., 2018),
tumor-associated macrophages (TAMs) (Ugel et al., 2015) and
cancer-associated fibroblasts (CAFs) (Alkasalias et al., 2018),
generating a immunosuppressive network (Tesi, 2019). Although
a considerable body of original articles and reviews focus on
MDSCs, few of them pay attention to their dynamic changes
and the influence on T cell-based immunotherapy. Therefore,
the present review attempts to figure out the signaling crosstalk
to gain a comprehensive understanding of how MDSCs become
immunosuppressive and how they counteract the efficacy of T
cell-based immunotherapy.

LIMITATION OF T CELL-BASED
IMMUNOTHERAPY

The past 10 years of clinical immunotherapy practice has
engendered a deep comprehension of cancer treatment. T cells
have become the central focus of arming the immune system
to fight against cancer. So far, several types of T cell-based
immunotherapies have been applied in clinical practice (Table 1)
and nearly all the strategies augment the number of cytotoxic T
cells by motivating endogenous T cells or reinfusing externally
expanded T cells. A succession of biological elements needs
to be fulfilled to achieve successful immunotherapy (Smyth
et al., 2016). These elements include immunogenic cancer
cell death, efficient antigen presentation or adjuvanticity, and
active effector T cells. Notably, absence or low infiltration of
cytotoxic lymphocytes was shown to be a critical inadequacy
that resulted in non-response to T cell-based immunotherapy
(Havel et al., 2019). Theoretically, T cell-based immunotherapies
were originally designed to optimize the solution from these
aspects. However, only a minority of patients experienced
improved survival from these therapies. Numerous studies
have been conducted to identify the barriers to a favorable
response to T cell-based immunotherapy and multiple challenges
have been defined.

Tumor immune phenotype has been identified to forecast
the efficiency of immunological tumor elimination. Tumor
immune classification has been proposed in recent years, and its
potential value in immunotherapy was discussed in the literature.
Elaborative evaluation of tumor-infiltrated lymphocytes helps
to identify three predominant immune phenotypes: immune-
inflamed, immune-excluded, and immune-desert (Ochoa de Olza
et al., 2020). Favorable response of T cell-based immunotherapy
always occurs in immune-inflamed tumors (Chen and Mellman,
2017). However, in immune-excluded and immune-desert
tumors, also known as cold tumors, CD8+ T cells are absent or
prevented from effective infiltration. Naturally, the outcome of T
cell-based immunotherapy in these tumors is frustrated owing to
the lack of contact-dependent cytotoxicity. Biomarkers that are
correlated with tumor immune phenotype include programmed
death ligand-1 (PD-L1) expression, IFN-γ signature, B cells
abundance, and genetic instability, which can be used as
predictors in immunotherapy (Kowanetz et al., 2018; Griss et al.,
2019).

Heterogeneity of tumor cells reveals the complexity of
cancer T cell-based immunotherapy. Malignant tumor is the
heterogeneous product of a plethora of genetic alterations.
Somatic mutation can produce tumor-specific pipetides which
can be recognized by immune system as neoantigens. Also,
particular molecular mutations drive the development of targeted
therapies with favorable clinical response. However, tumors are
as sly as foxes, always utilizing genetic alterations to escape
from elimination when targeted. Therefore, although T cell-
based immunotherapy has demonstrated active response, the
majority of patients will eventually develop resistance to these
kinds of therapies. For instance, targeting programmed death-1
(PD-1)/PD-L1 pathway triggered the upregulation of alterative
immune checkpoints, such as lymphocyte-activation gene 3
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TABLE 1 | Summary of FDA-approved T cell-based immunotherapies.

Therapy type Formulation Indicantions

ICIs Anti-CTLA-4 Ipilimumab Melanoma, RCC, CRC, HCC, NSCLC, malignant pleural mesothelioma

Anti-PD-1 Nivolumab Melanoma, NSCLC, RCC, HL, SCCHN, Urothelial carcinoma, CRC, HCC,
SCLC, ESCC, malignant pleural mesothelioma

Cemiplimab CSCC, NSCLC, BCC

Pembrolizumab Melanoma, NSCLC, SCLC, HNSCC, HL, PMLBCL, uterine cancer, bladder
cancer, CRC, gastric cancer, esophageal cancer, cervical cancer, HCC, MCC,
RCC, HCC, endometrial carcinoma, CSCC, TNBC

Anti-PD-L1 Atezolizumab Urothelial cancer, NSCLC, SCLC, TNBC, HCC, melanoma

Avelumab MCC, urothelial cell carcinoma, RCC

Durvalumab Urothelial cancer, NSCLC, SCLC

Anti-CTLA-4 plus anti-PD-1 Nivolumab plus Ipilimumab Melanoma, RCC, CRC, HCC, NSCLC, malignant pleural mesothelioma

ACT CAR-T Axicabtagene ciloleucel NHL

Tisagenlecleucel ALL, NHL

Brexucabtagene autoleucel Mantle cell lymphoma

Oncolytic virus Oncolytic virus Talimogene laherparepvec Melanoma

Cancer vaccines DC vaccine Sipuleucel-T Prostate cancer

Chemokines Interferon Recombinant interferon alfa-2B Hairy cell leukemia, Kaposi sarcoma, melanoma, follicular NHL

Interleukin Interleukin-2 RCC, melanoma

RCC, renal cell carcinoma; CRC, colorectal cancer; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung cancer; SCLS, small cell lung cancer; HL, Hodgkin
lymphoma; NHL, non-Hodgkin lymphoma; SCCHN, squamous cell cancer of the head and neck; HNSCC, head and neck squamous cell carcinoma; ESCC, esophageal
squamous cell carcinoma; CSCC, cutaneous squamous cell carcinoma; PMLBCL, primary mediastinal large B-cell lymphoma; MCC, Merkel cell carcinoma; TNBC,
triple-negative breast cancer; ALL, acute lymphoblastic leukemia.

(LAG3) and T cell immunoglobulin domain and mucin domain-
3 (TIM-3), resulting in adaptive resistance (Koyama et al., 2016).
Usually, high TMB generates antigenicity and activates immune
system, making tumors inflamed. High TMB should be a positive
biomarker of T cell-based immunotherapy (Samstein et al., 2019).
However, recent studies did not value TMB as an effective
predictor in PD-1 and CTLA-4 dual blockade therapeutic
strategies (Peters et al., 2019a,b). Heterogeneity of tumor cells
resulted from persistent bulky mutations may account for the
incompetence of TMB in predicting benefit of immunotherapy.

Additionally, negatively regulatory networks can shut down T
cell-based immune response. The TME is a dynamic environment
composed of the extracellular matrix, blood vessels, signaling
molecules, immune components, and malignant cells. Adding
to its complicity, treatment-induced biochemical events bring
about a confluence of changes. Every immune process could exert
influence over the treatment outcome. Monotherapies merely
manipulating T cells seem powerless to work out the major
impediment that attenuates antitumor immunity. With deeper
understanding of the TME and summary on clinical practice, it
is consensus that the other therapeutic node, removing immune
suppression, cannot be neglected (Smyth et al., 2016; Tesi, 2019).

MDSC: A REAL SETBACK TO THE
SUCCESS OF T CELL-BASED
IMMUNOTHERAPY

Among the negatively regulatory networks, cellular components
include Tregs, TAMs, CAFs, and MDSCs. They secrete a plethora
of cytokines and chemokines, providing hotbed and protector

for cancer cells. Notably, MDSCs are acknowledged to directly
compromise T cells function, hence their name. Accumulating
evidence has suggested the vital role of MDSCs in facilitating
an immunosuppressive TME in various cancer types (Parker
et al., 2015; Kumar et al., 2016). Numerous immunosuppressive
mechanisms have been identified, including soluble mediators,
metabolic interactions, and cell-to-cell contact.

MDSCs: A Heterogeneous Clump of
Immature Myeloid Cells
Myeloid-derived suppressor cells are a diversified clump
of immature myeloid cells with strong immunosuppressive
functions. Generally, most MDSCs could fall into two
categories, namely: monocytic-MDSCs (M-MDSCs) and
polymorphonuclear-MDSCs (PMN-MDSCs, also known
as granulocytic-MDSCs, G-MDSCs). In humans, scientists
also defined a more immature MDSC as early-stage MDSC
(e-MDSC), lacking surface markers for both M-MDSC
(CD14+) and PMN-MDSC (CD15+) (Bronte et al., 2016).
Under homeostatic conditions, hematopoietic stem cells can
polarize towards mature granulocytes, monocytes or dendritic
cells (DCs) through common myeloid progenitors (CMPs)
and granulocyte-monocyte progenitors. Nevertheless, under
pathologic conditions such as chronic infection, cancer or
immune-related disease, granulopoiesis is compromised,
diverting the mainstay differentiation towards MDSCs (Mackey
et al., 2019). Recently, conversion of neutrophils and monocytes
to MDSCs has been reported. In particular, CD14+ myeloid
cells isolated from melanoma cells have been demonstrated to
develop a suppressive activity on T cells when disposed with
extracellular vesicles (EVs), thus referred to as EV-MDSCs.
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Similarly, when exposed to exosomes obtained from chronic
lymphocytic leukemia (CLL) cells, monocytes derived from
healthy donors displayed the functional characteristics of
MDSCs (Bruns et al., 2017). However, Bronte et al. (2016)
suggested that human MDSCs generated in vitro should be
defined as “MDSC-like” cells. A separate team also identified a
monocytic lineage as the precursor of PMN-MDSCs and termed
these cells monocyte-like precursors of granulocytes (Mastio
et al., 2019). Intriguingly, selective inhibition of monocytic cells
had little impact on the genesis of granulocytes in normal mice
although it diminished the aggregation of PMN-MDSCs by 50%
in tumor-bearing mice. All these findings showed that MDSCs
are generated in a complicated hematopoietic network, in which
multiple hematopoietic cells have the potential to differentiate
into to MDSCs and this process is stringently regulated by factors
derived from the TME.

The MDSCs expansion and activation are controlled by
multiple TME-derived molecules via several transcriptional
pathways. Growth factors such as the stem cell factor
(SCF), granulocyte colony-stimulating factor, macrophage
colony-stimulating factor, and granulocyte-macrophage colony-
stimulating factor (GM-CSF), stimulate myelopoiesis and
expansion of MDSCs through JAKs-STAT signaling pathways
(Kumar et al., 2016). Among several STAT signaling pathways,
STAT3 was the most widely studied and was shown to
promote MDSCs proliferation by regulating the expression
of proliferation-related genes and apoptosis-related genes, such
as bcl-xl, cyclin d, and c-myc (Wang et al., 2020). STAT3 was also
reported to induce the production of immunosuppressive factors
such as arginase 1 (ARG1) and reactive oxygen spices (ROS)
(Wang et al., 2020). In addition, inflammation is another factor
affecting the modulation of MDSCs. Inflammation is considered
as a companion of cancer and is well involved in nearly all
stages of cancer development and the TME sculpture (Greten
and Grivennikov, 2019). In the inflammatory milieu, MDSCs
are generated to prevent the immune system from overreacting.
While get into a cancer-related inflammatory milieu, MDSCs
are quickly tamed by cancer cells and transform into a tumor-
protective phenotype (Bronte et al., 2016). Inflammatory
cytokines, including S100A8/9, adenosine, IFN-γ and IL-6
are responsible for the remodeling of MDSCs by activating
toll-like receptor (TLR) signaling pathway (Wang et al., 2020).
Furthermore, transforming growth factor-β (TGF-β) and IL-1β

were reported to restrain the transcription of human leucocyte
antigen-DR (HLA-DR) in monocytes by dampening major
histocompatibility complex class II (MHC II) transactivator,
converting them to CD14+HLA-DRlo/neg M-MDSCs (Mengos
et al., 2019). Additionally, the CCAAT/enhancer binding protein-
α (C/EBPα) is an extensively engaged transcription factor that
is also imperative for the function of MDSCs (Thevenot et al.,
2014). C/EBPα drives the expansion of MDSCs through a
cell-surface molecule called the retinoic acid-related orphan
receptor C1, during cancer-related inflammation (Strauss et al.,
2015). Moreover, the C/EBP homologous protein is an apoptosis-
related transcription factor which is stimulated by endoplasmic
reticulum (ER) stress and is instrumental in the activation of
the IL-6/STAT3 pathway in MDSCs. On the contrary, interferon

regulatory factor-8 (IRF8) negatively regulates of the generation
of MDSCs, on the account that transgenic overexpression of
IRF8 diminished the aggregation of MDSCs and mice with
low expression of IRF8 were enriched with MDSC-like cells
(Valanparambil et al., 2017).

Additionally, ER stress has emerged as a key mechanism
regulating the pathologic activities of MDSCs. MDSCs from
tumor-bearing hosts exhibit a greater ER stress response than
monocytes or neutrophils from tumor-free hosts (Condamine
et al., 2014). Neutrophils derived from healthy donors develop
a suppressive capacity when exposed to inducers of ER stress
(Condamine et al., 2014). These experimentally induced cells
expressed high levels of ARG1, NOS2, and NAPDH oxidase-2
(NOX-2), which are closely associated with immunosuppression.
Moreover, ER stress regulates the lifespan of MDSCs, favoring
their apoptosis in peripheral tissues and promoting their
expansion in bone marrow (Condamine et al., 2014). An
additional study showed that thapsigargin-induced ER
stress upregulated the level of the lectin-type oxidized LDL
receptor 1 (LOX-1) in human neutrophils and promoted their
conversion to the immunosuppressive phenotype, which can be
interrupted by blocking the inositol-requiring enzyme 1-spliced
X-box binding protein-1 pathway (Condamine et al., 2016).
Nonetheless, it is still unclear whether LOX-1 is important in
the downstream signal transduction to prompt neutrophils to
acquire a suppressive potential.

The accumulation of MDSCs in the tumors sites is regulated
by chemokines generated from the TME. C-C motif chemokine
ligand 2 (CCL2, also called MCP-1) and CCL5 (also called
RANTES) are the main chemotactic factors implicated in the
migration of M-MDSCs into tumors (Iwamoto et al., 2020).
Increased expression of CCL2 is an indicator of the progression
of human colorectal cancer while inhibiting CCL2 was reported
to reduce the recruitment of MDSCs in colorectal cancer model
(Chun et al., 2015). Similarly, PMN-MDSCs are mobilized
following the chemotaxis of CXC motif chemokines, including
CXC motif chemokine ligand 1 (CXCL1), CXCL2, CXCL5,
CXCL8, and CXCL12 (Kumar et al., 2016; Najjar et al., 2017;
Li Y.M. et al., 2019). S100A8 and S100A9 proteins are also
among the critical driving force in MDSCs recruitment (Song and
Struhl, 2021). Notably, PMN-MDSCs are also the sources of S100
proteins, creating a positive feedback loop of MDSCs aggregation
(Kowanetz et al., 2010). Evidently, the recruitment of MDSCs
involves complicated mechanisms and it occurs according to the
type and stage of tumors.

MDSC: A Critical Role the
Immunosuppressive Camp
If the immune cells within the TME were divided into two
opposing fronts, T cells would be considered as the leaders
of the friendly side while MDSCs occupy critical position in
the pernicious foe (Tesi, 2019). MDSCs deliver suppression on
cytotoxic lymphocytes and innate immune cells. Additionally,
they exert their effects on other inhibitory cell populations,
forming a powerful immunosuppressive landscape and inhibiting
the tumoricidal immune system.
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Construction of an Immunosuppressive Camp
During the battle against cancer cells, Tregs and type 2
macrophages betrayed the T cells camp and became accomplices
of the MDSCs. When co-incubated with M-MDSCs separated
from pancreatic ductal adenocarcinoma, autologous CD4+ T
cells could potentiate their differentiation to Foxp3+ Tregs
(Siret et al., 2020). Th17 cells were also revealed as a source
of Foxp3+ Tregs under the induction of CD14+HLA-DR−/low

M-MDSCs via TGF-β and retinoic acid (Hoechst et al., 2011).
Furthermore, MDSCs-derived molecules, such as CCL3, CCL4,
and CCL5, facilitate the recruitment of CCR5+ Tregs in a
mouse model of melanoma (Schlecker et al., 2012). Moreover,
a recent preclinical study demonstrated the MDSCs-mediated
induction of Tregs occurred in a cell contact manner (Siret
et al., 2020). In parallel with mobilization of Tregs, MDSCs can
also convert macrophages to type 2 phenotype through releasing
increased level of IL-10, thereby promoting tumor progression
(Zefferino et al., 2021). More importantly, it was shown that
M-MDSCs could directly differentiate into TAMs in a hypoxia
inducible factor-1α (HIF-1α) dependent manner (Zefferino et al.,
2021). Th17 cells are another group of immunosuppressive
cells characterized by the production of IL-17, which cripple T
lymphocyte cytotoxicity. MDSCs induce inducible nitric oxide
synthase (iNOS) production in T cells, favoring Th17 cells
proliferation (Jayakumar and Bothwell, 2019; Dar et al., 2020).
Conversely, Tregs were also observed to contribute to the
development of MDSCs. Lee et al. (2016) showed that Tregs
facilitated the proliferation of MDSCs through the secretion of
TGF-β in a colitis model. The study also reported that reduced
secretion of TGF-β impaired the expression of ARG1, iNOS,
and PD-L1 in M-MDSCs. In a mouse ret melanoma model,
Tregs from the tumor site not only inhibited T cells directly but
also upregulated PD-L1 expression in MDSCs. Correspondingly,
deletion of Tregs using CD25-specific antibodies downregulated
the expression of PD-L1, suggesting an interlaced relationship
between MDSCs and Tregs (Fujimura et al., 2012). Overall, these
findings verified the presence of a powerful negative regulatory
network comprising of MDSCs and other inhibitory immune
cells, conspiring to abrogate T cell-based antitumor immune
response and promote tumor progression (Figure 1).

Suppression on T Cells
Myeloid-derived suppressor cells are major sources of reactive
oxygen and nitrogen spices in the TME, which are harmful
to most cell types including T cells. The production of ROS
by NOX-2 during respiratory burst, such as hydrogen peroxide
(H2O2), superoxide anions and hydroxyl radicals, was found
to be closely related to the eradication of TILs. ROS inhibited
T-cell immune responses by restricting interactions between TCR
and MHC, whereas ROS inhibitors could reverse the suppressive
effect of MDSCs on T cells (Liu et al., 2015). Moreover, elevated
ROS levels suppressed their differentiation to mature myeloid
cells, enhancing the recruitment of MDSCs and forming a
signaling cascade (Adeshakin et al., 2021). Intriguingly, MDSCs
were demonstrated to salvage the harmful effect of ROS by
expressing the nuclear factor erythroid 2-related factor 2 (Nrf2),
an transcription factor mediating cellular antioxidant response

(Beury et al., 2016). Another cytotoxic oxynitrite is nitric oxide
(NO), which is produced through the catalysis of iNOS. NO was
declared to suppress proliferation of T lymphocytes and even
prompt their apoptosis. Moreover, its synthesis products with
the superoxide anion, peroxynitrite, should be responsible for
non-responsiveness of CTLs.

Furthermore, MDSCs deprive T cells of several nutrients
such as L-arginine and cysteine which are essential for their
metabolism and function (Geiger et al., 2016). Cationic amino-
acid transporter-2B works as a mediator in the transportation of
L-arginine from the extracellular space into the intracellular space
of MDSCs (Cimen Bozkus et al., 2015). A previous study reported
that when L-arginine was exhausted by MDSCs, nitration of
TCRs and T-cell apoptosis were enhanced through the increased
production of IL-10 and prostaglandin E2 (PGE2), leading
to impairment T cells activation (Miret et al., 2019). When
gathered in MDSCs, L-arginine serves as a substrate in a cascade
of synthetic reactions, contributing the immunosuppressive
function of MDSCs (Grzywa et al., 2020). For instance, arginases
(ARG1 and ARG2) deal with the catabolism of L-arginine to urea
and L-ornithine. L-ornithine can further convert to L-proline
which is an important immunosuppressive polyamine (Grzywa
et al., 2020). Moreover, activated T lymphocytes, together with
several Th2 cell-secreted cytokines, including IL-4, IL-5, IL-10,
and IL-13 can increase the expression of ARG1 (Grzywa et al.,
2020). Upregulation of ARG1 in MDSCs not only trigger T cells
inhibition but also promotes extracellular matrix remodeling,
favoring tumor growth (Grzywa et al., 2020). However, it
was recently demonstrated that the expression of ARG1 is
not compulsory in MDSCs-mediated immunosuppression (Bian
et al., 2018). The study however emphasized on the importance
of cell-to-cell contact in T cells inhibition. Cysteine is another
essential amino acid in T cells that was also reported to be
deleted by MDSCs, leading to the inhibition of T-cell function
(Srivastava et al., 2010). It was shown that depletion of L-arginine
and cysteine reduced the synthesis of glutathione (GSH), which
could prevent the production of ROS (Srivastava et al., 2010).
In addition to amino acid metabolism, alteration of glycolysis
and lipid metabolism contributes to MDSCs inhibitory capability,
resulting in T cells suppression and tumor progression (Wang
et al., 2020). The increased production of lactate augmented
the number of MDSCs and fatty acid transport protein 2 was
reported to be overexpressed in PMN-MDSCs, which could exert
suppressive function by means of arachidonic acid uptake and
synthesis of PGE2.

Immunosuppressive mediators are also utilized by MDSCs
to induce T cells inhibition. In cancer-bearing hosts, adenosine
is excessively produced in the TME. CD39 and CD73 are two
critical ectoenzymes that catalyze the generation of adenosine
and are mainly expressed on immunosuppressive cells. MDSCs
separated from the peripheral blood or tumors of NSCLC
patients were reported to express increased levels of CD39 and
CD73, under the stimulation of TGF-β in a HIF-1α-dependent
way, hence resulting to excessive production of adenosine (Li
et al., 2017). Additionally, adenosine was proven to inhibit
naïve T cells initiation by blocking the phosphorylation of
extracellular regulated protein kinases (ERK), protein kinase B

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 July 2021 | Volume 9 | Article 707198

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-707198 July 8, 2021 Time: 20:0 # 6

Shi et al. MDSCs-Mediated Resistance to Cancer Immunotherapy

FIGURE 1 | MDSCs-mediated suppression in T cells. (A) In lymph node, MDSCs promote Treg differentiation and increase FOXP3 expression via TGF-β. T cell
proliferation was inhibited due to the increased secretion of reactive oxygen and nitrogen spices. (B) MDSCs inhibit T cell homing by disrupting L-selectin (CD62L)
structure and hindering the function of CD44 and CD162, essential in T cell homing. (C) In tumor sites, MDSCs inhibit T cells via immune checkpoint blockade,
metabolism deprivation, and suppressive molecules. Moreover, MDSCs induce macrophage differentiation into type 2 macrophage (M2 macrophage). Treg,
regulatory T cell; IDO, indoleamine 2,3-dioxygenase.

(PKB/Akt) and the zeta-chain-associated protein 70 (Zap70)
(Mastelic-Gavillet et al., 2019). The function of activated T
cells was also compromised by adenosine, which attenuated
the expression of several effector molecules such as CD95L,
perforin, IFN-γ, and tumor necrosis factor-α (TNF-α) (Mastelic-
Gavillet et al., 2019). Apart from high levels of adenosine,
other immunosuppressive cytokines (such as IL-10 and TGF-β)
from MDSCs also elicit T cells inhibition. For instance, IL-
10 inhibits antigen presentation by impairing the expression of
MHC, co-stimulatory signals and cytokines secretion in antigen
presenting cells (APCs), hence indirectly suppressing T cells
response (Payne et al., 2013). Furthermore, TAMs, TILs, as
well as cancer cells are also the source of IL-10 and TGF-
β, amplifying their tumor promoting and tumor suppressing
activity (Stewart and Smyth, 2011). Therefore, successful
treatment requires more specific identification of tumor immune
signatures when targeting IL-10 and TGF-β. In addition, PGE2
and indoleamine 2,3-dioxygenase (IDO) were also involved
in MDSCs-induced immunosuppression. In a genesis assay of
MDSCs, PGE2 was shown to induce the expression of multiple
immunosuppressive makers on MDSCs, including IDO, IL-10,
and ARG1 (Obermajer and Kalinski, 2012).

Moreover, immune checkpoint molecules were identified to
be strong mediators of MDSCs-induced immunosuppression.

PD-1/PD-L1 is the mostly studied signal. The binding of
PD-L1 on MDSCs and PD-1 on T cells induces T cells
anergy and apoptosis (Groth et al., 2019). Moreover, other
immune checkpoints are also involved in MDSCs-induced
suppression on T cells, including CTLA-4, LAG-3, and TIM-
3. These several immune checkpoints complement each other.
For instance, the TIM-3/Gal-9 pathway is a critical mechanism
for primary or secondary resistance to anti-PD-1 treatment
in metastatic NSCLC patients (Limagne et al., 2019). In
addition, in patients with high MDSCs levels, ICIs have poorer
clinical response. So, whether ICIs could interrupt immune
checkpoint-mediated connections between MDSCs and T cells
need further investigation.

In addition to the aforementioned mechanisms, MDSCs also
impair lymphocytes homing by destroying the structure of
CD62L (L-selectin), a lymph node homing receptor, through a
disintegrin and metalloprotease 17 (ADAM17) (Ku et al., 2016).
The loss of L-selectin was also proved to be correlated with
inactivation of CD8+ T cells in lymph nodes (Ku et al., 2016).
Further, M-MDSCs could destroy the structure of trafficking-
related molecules on T cells in a NO dependent manner,
including CD44 and CD162 (Schouppe et al., 2013). CD44
mediates the connection of T cells with extracellular matrix
component hyaluronic acid and CD162 is a ligand of selectin P.
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The destroy of CD44 and CD162 impaired the extravasation and
the infiltration of T cells. MDSCs set the myriad of hurdles in T
cells trafficking way.

Most studies of immunotherapy concentrated on
conventional CD4+ and CD8+ lymphocytes, but unconventional
T cells may offer advantages to T cells immunotherapy in
cancer treatment, which are also susceptible to MDSCs. The
unconventional T cells subsets include natural killer T (NKT)
cells, mucosal-associated invariant T (MAIT) cells and γδ T cells
(Pellicci et al., 2020). These cells account for approximate 10% of
T cells in circulation and a dominant percentage in tissues such as
gut mucosa. Conventional T cells functions in a MHC I or MHC
II dependent manner, while unconventional T cells interact
with MHC class Ib or MHC I like molecules (Godfrey et al.,
2018). Activation of type I NKT cells was shown to stimulate the
motivation of T cells and NK cells, while the behavior of type II
NKT cells was drastically different (Vivier et al., 2012). At the
presence of α-GalCer, type I NKT cells could convert MDSCs
into stimulatory APCs by producing increased levels of IL-12,
IFN-γ, and TNF (Ko et al., 2009). In turn, Zhang et al. (2017)
reported that MDSCs could selectively inhibit the production of
IFN-γ of NKT cells through membrane-bound TGF-β. However,
other two studies revealed that NKT cells were resistant to
immunosuppressive effects of MDSCs (Gebremeskel et al., 2015;
Horinaka et al., 2016). The quite different observations may be
caused by discrepant identifying markers. More sophisticated
design is needed to achieve an accurate assessment. γδ T cells
also have dual effects on tumors, which is dependent on the
characteristics of TME (Li L. et al., 2019). Under normoxic
environment, tumor-derived exosomes stimulate the cytotoxic
activity of γδ T cells (Li L. et al., 2019). However, oxygen pressure
could alter the content of tumor-derived exosomes, which
subsequently induced the suppression of MDSCs on γδ T cells
(Li L. et al., 2019). Additionally, a subset of Vγ4 γδ T cells are the
producer of IL-17, an immune inhibitory cytokine. This subset
of Vγ4 γδ T cells enhance the suppressive activity of MDSCs,
forming a positive feedback (Ma et al., 2014). The diversity
of unconditional T cells and limited identification strategies
pose challenge to clearer understanding of their biological
characteristics and targeted strategies.

Impact on Other Tumor Inhibitory Immune Cells
Apart from direct T-cell suppression, MDSCs also exert strong
regulatory effects on other tumor inhibitory immune cells,
such as NK cells and DCs, hence generating a formidable
immunosuppressive force (Ostrand-Rosenberg et al., 2012;
Bruno et al., 2019). M-MDSCs obtained from melanoma patients
inhibited the cytotoxicity of NK cells through the production of
TGF-β (Mao et al., 2014). The same study showed that monocytes
treated with PGE2 were activated via the p38MAPK/ERK
pathway and consequently secreted elevated levels of TGF-β,
resulting in the potent suppression of NK cell activity in vitro.
In another study, both CD14+ MDSCs and CD15+ MDSCs
from the tumors of head and neck squamous cell carcinoma
(HNSCC) patients suppressed NK cells activation (Greene et al.,
2020). Moreover, the immunosuppressive ability of CD14+
MDSCs was reversed using TGF-β monoclonal antibodies (mAb)

while CD15+ MDSCs were only sensitive to the NOS inhibitor,
L-NMMA. In addition to soluble factors, Fc receptors expressed
on NK cells were also reported to be critical in MDSCs-induced
suppression (Stiff et al., 2018).

Increasing evidence suggests that MDSCs are associated with
disrupting the accumulation and function of DCs, although
the underlying mechanism is yet to be elucidated. Poschke
et al. (2012) demonstrated that purified M-MDSCs extracted
from melanoma patients negatively regulated the maturation,
trafficking, cytokine production and antigen presentation of
DCs. Additionally, in hepatocellular carcinoma model, MDSCs
suppressed the capability of DCs to stimulate T lymphocytes
and inhibited IL-12 production in DCs through increased IL-
10 secretion (Hu et al., 2011). A recent study also demonstrated
that MDSCs hindered DCs-mediated antigen presentation, which
was dependent on NO-induced STAT1 nitration, and this effect
could be reversed by iNOS inhibitors (Markowitz et al., 2017).
Moreover, a previous study reported that MDSCs suppressed
the generation and antigen presentation of DCs. It also showed
that both Notch and STAT3 signaling were required in MDSCs-
induced suppression (Wang et al., 2016).

Additionally, MDSCs are involved in B cell-mediated immune
responses. A study reported that MDSCs impeded B cells
proliferation in vitro through the increased secretion of ARG1
(Wang et al., 2018). After deletion of MDSCs using anti-Gr-1
antibodies, there was an increase in the production of both IL-
7 (a B cell stimulator) and B cell-derived IgG, indicating that B
cells suffer from MDSCs-induced inhibition. Similar to T cells,
Ku et al. (2016) announced that MDSCs also reduced L-selectin
levels on B cells through the cell-to-cell contact mechanism,
hence disrupting the homing of B cells. Furthermore, it was
shown that MDSCs upregulated the expression of PD-L1 and
IL-10 on IgA+ B cells via the TNF receptor 2 (Xu et al., 2017).
Moreover, MDSCs act as inducers of regulatory B cells, a cluster
of immunosuppressive B cells, by delivering IL-10 and TGF-β
(Jayakumar and Bothwell, 2019).

In addition to their immunosuppressive capabilities,
MDSCs also positively contribute to the immune-independent
progression of tumors. They promote the expansion of tumor
cells, epithelial-mesenchymal transition (EMT), and enhance
stemness by secreting numerous soluble factors, such as IL-10
and TGF-β (Yang et al., 2004; Bruno et al., 2019). Moreover,
MDSCs were shown to facilitate metastasis by secreting
metalloproteases, such as matrix metallopeptidase 9 (MMP-9),
and contribute to pre-metastasis niche formation (Long et al.,
2020). When get into a pre-metastasis niche, MDSCs release a
large amount of NO, ARG-1, and immunosuppressive factors,
altering T cells and NK cells functions and facilitating the
recruitment of TAMs and Tregs (Tang et al., 2021). Additionally,
MDSCs promote angiogenesis by secreting MMP9 and VEGF
(Tang et al., 2021).

MDSC: An Adverse Predictive Marker in
Cancer Patients
Myeloid-derived suppressor cells have been determined in
multiple kinds of tumors, such as melanoma, NSCLC, and
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prostate cancer. Studies on patients payed more attention to
MDSCs in peripheral blood, contrary to preclinical studies
which largely focused on tumor-infiltrating MDSCs. MDSCs
accumulation in circulation always coincides with an advanced
tumor burden, stage, grade, and poor prognosis in various
types of cancer (Diaz-Montero et al., 2014). For instance,
higher percentages (>11%) of circulating CD14+ M-MDSCs
independently predicted the risk of death in stage III/IV
melanoma patients (Weide et al., 2014). A similar conclusion
was also drawn in patients with NSCLC, pancreatic cancer,
bladder cancer, gastric cancer, and hepatocellular carcinoma
(Chaib et al., 2020).

The MDSCs abundance in circulation was also verified
to be correlated with poorer responses to various types of
immunotherapy and they shortened the overall survivals (OS)
of patients (Gebhardt et al., 2015; Martens et al., 2016). Meyer
et al. (2014) reported that low frequencies of M-MDSCs were
related to better clinical efficacy in melanoma patients treated
with ipilimumab. This finding was consistent with that of another
study which reported that high levels of MDSCs dealt with the
absence of antigen-specific T lymphocytes, hence engendering
limited efficacy of ipilimumab (Weide et al., 2014). Three more
studies also reported that lower levels of circulating MDSCs
before treatment could be utilized as a predictive marker
of favorable reaction to ipilimumab in melanoma patients
(Gebhardt et al., 2015; Martens et al., 2016). A similar pattern
was also observed in melanoma patients undergoing anti-PD-1
treatment. Fewer pretreatment MDSCs in peripheral blood were
associated with better clinical responses and longer survival of
melanoma patients treated with nivolumab (Weber et al., 2016).
Furthermore, there was an increase in the levels of LOX-1+
PMN-MDSCs (a specific subset of MDSCs) following anti-PD-
1 treatment in NSCLC patients with hypo-responsiveness (Kim
et al., 2018). LOX-1 was identified as a promising marker for
distinguishing between immunosuppressive PMN-MDSCs and
neutrophils (Condamine et al., 2016). The accumulation of LOX-
1+ PMN-MDSCs in tumor site was also correlated with shorter
disease free survival in glioblastoma patients (Chai et al., 2019).
These findings therefore indicate that MDSCs always appear to
cripple the beneficial effects of immunotherapy by interfering
with the function of T cells.

Effect on T Cell-Based Immunotherapy
T cells play irreplaceable roles in immunotherapy. Efficient
antigen presentation, sufficient activation and expansion, smooth
infiltration, and effective cytotoxicity of T cells are indispensable
in successful immunotherapy. Given the mechanism of MDSCs-
mediated immunosuppression has been widely studied, their
effect on clinical response of T cell-based immunotherapy can
never be neglected.

Effect on Immune Checkpoint Inhibition
Immune checkpoint inhibitors have gained popularity owing
to their efficacy in several malignant tumors (Darvin et al.,
2018). The PD-1/PD-L1 axis and the CTLA-4/B7 axis are
key targets for ICIs and have been widely applied in clinical
practice (Tang et al., 2018; Melaiu et al., 2020). Ipilimumab,

the first approved anti-CTLA-4 monoclonal antibody, slightly
but significantly increased the OS of stage III/IV melanoma
patients compared to standard treatments (Hodi et al., 2010).
Thereafter, nivolumab and pembrolizumab were approved by
the FDA in 2014. The drugs were shown to have durable
responses in 40% of patients and conferred an improved OS,
compared to chemotherapy and ipilimumab (Robert et al.,
2014, 2015). Following this, anti-PD-L1 antibodies, including
atezolizumab, avelumab, and durvalumab along with another
anti-PD-1 antibody were gradually approved by the FDA, with
extensive indications on several types of cancer (Gulley et al.,
2017; Hassan et al., 2019). Unfortunately, trials on ipilimumab in
several cancer types, such as NSCLC, SCLC, renal cell carcinoma,
and prostate cancer did not provide results as satisfactory as
those seen in patients with melanoma (Lynch et al., 2012;
Reck et al., 2013; Kwon et al., 2014). Additional trials on
PD-1/PD-L1 inhibitors, such as atezolizumab, showed little
advantage over standard treatment in certain kinds of solid
tumors (Powles et al., 2018).

Based upon the success of the PD-1/PD-L1 and CTLA-4/B7
blockade, additional immune checkpoints are extensively being
explored in preclinical and clinical investigations (Andrews
et al., 2019). LAG3, TIM-3, T cell immunoreceptor with
immunoglobulin and the immunoreceptor tyrosine-based
inhibitory motif domain (TIGIT) are alternative inhibitory
receptors that dampen T cell functions by binding to their
ligands (Anderson et al., 2016). LAG3, expressed on T cells, NK
cells, plasmacytoid DCs and B cells, is among the most heavily
studied targets other than PD-(L)1 and CTLA-4 (Maruhashi
et al., 2020). The binding of LAG3 to its ligand, MHC II, causes
the suppression of effector T cells, inhibiting their proliferation
and effector activities (Huard et al., 1994). Currently, various
agents targeting LAG-3 are in the clinical trial either as
monotherapies or supplement of anti-PD-(L)1 treatment, but
the efficacy is limited (Hong et al., 2018; Maruhashi et al.,
2020). TIM-3 is also expressed on several immune cell types,
such as T cells, Tregs, DCs, and NK cells, modulating their
functions by binding to numerous ligands (Wolf et al., 2020).
For instance, binding to galectin 9 induces T cells death and
binding to the carcinoembryonic antigen cell adhesion molecule
1 (CEACAM1) appears to induce immune tolerance. In addition,
overexpression of TIM-3 predicts poor outcome in multiple
cancer types and anti-TIM-3 was shown to reduce suppression
on IFN-γ-producing CD8+ T cells (Fourcade et al., 2010; Lu
et al., 2017b; Shayan et al., 2017). Early phase clinical trials on
the anti-TIM-3 antibody, did not show active data (Curigliano
et al., 2019; Harding et al., 2019). TIGIT is an inhibitory
receptor of the immunoglobulin superfamily, participating in
the restriction of both adaptive and innate immune responses
(Andrews et al., 2019; Chauvin and Zarour, 2020). TIGIT is
expressed principally on T-cell subsets and NK cells (Joller
et al., 2011). However, previous research showed that a single
TIGIT blockade had no real benefit in CT26 tumor models while
combination therapy with the PD-1/PD-L1 blockade resulted in
complete tumor rejection through augmenting of CD8+ T cells
proliferation and function (Johnston et al., 2014). Similar results
was observed in patients with advanced solid tumors treated with
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anti-TIGIT antibody, MK-7684, showing 8 partial responses
out of 43 individuals in anti-PD1 combination group (33rd
Annual Meeting & Pre-Conference Programs of the Society
for Immunotherapy of Cancer (SITC, 2018), 2018). In addition
to these inhibitory targets, several other “second generation”
immune checkpoints are currently under intense investigation,
including the V-domain immunoglobulin suppressor of T
cell activation (VISTA), B7-H3 (CD276) as well as the B- and
T-lymphocyte attenuator (BTLA, CD272) (Andrews et al.,
2019). However, given that nearly all these targets came up
recently, the preliminary efficacy and safety of related targeting
strategies are not known.

While several studies have reported that ICIs have positive
clinical outcomes, most patients with advanced cancers,
accounting for a significant proportion of cancer-related deaths,
have not experienced substantial cancer regressions or improved
survival after the treatments (Topalian et al., 2012; Callahan et al.,
2018). Only 20% of unselected NSCLC and 40% of melanoma
patients respond to PD-1/PD-L1 blockade (Brahmer et al.,
2012; Shukuya and Carbone, 2016). Numerous studies targeting
LAG-3, TIM-3, TIGIT, VISTA, B7-H3, and BTLA, mainly in
early phase, are carrying out, but to little avail. Combination
therapy with a conventional strategy or another immunotherapy
could be an effective method (Gandhi et al., 2018). However, it is
difficult to obtain substantial efficacy due to the non-response or
acquired resistance to ICIs.

Several reports have shown that MDSCs promote ICIs
resistance. A prospective cohort study of NSCLC patients showed
a decreased number of M-MDSCs in the nivolumab-response
group whereas the data of non-responders stayed steady. In vitro,
researchers found resuscitated secretion IFN-γ of CD8+ T cells
under treatment of anti-PD-1, which was impaired by M-MDSCs
via the bond of galectin-9 and its receptor TIM-3, indicating
that MDSCs can hinder the function of T cells (Wolchok et al.,
2017; Limagne et al., 2019). When treated with ipilimumab,
responders showed a remarkably lower percentage of M-MDSCs
than non-responders (Meyer et al., 2014).

The baseline of MDSCs are associated with ICI response.
Weber et al. (2016) found that patients with lower initial
M-MDSCs levels in circulation had a better response to
nivolumab. This concept was also detected in melanoma patients
under nivolumab or ipilimumab treatment (Gibney et al., 2015;
Bjoern et al., 2016). Melanoma patients with low baseline
MDSC had 34.5% survival benefit compared to patients from
higher initial MDSC level group. A computational algorithm
was used to analyze the role of peripheral blood mononuclear
cells (PBMCs). According to the program, M-MDSC levels were
negatively associated with peripheral CD8+ T cell expansion after
ipilimumab treatment, and melanoma patients with lower basic
M-MDSC levels (less than 14.9%) had a remarkably longer OS
(Kitano et al., 2014).

The MDSCs-related factors causing ICIs resistance have also
been investigated. In a longitudinal study on nivolumab, PMN-
MDSCs were analyzed to decreased significantly in responders
while those in non-responders did not show obvious change.
In non-responsive patients, factors correlated with MDSCs
recruitment and proliferation, including CXCL2, CCL23, C-X3-C

motif chemokine ligand 1, and high mobility group box protein
1, were heavily aggregated (Kim et al., 2018). In patients with
advanced melanoma, ipilimumab infusion could induce an
elevated level of both M-MDSCs and relevant NO production in
non-responders (Gebhardt et al., 2015). Furthermore, increased
levels of lactate dehydrogenase (LDH) and IL-4Rα+ M-MDSCs
after ipilimumab administration were associated with impaired
OS in melanoma patients.

Given that the battle against cancer cells takes place mostly
in tumor sites, the prevention of T cells infiltration or the
dysfunction of infiltrated T cells pose more barriers. In order
to figure out factors behind these two kinds of tumor immune
inhibition, Jiang and colleagues developed a predictive gene
signature, tumor immune dysfunction and exclusion. They
demonstrated a correlation between MDSCs profiles and levels
of CTLs and that MDSCs signature could predict reaction to
anti-PD-1 and anti-CTLA-4 (Jiang et al., 2018). Additionally,
myeloid-associated genes, such as cyclooxygenase-2, IL-8, IL-
1β, in the tumor were associated with atezolizumab or
durvalumab resistance in urothelial bladder cancer patients (Kim
et al., 2015). In general, investigations on the role of tumor-
derived MDSCs in resistance to ICIs is limited, hindering a
clearer cognition on MDSCs and more effective combination
immunotherapeutic strategies.

Effect on Adoptive T Cell Therapy
The ACT is another immunotherapy research hotspot. While
several strategies modify T cells milieu, ACT directly infuses
autologous or allogenic T cells. ACT separates and expands TILs
and unmodified cytotoxic cells population from the resected
tumor and then transfers them to patients to fight against tumor
cells (Rosenberg and Restifo, 2015). TILs have been demonstrated
positive data in malignant tumors, such as melanoma (Guedan
et al., 2018; Chandran and Klebanoff, 2019). Lymphodepletion
incorporation before TILs reinfusion increases response rate,
with 20 of 92 patients in complete tumor regression, 19 of
which do not relapse 3 years after treatment (Rosenberg et al.,
2011). Compared with other modalities of ACT, these results
highlight the superiority of pre-existing effector T cells with
antitumor activities, which is not eligible in many cancer types
(Perica et al., 2015).

T cells from peripheral blood equipped with CARs or TCRs
have also revealed a noteworthy effectiveness in hematologic
malignancy, with two CAR-T products (axicabtagene ciloleucel
and tisagenlecleucel) approved by FDA. The first clinical
application of optimized CD19-targeting CAR-T cells in CLL
induced a significant response. Clinical trials of CD19-directed
CAR T cells have also been conducted in B cell acute
lymphoblastic leukemia and lymphoma, with a high complete
remission rate (Brentjens et al., 2013; Park et al., 2018; Chong
et al., 2021). TCRs-modified T cells targeting specific antigenic
peptide-MHC complex expressed mainly in tumor cells are also
effective in patients with solid tumors (Angelo et al., 2018).
Bispecific T-cell engager (BiTE) is another ACT modality. BiTEs
enhance the biological connection of T cells and tumor cells
via two scFvs with separate close affinity to CD3 and tumor
antigens (Thakur et al., 2018). Blinatumomab (MT103), the first
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FDA-approved BiTE, specific for CD3 and CD19, is used to
treat several hematological malignancies. Actually, achievements
of these ACT strategies were gained mostly in hematologic
malignancies. Several ACT therapies targeting tumor-specific
antigens or stroma-derived structures are under investigation,
and only modest efficacy has been achieved in solid tumors.
MDSCs-induced immunosuppressive microenvironment posed
one of the critical obstinate hurdles.

Several studies have shown that MDSCs play dirty tricks
on ACT therapy (Arina and Bronte, 2015; Fultang et al., 2019;
Mengos et al., 2019). Besides autologous T cell suppression,
MDSCs inhibit both the expansion and function of adoptively
transferred T cells. A recent study reported that TILs infusion
combined with lymphodepletion significantly increases
CD11b+CD15+LOX-1+ PMN-MDSCs, which suppress TILs
proliferation and IFN-γ production in melanoma and NSCLC
patients (Innamarato et al., 2020). IL-6 was demonstrated to
motivate hematopoietic progenitor cells after lymphodepleting.
Subsequently, IL-6 and motivated hematopoietic progenitor
cells promoted the generation and activation of MDSCs and
inhibition of IL-6 enhanced response to ACT in mouse models.
A preclinical rodent animal model study showed that CAR-T
therapy increases MDSC levels in a GM-CSF-dependent manner,
inhibiting the anti-tumor activity of adoptive T cells (Burga
et al., 2015). IDO, an intracellular enzyme in MDSCs mediating
tryptophan metabolism, hinders CAR-T therapy efficacy via
tryptophan metabolites, and a tumor model showed that IDO
inhibitor could restore the therapeutic effect (Fan et al., 2017).

Interestingly, while several studies revealed that MDSCs
inhibit transferred T cell treatments, an animal experiment
showed that MDSCs-co-cultured T cells augment ACT efficacy
(Raber et al., 2016). Fewer T cells preconditioned with
MDSCs differentiated into effector T cells before adoptive
transferring, preserving anti-tumor capability. Inhibition of T cell
differentiation is relied on cell-to-cell contact without hindering
TCR function or early activation process. A well-designed CD33−
CAR-T cells, targeting both CD33+ blast and CD33+ MDSCs,
promotes satisfied clinical results. The CD33xCD3 BiTEs studies
reported similar results (Jitschin et al., 2018). Moreover, studies
have reported that several MDSCs inhibition strategies enhance
the anti-tumor effect of ACT therapy. However, the clinical trial
outcomes are unknown (Fultang et al., 2019; Li et al., 2020; Sun
et al., 2020).

Effect on Cancer Vaccines and Oncolytic Virus
Cancer vaccines and oncolytic virus enhance anti-tumor immune
responses. Cancer vaccines contain several products, including
immunocompetent cells, proteins, peptides, and nucleic acids,
boosting T cell activation in tumors (Hu et al., 2018). The tumor-
associated antigen (TAA) and neoantigen, mainly expressed in
tumor cells, can be used in vaccine-based therapies (van der
Bruggen et al., 2017). In contrast, oncolytic virus, modified
viral particles, is an antigen-nonspecific agent used for cancer
cell lysis to expose antigens, activating endogenous T cells to
initiate cytotoxic responses to cancer cells (Kaufman et al.,
2015). FDA has approved a DC vaccine product (sipuleucel
T) and an oncolytic virus agent (talimogene laherparepvec) for

prostate cancer and melanoma, respectively (Harrington et al.,
2016; Kantoff et al., 2010). However, only a few neoantigen
and TAAs can generate immune responses, possibly due to the
negative selection during T cell development. To date, the clinical
performance of cancer vaccines and the oncolytic virus is poor
(Macedo et al., 2020).

Favorable outcomes of cancer vaccine and oncolytic virus
treatment are dependent on decreased MDSC levels in both
tumor models and cancer patients (Poschke et al., 2012; Laborde
et al., 2014; Vandenberk et al., 2016). Several preclinical studies
and clinical trials testing cancer vaccines and oncolytic virus
efficacy have shown that high MDSC levels are related to poor
response in cancer patients. Moreover, MDSCs levels increase
after treatment (Clements et al., 2015; Keshavarz et al., 2020;
Meng et al., 2020), indicating reinforced immunosuppression on
anti-tumor immune response. A preclinical study on oncolytic
vaccinia showed that increased PGE2 levels promote G-MDSC
trafficking, inhibiting immunotherapeutic capability (Hou et al.,
2016). Another study showed that the inflammatory component
NLRP3, belonging to NOD-like receptor family, is essential
in MDSCs-induced immunosuppression (van Deventer et al.,
2010). In Nlrp3−/− mice, few MDSCs reached the tumor
site, and survival was fourfold in the DC vaccinated group
than wild-type mice. However, removing MDSCs with anti-Gr-
1 antibody was ineffective in Nlrp3−/− mice, whereas it was
effective in wild-type mice, suggesting that NLRP3 is essential in
MDSC accumulation. Other studies also showed that MDSCs-
derived molecules, including NO and TGF-β, inhibit vaccines
and oncolytic virus treatment (Jia et al., 2010; Takaku et al.,
2010). When MDSCs were significantly aggregated in the initial
generating culture, DCs functions were significantly impaired
(Poschke et al., 2012). A clinical trial investigating prophylactic
vaccine (NCT02134925) showed high basic levels of circulating
MDSCs, accounting for 22 poor responses of the 39 patients
(Kimura et al., 2013). Generally, mounting evidence has shown
that MDSCs negatively regulate the efficacy of cancer vaccines
and oncolytic virus.

Effect on Modulatory Cytokines
Cytokines administration is another strategy of immunotherapy
and has been used as an adjuvant to modulate the immune system
for robust anti-tumor immunity. T lymphocyte-promoting
cytokines, including IL-2 and IFN-α, have gained significant
advances. FDA first approved IL-2, an essential T cell growth
factor, for cancer treatment. Clinical studies have revealed that
it has generated a durable tumor regression in melanoma and
renal cell carcinoma patients (Rosenberg, 2014). PEGylated IL-
2 (bempegaldesleukin) combined with anti-PD-1 showed a 53%
ORR in melanoma patients (Bentebibel et al., 2019). IFN-α is also
an FDA-approved cytokine that induces the APC maturation to
provide specific antigen presentation and costimulatory factors,
triggering T cell activation and enhancing their cytotoxicity.
However, IL-2 and other T cell activators have limited clinical
utility, owing to their dose-limiting toxicities and facilitative
effects on Tregs (Sim and Radvanyi, 2014; Floros and Tarhini,
2015). In recent years, immune-stimulatory cytokines have been
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mainly used in T cell expansion, promoting adoptive T cell
therapies (Rosenberg, 2011).

Therapeutic cytokines are involved in the Th1 immune
response, directly activating CTLs or enhancing activity of CTLs-
promoting immune cells. However, several studies have shown
that they have opposite effects on MDSCs during anti-tumor
immune modulation. Alves et al. (2020) reported that there are
more G-MDSCs (21.3%) in tyrosine kinase inhibitors (TKIs) and
IFN-α combination therapy-treated patients than TKI treated
patients (less than 10%), thus a poor immunosuppressive state.
IL-2 also shows contradictory effects on PMN-MDSCs. Increased
IL-2 levels extend MDSC lifespan in a dose-relevant manner,
starting a backfire and impeding better therapeutic efficacy.
Besides, augmented activated T cells and their increased GM-
CSF production amplify the effect (Bauswein et al., 2018).
Another study reported that IL-2 administration prevented the
apoptosis of MDSCs and prolonged their survival, augmenting
the destructive capability this cluster of cells (Pericle et al., 1994).
To date, the effect of cytokines on immunotherapy is unclear.
Further investigations are needed for the cytokine efficacy on
malignant tumors and their regulation on the TME.

MDSCS TARGETING IMPROVES
T CELL-BASED IMMUNOTHERAPY
EFFICACY

It is necessary to combine T cell-based immunotherapy
with MDSCs targeting agents since MDSCs are key players

in immunosuppressive TME (Figure 2). Multiple studies
have been conducted to investigate the effectiveness of
relevant combined approaches (Table 2). In this section, we
elaborate the main MDSCs-manipulating strategies employed to
reinforce the antitumor activity of T cell-based immunotherapy,
through inhibiting expansion and recruitment, promoting
differentiation, inhibiting function, inhibiting metabolism, or
deleting MDSCs directly.

Inhibiting Expansion and Recruitment
Blockers or antagonists of chemoattractants and their receptors
could effectively diminish proportion of MDSCs both in
circulation and TME, modifying the immunosuppressive
microenvironment. The CXCLs-CXCR2 axis is essential in
PMN-MDSC recruitment, and blocking the CXCLs-CXCR2
axis pathway inhibits PMN-MDSC aggregation (Highfill
et al., 2014; Liao et al., 2019; Horn et al., 2020; Yang et al.,
2021). CXCR2+ PMN-MDSCs also increase the expression
of inhibitory immune checkpoints, such as PD-1, CTLA-
4, and LAG3 on T lymphocytes, promoting T cells anergy
(Zhu et al., 2017). Preclinical studies have reported that
CXCR2 inhibitors or anti-CXCR2 antibodies alleviate MDSCs-
induced immunosuppression, thus improving the effects of
anti-PD-1 therapy in rhabdomyosarcoma, pancreatic ductal
adenocarcinoma, and colorectal cancer (Steele et al., 2016;
Horn et al., 2020). Clinical trials analyzing synergism in CXCR2
inhibitor SX-682 on pembrolizumab or nivolumab are underway
(NCT03161431, NCT04477343, and NCT04599140). A human
monoclonal antibody that inhibits one of its critical ligands,

FIGURE 2 | MDSCs-targeting strategies enhance T cell-based immunotherapy efficacy. ATRA, all-trans-retinoic acid; TKI, tyrosine kinase inhibitor; PDE5,
phosphodiesterase-5; HDAC, histone deacetylase; TLRs, toll-like receptors.
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TABLE 2 | Combination strategies in clinical trials.

MDSCs
targets

MDSCs-targeting
agents

Immunotherapy Immunotheraputic
agents

Indications Phase Last reported
status

NCT number

CSF-1R ARRY-382 ICI Pembrolizumab Advanced solid tumors I/II Completed NCT02880371

CXCR1/2 SX-682 ICI Nivolumab CRC I/II Recruiting NCT04599140

CXCR1/2 Navarixin ICI Pembrolizumab Solid tumors II Active, not
recruiting

NCT03473925

CXCR2,
chemotherapy

AZD5069,
gemcitabine,
nab-paclitaxel

ICI MEDI4736 PDAC I/II Completed NCT02583477

IL-8 BMS-986253 ICI Nivolumab Cancer I/II Active, not
recruiting

NCT03400332

CCR2/CCR5,
chemotherapy

BMS-813160,
gemcitabine,
nab-paclitaxel

ICI Nivolumab PDAC I/II Recruiting NCT03496662

CCR2/CCR5,
chemotherapy

BMS-813160,
gemcitabine
5-fluorouracil

ICI Nivolumab CRC, pancreatic
cancer

I/II Recruiting NCT03184870

CCR2/CCR5,
IL-8

BMS-813160,
BMS-986253

ICI Nivolumab NSCLC, HCC II Recruiting NCT04123379

CCR2/CCR5,
radiotherapy

CCR2/CCR5 dual
antagonist, SBRT

ICI, vaccine Nivolumab, GVAX PDAC I/II Recruiting NCT03767582

CCR5 Vicriviroc ICI Pembrolizumab Colorectal neoplasms II Active, not
recruiting

NCT03631407

Chemotherapy Gemcitabine,
fluorouracil,
oxaliplatin

Cytokine Aldesleukin,
sargramostim

Pancreatic cancer I/II Active, not
recruiting

NCT02620865

Chemotherapy Cyclophosphamide Cancer vaccine IMA970A plus CV8102 HCC I/II Completed NCT03203005

Chemotherapy Hydroxychloroquine Cytokine IL-2 RCC I/II Completed NCT01550367

Chemotherapy Standard of care
chemotherapy

ACT Anti-CD3 x anti-EGFR
bispecific antibody
(EGFRBi) armed
activated T cells (EGFR
BATs)

Pancreatic
adenocarcinoma

I/II Recruiting NCT03269526

Chemotherapy Vinorelbine ICI Atezolizumab NSCLC II Active, not
recruiting

NCT03801304

Chemotherapy Docetaxel Cancer vaccine mRNA transfected DCs Prostatic neoplasms II Completed NCT01446731

Chemotherapy Doxorubicin,
cyclophosphamide,
paclitaxel

ICI Pembrolizumab BC II Recruiting NCT02957968

Chemotherapy Cyclophosphamide Cytokine Human recombinated
IL-2

HCC II/III Recruiting NCT04011033

Chemotherapy,
radiotherapy

Fluorouracil
radiation therapy

ICI Avelumab Genitourinary
neoplasms

II Active, not
recruiting

NCT03617913

Chemotherapy,
radiotherapy

Cyclophosphamide,
chemoradiotherapy

Cancer vaccine Tecemotide Rectal cancer II Completed NCT01507103

Chemotherapy,
radiotherapy

Capecitabine,
external beam
irradiation

ICI Avelumab CRC II Recruiting NCT03854799

Chemotherapy,
radiotherapy

Cyclophosphamide,
radiation

ICI Pembrolizumab Gynecological cancer II Recruiting NCT03192059

Chemotherapy,
radiotherapy

Cyclophosphamide,
irradiation

ACT Peripheral blood
transplant

Hematologic
malignancy

III Recruiting NCT03480360

ATRA ATRA ICI Pembrolizumab Melanoma I/II Active, not
recruiting

NCT03200847

ATRA ATRA ICI Ipilimumab Melanoma II Active, not
recruiting

NCT02403778

ATRA,
chemotherapy

ATRA,
cyclophosphamide

Cancer vaccine Cancer vaccine Lung cancer II Completed NCT00601796

(Continued)
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TABLE 2 | Continued

MDSCs
targets

MDSCs-targeting
agents

Immunotherapy Immunotheraputic
agents

Indications Phase Last reported
status

NCT number

ATRA,
chemotherapy

ATRA, paclitaxel Cancer vaccine Ad.p53-DC vaccines SCLC II Completed NCT00617409

TKI Regorafenib ICI Nivolumab HCC I/II Recruiting NCT04170556

MDSCs targets MDSCs-targeting
agents

Immunotherapy Immunotheraputic
agents

Indications Phase Last reported
status

NCT number

TKI Dasatinib Cancer vaccine DC vaccine Metastatic melanoma II Completed NCT01876212

VEGF, HDAC Bevacizumab,
entinostat

ICI Atezolizumab Metastatic cancer, renal
cancer

I/II Recruiting NCT03024437

VEGFR Cabozantinib ICI Ipilimumab, nivolumab Neuroendocrine
carcinoma

II Recruiting NCT04079712

VEGFR Cabozantinib ICI Ipilimumab, nivolumab Thyroid cancer II Recruiting NCT03914300

EGFR Cetuximab Cytokine Edodekin alfa Head and neck cancer I/II Active, not
recruiting

NCT01468896

PI3K, VEGF,
chemotherapy

IPI-549,
bevacizumab,
nab-paclitaxel

ICI Atezolizumab BC, RCC II Recruiting NCT03961698

Akt Ipatasertib ICI Atezolizumab Solid tumor I/II Recruiting NCT03673787

STAT3 Danvatirsen ICI Durvalumab Cancer II Active, not
recruiting

NCT02983578

STAT3, CXCR2 AZD9150,
AZD5069

ICI MEDI4736,
tremelimumab

Solid tumor II Active, not
recruiting

NCT02499328

TLR3 Poly ICLC Cancer vaccine IMA 950 CNS tumor I/II Completed NCT01920191

TLR3 Poly ICLC Cancer vaccine Cancer vaccine NSCLC I/II Recruiting NCT01720836

TLR9 CMP-001 ICI Nivolumab Melanoma, lymph node
cancer

II Active, not
recruiting

NCT03618641

TLR9 CMP-001 ICI Avelumab Advanced cancer II Recruiting NCT02554812

HDAC Entinostat ICI Pembrolizumab NSCLC, melanoma,
CRC

I/II Unknown NCT02437136

HDAC Entinostat ICI Nivolumab Cholangiocarcinoma,
pancreatic cancer

II Active, not
recruiting

NCT03250273

CD73 MEDI9447 ICI Durvalumab,
tremelilumab

Ovarian cancer II Recruiting NCT03267589

CD73 Oleclumab ICI Durvalumab Sarcoma II Recruiting NCT04668300

CD73,
chemotherapy

MEDI9447,
paclitaxel
carboplatin

ICI MEDI4736 TNBC I/II Recruiting NCT03616886

IDO1 Epacadostat ICI Pembrolizumab Melanoma III Completed NCT02752074

MEK Cobimetinib ICI Atezolizumab GC,
cholangiocarcinoma

II Active, not
recruiting

NCT03201458

Nrf2 Omaveloxolone ICI Ipilimumab, nivolumab Melanoma I/II Completed NCT02259231

ICI, immune checkpoint inhibitor; ACT, adoptive T cell therapy; SBRT, stereotactic body radiation; CRC, colorectal cancer; PDAC, pancreatic ductal adenocarcinoma;
NSCLC, non-small cell lung cancer; HCC, hepatocellular carcinoma; RCC, renal cell carcinoma; BC, breast cancer; SCLC, small cell lung cancer; CNS tumor, central
nervous system tumor; TNBC, triple negative breast cancer; GC, gallbladder carcinoma.

IL-8, has been used in phase I clinical trial (NCT02536469)
(Bilusic et al., 2019) to interrupt CXCR2 pathway activation.
Serum IL-8 level significantly reduced two days after anti-IL-8
administration. Anti-IL-8 and nivolumab efficacy is under
clinical investigation (NCT03400332 and NCT04123379).
CCR2 and CCR5 are essential in M-MDSC recruitment,
and CCR5+ MDSCs enriched in tumor sites have a stronger
immunosuppressive property. Flores-Toro et al. (2020) reported
that CCR2 deficiency or administration of CCR2 antagonist
CCX872 promotes efficacy of anti-PD-1 in mouse glioma model.
CCX872 inhibits MDSC trafficking, increasing MDSC levels
in the bone marrow and reducing their aggregation in the

tumor site. The TILs data showed an increased population,
elevated IFN-γ secretion, and decreased exhaustion marker
expressions. Efficacy of CCR2/CCR5 dual inhibitor combined
with nivolumab is under investigation (NCT03496662 and
NCT03184870). CSF-1/CSF-1R pathway disruption also
inhibits M-MDSCs infiltration, concomitantly influencing
TAMs accumulation. Holmgaard et al. (2016) reported that
CSF-1R expression on MDSCs is significantly increased after
CTLA-4 blockade immunotherapy, with aggravated T cell
inhibition. A combination of CTLA-4 blockade and anti-CSF-1R
antibody promotes anti-tumor immunity and exacerbates tumor
regression (Holmgaard et al., 2016). Additionally, selective
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CSF-1R targeting using specific inhibitors or antibody attenuates
suppressive myeloid cells, and elective CSF-1R targeting
combined with PD-1/PD-L1 blockade significantly control
tumor growth in mouse neuroblastoma, breast cancer, and
colorectal cancer models (Mao et al., 2016; Huang et al., 2020).

Promoting Differentiation
All-trans-retinoic acid (ATRA), a member of retinoid family
essential in differentiation induction and commonly used
in acute promyelocytic leukemia treatment, also inhibits
MDSC abundance. ATRA induces MDSC differentiation into
macrophages and DCs via an ERK1/2 kinase signaling pathway
(Bauer et al., 2018). A phase II clinical study showed that MDSC
levels were significantly decreased in SCLC patients treated
with combined P53-specific DC vaccine and ATRA compared
with the DC vaccine alone (NCT00617409). The P53-specific
response had a higher positive rate in the combination group, and
granzyme B-positive CD8+ T cell enrichment was only observed
in the combination group (Iclozan et al., 2013). Furthermore,
ATRA synergistically enhanced ipilimumab efficacy in advanced
melanoma patients (NCT02403778) (Tobin et al., 2018). In this
study, MDSC levels increased in the ipilimumab monotherapy
group and decreased in the combined treatment group.
Moreover, HLA-DR+ myeloid cell levels significantly increased,
promoting CD8+ T cell production, compared with ipilimumab
treatment alone. Traditional chemotherapies inhibit MDSC
trafficking and enable them to traffic back. In contrast, ATRA
shows advantages by converting MDSCs into more differentiated
cells, such as DCs and macrophages, essential in T cell-based
immune response.

Toll-like receptors are transmembrane proteins that recognize
protein or lipid ligands and activate transcription factors,
facilitating the expression of pro-inflammatory factors,
such as TNF-α and IL-2 (O’Neill et al., 2013). TLR7/TLR8
activation via TLR7/TLR8 agonist R848 induces M-MDSC
differentiation into anti-tumor M1-type macrophages, whereas
TLR1/TLR2 activation facilitates the M-MDSC transformation
into suppressive M2-type macrophages (Wang et al., 2015;
Shayan et al., 2018; Liu et al., 2020). B16 melanoma mouse model
showed that R848-loaded b-cyclodextrin nanoparticles (CDNP-
R848) improves anti-PD-1 treatment efficacy (Rodell et al.,
2018). TLR3/TLR4 activation promotes receptor-interacting
protein kinase 3 (RIPK3)-mediated programmed necrosis
(Kearney and Martin, 2017). A RIPK3 reduction is associated
with MDSC aggregation in colorectal cancer (Yan et al., 2018).
Polyinosinic-polycytidylic acid (poly ICLC), TLR3 agonist,
decreases MDSC levels, inhibiting their immunosuppressive
function (Forghani and Waller, 2015). Additionally, poly ICLC
significantly attenuates MDSC aggregation and function when
combined with the CAR-T cells, enhancing cytotoxic activity of
CAR-T cells via increased IL-2 and IFN-γ production (Forghani
and Waller, 2015). TLR9 ligand CpG also blocks MDSC
immunosuppression in T cells (Zoglmeier et al., 2011). CpG
stimulation reduces Th2 cytokine and increases Th1 cytokine
production in MDSCs and more M-MDSCs differentiate into
tumoricidal M1 macrophages (Shirota et al., 2012). TLR7, TLR8,
and TLR9 co-activation removes large tumors and builds an

immune protective line by enhancing the NK cells and CTL
infiltration, thus reducing MDSC levels (Zhao et al., 2014).

Inhibiting Function
Signaling cascade-targeting agents compromising MDSCs
differentiation, expansion, or function, including JAKs-
STATs pathway, PI3K-AKT pathway, is an alternative to
T cell-based immunotherapy. MDSCs functions, including
immunosuppression and tumor promoting, are well orchestrated
by STAT3 pathway. Strategies targeting STAT3 are under
active investigation. A mouse liver metastatic tumor model
showed that STAT3 inhibition enhanced the anti-tumor
efficacy of CAR-T therapy by activating apoptotic signaling
pathways and decreasing proliferative signaling pathways in
liver-associated MDSCs (Guha et al., 2019). Clinical trials of
STAT3 inhibition combined with ICIs are under investigation
(NCT02983578 and NCT02499328). PI3K-AKT pathway is
also essential in MDSC functions, migration, and metabolism
(Martini et al., 2014). PI3Kγ, a PI3K subtype, promotes
immunosuppression in malignancies and selectively targeting
PI3Kγ with a specific inhibitor IPI-549 inhibits MDSCs-induced
immunosuppression, restoring T cells-induced tumoricidal
response (Kaneda et al., 2016). A mouse prostate cancer model
engineered using signature mutations, BEZ235, a pan-class I
PI3K/mTOR inhibitor, combined with immune checkpoint
blockade showed a robust synergistic therapeutic efficacy
(Lu et al., 2017a).

Several preclinical and clinical studies have shown that the
phosphodiesterase-5 (PDE5) inhibitor, used to treat erectile
dysfunction, inhibits MDSCs (Weed et al., 2019). A mouse
tumor model showed that PDE5 inhibition with tadalafil
attenuates MDSC suppressive capabilities by downregulating
ARG1 and iNOS expressions, thus increasing T cell infiltration
and activation (Yu et al., 2019). In the same study, administration
of sildenafil was also approved to potentiate antitumor activity of
adoptive therapy. In a clinical study, Tadalafil altered anti-tumor
immunity in patients with recurrent HNSCC by downregulating
MDSCs and Tregs and increasing cytotoxic CD8+ T cell levels in
both peripheral blood and tumor site (Weed et al., 2019). Tadalafil
combined with MUC1/polyICLC vaccine also inhibits PD-L1+
macrophage aggregation at the tumor edge, consistent with two
clinical trials (NCT00843635 and NCT00894413) (Califano et al.,
2015; Weed et al., 2015). However, the efficacy and survival of
the trials investigating the role of a PDE5 inhibitor in immune
modulation are unknown.

Entinostat, an epigenetic regulator, selectively targeting class
I histone deacetylase (HDAC), inhibits MDSC function,
reverses immune exclusion, and enhances anti-tumor
activity. Entinostat combined with an epigenetic adjuvant,
methyltransferase inhibitor 5-azacytidine, alters MDSC
trafficking by downregulating CCR2 and CXCR2 expression,
inducing MDSC differentiation into an interstitial macrophage-
like phenotype (Lu et al., 2020). Murine breast cancer and
pancreatic tumor models showed that entinostat combined with
anti-PD-1 therapy or anti-CTLA-4 therapy significantly alleviates
MDSCs-induced immunosuppression, increases activated
granzyme-B-producing CD8+ T effector cell infiltration,
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significantly improving tumor-free survival (Christmas et al.,
2018). A phase II clinical trial (NCT02437136) showed that
entinostat combined with pembrolizumab has a favorable
response (19%) and 36% clinical benefit rate in 53 progressed
melanoma patients (Johnson et al., 2017). Besides, several HDAC
inhibitors are being studied (Hashimoto et al., 2020; Kim et al.,
2020).

Inhibiting Metabolism
Adenosine also drives tumor progression via various mechanism,
including MDSCs-mediated immunosuppression. Abrogating
adenosine production by targeting nucleotide-metabolizing
enzymes CD73 and CD39, as well as adenosine receptor A2AR
seems to be a promising therapeutic strategy (Festag et al.,
2020). A clinical study on ovarian cancer patients showed that
metformin treatment downregulated the expression and catalytic
activity of CD39 and CD73 in both M-MDSCs and PMN-
MDSCs via adenosine monophosphate-activated protein kinase
α (AMPKα) activation and HIF-1α suppression (Li L. et al., 2018).
Besides, the circulating MDSC levels were decreased, and the
cytotoxic activity of CD8+ T cells was restored, prolonging the
OS of ovarian cancer patients with diabetes (Li L. et al., 2018).
Additionally, anti-PD-1 immunotherapy upregulates CD73 level
in melanoma patients (Reinhardt et al., 2017). A mouse breast
cancer model showed that CD73 specific siRNA-loaded chitosan
lactate nanoparticles improve tumor lysate pulsed DC vaccine
efficacy. Furthermore, synergism is associated with MDSCs
downregulation and T cells upregulation with reduced IL-10
levels and increased IFN-γ secretion (Jadidi-Niaragh et al., 2017).
Several preclinical studies have shown that anti-CD73 therapy
or A2AR targeting strategies significantly improves ICIs and
ACT efficacy compared with monotherapy (Allard et al., 2013;
Iannone et al., 2014; Mittal et al., 2014; Beavis et al., 2015; Hay
et al., 2016; Reinhardt et al., 2017). Clinical trials evaluating
the synergistic effects of CD73-A2AR targeting strategies and T
cell-based therapy are underway.

Prostaglandin E2 is an inflammatory factor associated with
carcinogenesis and MDSCs induction. COX-1 and COX-2
are key enzymes in PGE2 synthesis. COX-2/PGE2 signaling
blockade inhibits MDSCs recruitment and represses MDSCs-
induced immunosuppression, causing modified CTL cytotoxicity
and enhanced tumoricidal immune response, thus improving
therapeutic efficacy. Also, mounting evidence has shown that
targeting PGE2 with non-steroidal anti-inflammatory drugs
or specific COX-2 inhibitors, such as celecoxib, inhibiting
MDSCs, improves immunotherapy outcomes (Veltman et al.,
2010; Obermajer et al., 2011). A mouse melanoma model
showed that licofelone, a dual COX/5-lipoxygenase (5-LOX)
inhibitor, improves therapeutic vaccine efficacy by suppressing
Gr-1+CD11b+ MDSC generation and minimizing IL-6 and IL-
10 production (Neumann et al., 2016). These studies provide
new insights for developing targeted COX-2-mediated PGE2
signaling combined with T cell-based immunotherapies.

Deleting MDSCs
Several chemotherapeutic agents reduce MDSCs numbers, and
combination strategies with immunotherapy can improve the

survival of cancer patients (Draghiciu et al., 2015; Wang et al.,
2017). Gemcitabine and 5-fluorouracil (5-FU) are among the
most commonly used drugs to eliminate MDSCs in tumor
models and cancer patients (Wang et al., 2017). A phase I/II
study evaluated the efficacy of gemcitabine combined with
pegintron (IFN-α) and p53 synthetic long peptide vaccine
in ovarian cancer patients (NCT01639885) (Dijkgraaf et al.,
2015). The study showed a significant reduce of MDSCs in
gemcitabine group. Further, the combined therapy showed
stronger vaccine-induced T-cell responses. In another study,
Vincent et al. (2010) indicated that 5-FU selectively inhibits
MDSCs, thus promoting T cell-based anti-tumor capability.
However, various chemotherapeutic agents have different effects
on MDSC modulation. A phase II clinical trial reported that
the DC vaccine combined with docetaxel decreases MDSCs,
which was an independent prognostic factor of disease-specific
survival (NCT01446731) (Kongsted et al., 2017). Nonetheless,
the combined therapy showed no significant clinical advantage
over docetaxel monotherapy alone, possibly due to the limited
included population. Moreover, a spontaneous melanoma model
showed that 1 mg/kg paclitaxel administration reduces MDSC
levels while 36 mg/kg dosage has no effect (Vincent et al.,
2010; Sevko et al., 2013). Conversely, a 175 mg/m2 paclitaxel
dose increased circulating MDSC levels (Diaz-Montero et al.,
2009). Preconditioning EG7 tumor-bearing mice with a single
low dose of doxorubicin or paclitaxel promoted ACT efficacy,
with more activated and longer-sustained CD8+ T cells, probably
due to MDSC inhibition via suppression of NF-κB and
its associated immunosuppressive factors (Hsu et al., 2015).
Ongoing clinical trials evaluating the synergistic effect of various
chemotherapeutic agents combined with immunotherapy are
shown in Table 2. Chemotherapeutic agents influence various
cells and only MDSCs-related trials are included. There are
many effects of chemotherapeutic agents on MDSC accumulation
and various factors should be considered, including optimal
drug combinations, administration dosage, intervals, and tumor
types and stages.

Immunotherapy combined with TKIs provides an optional
choice of standard treatment of several cancers (Hirsch
et al., 2020). TKIs are commonly used agents in MDSCs
manipulation. To target tyrosine kinases, sunitinib have been
applied to patients with oligometastases of various cancer types.
The progression-free survival and cause-specific survival were
prolonged in sunitinib and radiotherapy combination arm due
to the sunitinib-induced M-MDSC reduction and CD4+ and
CD8+ T cell enrichment (Chen et al., 2015). However, a
phase II clinical trial (NCT01118351) showed no improvement
in non-muscle-invasive bladder cancer patients after sunitinib
monotherapy regardless of the reversal of MDSCs-mediated
immunosuppression (Zahoor et al., 2019). Preclinical or clinical
studies have shown that several other TKIs, such as dasatinib and
nilotinib, also inhibit MDSCs (Hughes et al., 2017). Notably, apart
from MDSCs, TKIs influences other cells. For instance, sorafenib
and dasatinib suppress T cells and NK cells in a dose-dependent
manner, causing immunocompetence (Martin del Campo et al.,
2015). VEGFR-TKI is a group of TKI that can be combined with
T cell-based immunotherapy for its active role in angiogenesis
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and immune modulation. Antiangiogenic agents ameliorate
TME by inhibiting immunosuppressive cell infiltration, including
MDSCs and Tregs, and increasing recruitment of effector T
cells and mature DCs.

High-dose radiation is also a candidate in MDSCs elimination.
Radiotherapy is mainstay treatment for localized tumors and
isolated metastasis, as well as patients with advanced cancer
for palliative treatment. Radiotherapy accelerates immunogenic
cell death and induces the release of tumor antigens and a
cluster of inflammatory factors, including alarmins, cytokines,
and chemokines (Weichselbaum et al., 2017). Certainly,
these factors facilitate the infiltration of DCs, T cells, and
MDSCs. cGAS-STING pathway is a critical signal in the
infiltration of MDSCs and STING agonists alleviated MDSCs-
mediated immunosuppression (Liang et al., 2017). The increased
infiltration of MDSCs after radiotherapy was mostly witnessed
in conventional fractionated radiation. However, ablative and/or
hypofractionated radiation resulted the loss of MDSCs, leading
to an enhanced antitumor immunity (Filatenkov et al., 2015; Lan
et al., 2018). These reversed observations may be correlated with
the earlier infiltration of cytotoxic CD8+ T cells (Deng et al.,
2014; Filatenkov et al., 2015). When in combination with anti-
PD-L1antibody, ablative hypofractionated radiation therapy was
more potent for cancer treatment (Lan et al., 2018). Moreover,
radiation could upregulate the expression of PD-L1. High-dose
ionizing irradiation and PD-L1 blockade synergistically inhibited
the infiltration of MDSCs, promoting antitumor immunity (Deng
et al., 2014). Generally, radiotherapy is a promising strategy to
enhance efficacy of T cell-based immunotherapy for its immune-
stimulating capability. High-dose radiation has advantages in
MDSCs elimination over conventional radiation.

CONCLUSION

The last decade has witnessed an evolution in cancer treatment
with the progress of immunotherapy. Scientists have expanded
the understanding of cancer biology, identifying cytotoxic
lymphocytes as a major force to combat against tumor cells.
The personalized T cell-based immunotherapy has increasingly
been used in cancer patients due to the increasing number of
potential clinical trials and FDA-approved therapies. However,
only a few patients benefit from these therapies. Mounting
evidence suggests that T cell-based immunotherapy efficacy
is associated with robust anti-tumor immune response, which
is usually damaged in most cases. The fundamental goal of

immunotherapy is infiltration of effector cytotoxic T cells.
Nevertheless, immunosuppressive cells always work as a vital
suppressive force of antitumor immune response. Among these
populations, MDSCs play critical roles and pose a challenging
to broader-spectrum benefits. Since ICIs are referred to as
the “release the brakes” of the immune system, inhibition
of MDSCs could act as effective brake pads and this may
be an encouraging supplementary strategy for T cell-based
immunotherapy. Rational combination therapies seem to be a
promising resolution in cancer treatment.

Several therapeutic strategies combining MDSCs targeting
strategies and T cell-based immunotherapy have been evaluated.
However, most studies have failed, indicating that not all
combination strategies synergistically enhance anti-tumor
immunity. The immune system is complex, making it difficult
to understand predictors. Moreover, MDSCs are a cluster
of heterogeneous cells and it is difficult to target myeloid-
derived cells due to their diversity, dynamic phenotypes,
and functions. Therefore, it is necessary to further study the
immunosuppressive network in the TME to reverse MDSCs-
induced immunosuppression. To reveal a comprehensive
landscape, multiomics and computer-assisted algorithms work
more efficiently (Zhou, 2020). These discoveries and innovations
will provide us a clear cognition on how to rationally design
personalized integrative therapeutic strategies.
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