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The energetically costly mammalian investment in gestation and lactation requires
plentiful nutritional sources and thus links the environmental conditions to reproductive
success. Flexibility in adjusting developmental timing enhances chances of survival in
adverse conditions. Over 130 mammalian species can reversibly pause early embryonic
development by switching to a near dormant state that can be sustained for months,
a phenomenon called embryonic diapause. Lineage-specific cells are retained during
diapause, and they proliferate and differentiate upon activation. Studying diapause
thus reveals principles of pluripotency and dormancy and is not only relevant for
development, but also for regeneration and cancer. In this review, we focus on
the molecular regulation of diapause in early mammalian embryos and relate it to
maintenance of potency in stem cells in vitro. Diapause is established and maintained
by active rewiring of the embryonic metabolome, epigenome, and gene expression in
communication with maternal tissues. Herein, we particularly discuss factors required at
distinct stages of diapause to induce, maintain, and terminate dormancy.

Keywords: embryonic diapause, pluripotency, dormancy, metabolism, transcription, miRNA, signaling pathways,
stem cells

INTRODUCTION

Five momentous periods characterize the storyline of most animal life: fertilization, embryonic
development, juvenility, sexual maturation, and reproduction. The reproductive drive motivates all
of these steps, with the ultimate goal of contributing an individual’s genes to the next generations.
Numerous reproductive tactics are employed to maximize the fitness of the young. For example,
red-sided garter snakes store sperm for up to 1 year after mating to adjust the timing of fertilization,
and to allow post-copulatory sexual selection. Wallabies mate within 1 h after giving birth and
always rear an offspring, ensuring that any lost pouch young can be replaced as quickly as possible.
In developing embryos of many species, the precursors of oocyte and sperm, primordial germ cells,
are put aside even before the early embryo has established major tissues for itself, which may reduce
the likelihood of de novo mutations in the germline (Milholland et al., 2017).

Most fish and amphibians produce numerous offspring, of which only a small percentage
survives juvenility. In contrast, mammals produce 1–15 offspring at once and look after them a
considerably long time thereby increasing the chances of juvenile survival. For this reason, the
mammalian investment in each offspring during gestation, lactation and further nurturing of the
young is energetically and temporally expensive, for which the necessary resources may not exist
at all times. From a species’ survival point of view, flexible adjustment of reproductive timing in
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response to metabolic and environmental restrictions could make
the difference between survival and extinction. In more moderate
circumstances, such flexibility enhances reproductive efficiency.

Fertilization initiates the progressive development of the
embryo. Within the first few days of development, most
mammalian embryos activate their genome for transcription, go
through a few cell divisions, and organize into the first embryonic
structure called the blastocyst. Embryonic and extraembryonic
cells are already allocated, yet undifferentiated, in the blastocyst.
Although it takes place in vivo, this pre-implantation period
of embryonic development is self-sufficient, as the fertilized
oocyte can proceed through the same developmental steps
in a minimally enriched culture medium ex vivo. Once
at the blastocyst stage, and if the uterus is receptive, the
embryo implants and proceeds with further developmental
steps including gastrulation and organogenesis. Ex vivo cultured
blastocysts cannot sustain pluripotency under standard culture
conditions and collapse within 2–3 days (Bulut-Karslioglu et al.,
2016). Thus, blastocysts can only be cultured transiently in
regular embryo culture medium. Taken together, mammalian
early development proceeds through sequential steps coordinated
by maternal and embryonic programs, and is largely unyielding
to temporal adjustments of individual steps. However, many
mammalian species can delay embryonic development at the
blastocyst stage to adjust the timing of birth such that the
offspring and the mother will have a better chance of survival
during the energetically demanding lactational period and
beyond. Here we focus on delayed development by inhibition
of embryo implantation, also called delayed implantation or
embryonic diapause. A few other species, such as some bats, can
delay development after implantation, which is beyond the scope
of this review. Importantly, many other vertebrates and non-
vertebrates such as several species of nematodes, crustaceans,
fish, and birds can also suspend development in accordance with
environmental conditions. Although also referred to as diapause,
non-mammalian embryos are commonly paused at more
complex embryonic stages (e.g., with fully specified tissues in the
annual killifish) compared to the blastocyst, and are thus largely
out of the focus of this review. However, where appropriate,
we discuss potentially common regulatory mechanisms between
mammalian and non-mammalian embryonic diapause.

Mammalian Diapause Is a Feature of the
Blastocyst
Although the embryos of some species such as cow begin
gastrulation before implantation (van Leeuwen et al., 2015;
Pfeffer et al., 2017), the blastocyst is usually the stage at which
mammalian embryos implant. Therefore, it is also the stage that
diapause occurs in the absence of implantation. The embryo
is only conducive to diapause at the blastocyst stage, and not
earlier, even when diapause is induced experimentally in vivo
and ex vivo (Bulut-Karslioglu et al., 2016; Renfree and Fenelon,
2017). Many mammalian embryos fail to develop beyond the
cleavage stages due to genetic aberrations or other causes (van der
Weijden and Ulbrich, 2020). Pausing of embryos at the blastocyst
stage, and therefore after cleavage stages, would readily integrate

this initial quality control, such that only successfully developing
embryos would be kept dormant for further development
(van der Weijden and Ulbrich, 2020).

Most mammalian (eutherian) blastocysts contain three
different cell types: cells on the outside of the embryo, the
trophectoderm (TE), are the precursors of the placenta; and cells
on the inside of the blastocyst, the inner cell mass, are a mix of
precursors of embryonic tissues (the epiblast, Epi) and the yolk
sac (the primitive endoderm, PrE). Stem cells representing the
three early embryo cell types can be derived from the blastocyst
and cultured in vitro. Trophectoderm stem (TS) cells represent
the trophectoderm layer and can be differentiated into distinct
trophoblast cells (Tanaka et al., 1998). Embryonic stem (ES) cells
represent the epiblast and can generate all embryonic cell types
across the three germ layers, as well as germ cells, therefore
are pluripotent (Evans and Kaufman, 1981; Martin, 1981).
Extraembryonic endoderm (XEN) stem cells represent the PrE
and can be differentiated into more committed endodermal cells
representing the yolk sac (Kunath et al., 2005). For clarity, we will
refer to the early embryonic cells (Epi, PrE, TE) as cell types, and
their in vitro counterparts as stem cells. The three early embryo
stem cell types have distinct transcriptional and epigenetic
profiles in vitro (ES, TS, and XEN) and in vivo (TE, Epi, and
PrE) (Blakeley et al., 2015). Thus, common and distinct molecular
regulators may be required to induce and maintain diapause
in the different embryonic cell types. Furthermore, signaling
and crosstalk between the different cell types likely instruct
the paused stem cell states. Technical and material limitations
usually prevent separate investigation of TE, Epi, and PrE cells
in vivo. Stem cell models are thus valuable tools to dissect
mechanisms regulating the three lineages. Although stem cell
lines have so far been established in several mammalian species,
most notably from rodents and humans, it remains a challenge
to establish stem cell models of most wildlife species (Stanton
et al., 2019). Except for mink, many diapause species lack stem
cell models to date (Sukoyan et al., 1992; Menzorov et al.,
2015), challenging identification and validation of molecular
and genetic regulators of embryonic diapause. Derivation and
induction of stem cells benefit from mapping and understanding
of the transcriptional networks controlling embryonic cell types.
Current low-input and single-cell transcriptomics and chromatin
accessibility mapping technology allows blueprinting of gene
networks in single embryos and cells (Blakeley et al., 2015; Wu
et al., 2016; Guo et al., 2017). Application of these techniques
to diapause embryos will expand the understanding of diapause
pathways. It could further allow stem cell derivation from
blastocysts or reprogramming of somatic cells to pluripotency via
introduction of transcription factors governing each lineage.

Triggers of Diapause and Reactivation
Diapause was first observed in the European roe deer (Capreolus
capreolus) in 1854 (Bischoff, 1854). It is now known that over 130
mammalian species across eutherians and marsupials undergo
diapause (Renfree and Fenelon, 2017; Figure 1). The duration
of diapause is independent of gestational length and is rather
a function of the prolongation required to optimally adjust
the timing of birth (Renfree and Fenelon, 2017). Diapause is
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FIGURE 1 | Mammalian diapause characteristics in the mouse, roe deer, mink, and wallaby. Embryo morphology, diapause duration, and embryo number differ
between species. Diapause duration is independent of the length of post-implantation gestation. Diapause is triggered either seasonally (obligate) or due to
lactational stress (facultative). Embryo reactivation is triggered by alterations in photoperiod (mink, wallaby, roe deer) or end of lactation (mouse, wallaby).

either obligate or facultative, the latter case being triggered by
lactational stress. The American mink (Neovison vison) employs
obligate diapause every mating season and adjusts the length of
diapause according to the timing of mating (diapause length is
1–2 weeks) (Murphy, 2012). Exit from diapause is triggered by
increasing daylight (photoperiod) following the March equinox
in the northern hemisphere (Pilbeam et al., 1979; Murphy et al.,
1981; Douglas et al., 1998). Blastocysts of the house mouse (Mus
musculus) undergo diapause if lactation and pregnancy occur
at the same time. Diapause regulation is most intensely studied
in mice, due to the availability of in vivo, ex vivo and in vitro
models and the feasibility of functional gene perturbations.
Diapause can be experimentally induced in the mouse by surgical
removal of ovaries (ovariectomy) at embryonic day E3.5 or
by injection of estrogen antagonists (Weitlauf and Greenwald,
1968; Hunter and Evans, 1999), both of which counteract the
estrogen surge prior to implantation. In addition to eliminating
estrogen, progesterone supplementation is required to sustain the
pregnancy. Mouse diapause can be sustained for up to 36 days
and possibly longer in vivo (twice as long as gestation), however,
embryo loss occurs over time (Arena et al., 2021). Exit from
diapause is triggered by an increase in uterine receptivity that
either occurs when lactation ends or can be experimentally
induced by injection of estradiol. Mouse blastocysts can also
be induced to enter a diapause-like paused state ex vivo via a
few alternate methods for variable durations, including chemical
inhibition of the cytoplasmic kinase mTOR (up to 30 days after
blastocyst formation) (Bulut-Karslioglu et al., 2016), inhibition
of the transcriptional regulator Myc (18 h) (Scognamiglio
et al., 2016), and overexpression of the microRNA let-7 (up to
14 days) (Liu et al., 2020). These molecular regulators are further

discussed below. Importantly, any ex vivo pausing method should
be reversible and should not compromise the developmental
potential of the blastocyst. Retransfer experiments in which
paused, then released embryos are transferred to pseudopregnant
surrogate female mice are necessary to test the developmental
competence of experimentally paused embryos.

Marsupials also use diapause to adjust reproductive timing.
Tammar wallabies (Macropus eugenii) generate one embryo per
fertilization cycle, which undergoes both seasonal and lactational
diapause for a remarkable 11 months (Renfree and Fenelon,
2017). After activation, marsupial embryos do not per se implant
but loosely attach to the uterine wall, where they develop for
about 26 days (Fenelon et al., 2017). The duration of diapause
thus exceeds the duration of gestation by 10-fold in tammar
wallabies. Wallaby diapause also differs from mouse and roe
deer in that the blastocyst does not hatch out of its three
embryonic coats (zona pellucida, mucin layer, and the shell coat)
during diapause (Renfree and Fenelon, 2017). In contrast, mice,
rats, and roe deer blastocysts have one embryonic coat (zona
pellucida), out of which they hatch before diapause and eventual
implantation. Additionally, marsupial blastocysts neither have an
inner cell mass nor show differential staining of Epi, TE, or PrE
markers in the blastocyst, suggesting that cell fate specification
has not happened at this stage (Frankenberg et al., 2013). Exit
from diapause in wallabies is triggered either by removal of
the pouch young and its sucking stimulus, or by the onset of
the summer solstice in the southern hemisphere (Renfree and
Fenelon, 2017). Despite the occurrence of embryonic diapause in
over 130 mammals, we do not have even a basic understanding
of diapause duration and regulation in most species, including
vulnerable species such as the panda bear.
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Are Embryos in Diapause Truly Dormant?
Dormancy represents a cellular state with reduced metabolic
activity and little or no proliferation. For clarity, here we define
dormancy as a complete loss of proliferation. We use the term
“quiescence” only when evidence supports exit of cells from
cell cycle. Embryonic diapause is characterized by a significant
reduction in proliferation. But not all diapause embryos are
truly dormant. About 10% of cells in the roe deer blastocyst
proliferate throughout diapause, with the embryo expanding
from 300 to 20,000 cells within 4 months (Rüegg et al., 2020).
The inner cell mass proliferates less than the TE. The inner
cell mass also undergoes morphological changes, from round
to flattened to cyst to disc, indicating active restructuring and
communication between the cells, even at the low rate of
proliferation (Rüegg et al., 2020).

The mouse embryo cells reach near complete dormancy
after 5 days in diapause. Kamemizu and Fujimori (2019) used
the FUCCI model combined with staining of the proliferation
marker Ki67 to investigate the cell cycle status of diapause
mouse embryos over time and showed significant differences
in the TE and ICM responses to diapause. While mural
trophectoderm (opposite side to ICM) largely stops proliferating
1 day after induction of diapause, polar trophectoderm and
the ICM gradually decrease proliferation over the next 4 days,
reaching near-complete dormancy by diapause day 8.5 (D8.5,
also called equivalent day of gestation 8.5, EDG8.5) (McLaren,
1968; Kamemizu and Fujimori, 2019). The sequence is reversed
during exit from diapause, where the embryonic side (ICM and
polar TE) activates before the mural TE. Prolonged diapause leads
to a deeper dormant state which takes longer to activate. Upon
activation and retransfer of EDG4.5 and EDG10.5 embryos, the
authors found a 0.5–1 day delay in development of EDG10.5
embryos (Kamemizu and Fujimori, 2019).

The mouse embryo grows by about 140 cells and an estimated
4 times the volume during diapause compared to E4.0 blastocysts
(Kamemizu and Fujimori, 2019). The epiblast and PrE do not
grow, and, in contrast, can shrink by 40–50% (Batlle-Morera
et al., 2008). As a result, the TE grows significantly during the
course of diapause. As mural TE ceases proliferation by E4.5–
E5.5, the polar TE should then be responsible for most TE
proliferation. TE proliferation, together with potential stretching
as evidenced by increased distance between TE nuclei, are likely
responsible for the characteristic elongated shape of the mouse
embryo in diapause. We note that there is great variability
between mouse embryos of the same strain as well as between
strains in terms of cell proliferation and epiblast size. This
phenotypic variation may affect the consequent developmental
competence of the embryos and needs to be taken into account
when determining sample sizes in mouse diapause experiments
to robustly identify novel diapause markers and regulators.

Conservation of Diapause Potential in
Non-diapausing Species
Whether diapause is conserved across mammals is an intriguing
question. Eutherian blastocysts generally follow the same
blueprint of pre-implantation development, although exact cell

type-defining factors might vary between species (Blakeley et al.,
2015; Nakamura et al., 2016; Petropoulos et al., 2016; Bernardo
et al., 2018; Boroviak et al., 2018; Gerri et al., 2020). In this
respect, more species might be capable of diapause than those
actually employing it. To test whether non-diapausing species
are responsive to dormancy triggers in the diapause uterus,
interspecies transfer experiments have been performed. Embryos
from two closely related species, the mink and the ferret (Mustela
putorius furo) were transferred reciprocally (Chang, 1968). Ferret
embryos showed delayed development and did not implant in
the mink uterus under diapause, while normally diapausing mink
embryos activated and implanted into the ferret uterus. An
independent study showed sheep embryos undergoing diapause
in the mouse uterus under diapause conditions, which upon
activation and retransfer were able to give rise to live-born lambs
(Ptak et al., 2012). These studies point to uterine control of
diapause induction and maintenance and the conservation of
diapause pathways, at least in mammals that have been studied.
Although diapause is initially triggered by the non-receptivity of
the uterus to an otherwise implantation-ready blastocyst, soluble
uterine factors likely sustain the diapause state, as mouse and
mink embryos in diapause do not remain dormant in basic
culture medium lacking growth factors or relevant metabolites
beyond a few days (Naeslund, 1979; Fenelon and Murphy, 2017).
Therefore, the diapause uterine fluid is instructive in rewiring
genetic pathways for maintenance of early embryonic dormancy.

The Possibility of Diapause in Humans
A proven case of human diapause has never been documented.
In naturally conceived pregnancies, precise determination of the
exact time of fertilization or implantation is unlikely. Thus, if
natural diapause exists in humans, it could only be detected
by studying pregnancies following transfer of in vitro fertilized
(IVF) embryos. Although sparse evidence shows that a large
delay between transfer and implantation is possible (e.g., one case
study shows a 5-week delay Grinsted and Avery, 1996), large-scale
studies have not found such outliers. Naturally conceived human
embryos implant 7–11 days after ovulation, although a range of
6–18 days was observed (Wilcox et al., 1999). Importantly, late
implantation is associated with a higher rate of pregnancy loss.
Late implantation, without a reduced cell proliferation of the
embryo, may be caused by natural factors such as delayed uterine
receptivity. However, xenobiotic factors such as those resulting
from smoking also cause a higher rate of late implantation
and pregnancy loss (Jukic et al., 2011). Taken together, there is
currently no evidence that humans might use natural diapause as
a reproductive strategy. It is important to note that, if diapause
occurs in humans, it will most likely be triggered by lactational
or nutritional stress. In this context, clinical studies present a
challenge, since participants are very unlikely to experience such
stresses. On occasions where mothers experience such stresses,
e.g., during famines and droughts, reproduction timelines have
not been analyzed. Moreover, the natural variation of gestation
length in humans makes the detection of a potentially short
diapause period challenging.

Similar to the ability of ferret and sheep embryos to undergo
diapause as mentioned above, it is possible that human embryos
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might have retained or acquired a capacity for diapause.
This possibility can only be tested ex vivo using surplus
embryos donated by IVF patients. Many IVF surplus embryos
develop suboptimally, there is genetic variation in the human
population and there is naturally more variable developmental
rates of human embryos compared to captive-bred species,
making it challenging to achieve statistical power. Nonetheless,
qualitative evidence can be obtained. Indeed, Liu et al. (2020)
recently showed a slight delay in the development of human
blastocysts upon treatment with extracellular vesicles carrying
the microRNA let-7g (52% vs. 30% day 7 survival in treated
vs. control embryos). Human blastocysts were also reported
to undergo diapause when coated with a mucin-mimicking
synthetic gel, however, these did not retain the characteristic
blastocyst morphology (Canton et al., 2016). Taken together, this
evidence suggests that human diapause, if it occurs, likely lasts
just a few days.

Why Is It Important to Understand the
Regulation of Diapause?
In progressive embryonic development, pluripotency co-occurs
with proliferation and proliferation regulates gene activity.
Mouse ES cells clearly illustrate this relationship, where high
proliferative capacity is linked to hyper-transcription and
-translation, which in turn promote open chromatin through
gene turnover of transcriptional and euchromatin modifiers
(Bulut-Karslioglu et al., 2018). In contrast, maintenance of
pluripotency in diapause does not depend on proliferation. The
diapause epiblast maintains naïve pluripotency networks and
at the same time presents a distinct and largely suppressed
transcriptional profile in response to altered cell proliferation
(Boroviak et al., 2015). As such, diapause offers a unique model
to dissect pluripotency and proliferation networks.

In addition to preserving the first three cell types in the embryo
over longer periods, diapause might also enhance pluripotency.
Indeed, the first ES cells (mouse) were derived from diapause
embryos (Evans and Kaufman, 1981) and comparative analyses
has shown that diapause embryos more efficiently gave rise to
ES cells for the initial strain employed (129) as well as hitherto
refractory strains (Brook and Gardner, 1997). The increased
efficiency cannot be explained by increased embryo size, since
epiblasts were extracted for ES derivation and later studies
showed that the epiblast cell number does not increase, and
contrarily may decrease during diapause (Batlle-Morera et al.,
2008). Thus, embryonic dormancy likely enhances the ability
to give rise to ES cells. Whether this effect is due to rewiring
of transcriptional and epigenetic landscapes or by other means
is unclear to date. An intriguing possibility is that potentially
enhanced DNA repair during diapause might in several species
enable the emergence of a healthier embryo upon diapause exit.
Indeed, DNA repair proteins are expressed at higher levels during
killifish diapause (Wagner and Podrabsky, 2015; Hu et al., 2020),
but whether repair activity is enhanced in killifish and mammals
during diapause needs to be further investigated. Enhanced
autophagy and lower oxidative damage may be two alternative
mechanisms that increase the fitness of the diapause embryo (see

below). The above outlined potential benefits might result in a
higher developmental potential of individual diapause epiblasts,
however, further studies directly addressing its developmental
capacity e.g., via chimera formation are required.

Prolonged diapause, on the other hand, may compromise
the fitness of the embryo. In mice, fewer diapause embryos
(Arena et al., 2021) and resulting fetuses (Weitlauf and
Greenwald, 1968) are recovered with longer duration of diapause.
Also, ex vivo survival of embryos in a diapause-like state
diminishes over time (Bulut-Karslioglu et al., 2016; Liu et al.,
2020). Metabolic restrictions, maternal or embryonic pathways
may underlie diminishing embryo survival. Understanding
metabolic and genetic regulation of diapause is thus critical to
overcome the embryo lethality or compromised developmental
competence. Under culture conditions tailored to species-specific
requirements, diapause could be induced and maintained for
longer periods ex vivo. Artificial reproductive technology would
greatly benefit from such progress, especially in wildlife and
captive-bred species for which cryopreservation is either not
adaptable or compromises embryo fitness (Wauters et al., 2020).
Prolonged blastocyst maintenance would also extent the time
window for genetic selection or manipulation of embryos.

Embryo studies allow identification of transcriptional
networks critical for survival of each cell type. The required
transcription factors (TF) or cytokines can then be engineered
and utilized to derive ES or extraembryonic stem cells or
to reprogram somatic cells (Williams et al., 1988; Takahashi
and Yamanaka, 2006). Some key factors enabling generation
of pluripotent stem cells are only required in diapause and
not in proliferative blastocysts, suggesting that pluripotency
maintenance and establishment may be regulated by non-
overlapping mechanisms. For example, leukemia inhibitory
factor (LIF), a cytokine that allows maintenance of ES cell
pluripotency (Smith et al., 1988; Williams et al., 1988), is
dispensable in proliferative blastocysts (Stewart et al., 1992).
Although the LIF pathway is not strictly necessary for ES
derivation or maintenance in vitro (Ying et al., 2008), knockout
of the LIF receptor component gp130 results in loss of the
pluripotent epiblast during prolonged diapause (Nichols et al.,
2001), providing a clear example of an in vitro pluripotency
maintenance factor with physiological roots in diapause.
Unraveling diapause networks may thus enable generation of ES
cells from species with no established ES cell models.

Other Phenomena With a Regulatory
Basis Potentially Similar to Diapause
Dormancy-activation cycles underlie stem cell function in many
somatic tissues, such as in the hematopoietic and mesenchymal
systems (Marescal and Cheeseman, 2020). Although tissue-
specific stem cells are not pluripotent and have transcriptional
networks tailored to the tissue type and activation cues, dormancy
and its reversibility in embryonic and adult tissues may share
a regulatory basis. Furthermore, dormant cancer cells, which
usually arise as a result of therapy resistance, also show
similarities to diapause embryo cells (Dhimolea et al., 2021; Duy
et al., 2021; Rehman et al., 2021). For example, metabolic profiles
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of dormant stem cells are remarkably similar across tissues and
species, with globally decreased oxidative phosphorylation and
an increased dependency on lipolysis (Kinder et al., 2010; Singh
et al., 2016; Marescal and Cheeseman, 2020). Similarly, autophagy
is enhanced in diapause cells, as well as in tissue stem cells
and in dormant cancer cells (Lee et al., 2011; Bulut-Karslioglu
et al., 2016; Hen and Barkan, 2019). The cytoplasmic kinase,
mTOR is a major growth regulator that promotes proliferation in
virtually every tissue (Laplante and Sabatini, 2012). Inhibition of
its activity induces diapause in mouse embryos (Bulut-Karslioglu
et al., 2016) and is necessary for tissue stem cell dormancy,
as evidenced by loss of tissue stem cell pools in hyperactive
mTOR mutants (Kharas et al., 2010; Zhang et al., 2015; Hu et al.,
2017). Diapause studies may thus not only unravel developmental
pathways, but also increase our understanding of tissue stem cell
biology and cancer dormancy. The ability of stem cells to tolerate
and adjust to various stressors in diapause could signify their
capacity to resist to other stressors such as bacterial infections in
C. elegans that the embryo might encounter during development
(Ren and Ambros, 2015).

MOLECULAR REGULATION OF
DIAPAUSE

Uterine Receptivity and Hormonal
Regulation of Diapause
Seasonal and lactational diapause are hormonally regulated
by a number of hormones including prolactin, estrogen, and
progesterone, acting in different manners in different taxa
(Renfree and Fenelon, 2017). Here we summarize the main
hormonal changes leading to diapause and reactivation of the
early mammalian embryo.

Once at the blastocyst stage, the mammalian embryo is
ready to implant into the uterine wall. Normally, a glycoprotein
layer called mucins covers the uterine surface and acts as
a barrier to implantation due to its anti-adhesive property
(Carson et al., 1998). In mice, the estrogen surge on day 4
and, more importantly, the continuously high progesterone
levels lead to temporary stripping of the mucin layer and
provides a window of implantation (Surveyor, 1995). Lactation-
induced decrease of gonadotrophin release by the pituitary
gland and consequently lower estrogen levels cause a delay in
embryo implantation (Whitten, 1955). Experimentally, surgical
removal of ovaries or injection of estrogen antagonists reduce
estrogen levels and induce diapause in mice (McCormack and
Greenwald, 1974; Hunter and Evans, 1999). High progesterone
levels are required throughout diapause to sustain the pregnancy.
The embryo remains in close proximity to the uterine wall
throughout diapause, in fact it localizes to pockets of uterine
tissue called crypts in the implantation position (Figure 2),
with the mural TE more proximally located to the uterus in
the mouse (in contrast, the human embryo implants from the
polar side) (Kamemizu and Fujimori, 2019). This positioning
may enable close communication between the maternal tissue
and the embryo via diffusible factors in the uterine fluid
or via extracellular vesicles. Diapause is terminated in vivo

upon decrease of lactation-induced prolactin followed by an
increase in estrogen. Experimentally, injection of estradiol
terminates diapause. The diapause mouse embryo activates
within 12 h of the estrogen surge, although precise time of
activation may vary depending on the length of diapause
(Kamemizu and Fujimori, 2019).

In tammar wallaby, diapause is induced and maintained
by inhibition of the corpus luteum-secreted progesterone via
high plasma prolactin levels (Hinds, 1989; Hinds and Tyndale-
Biscoe, 2012). Suckling of the pouch young or photoperiod-
induced melatonin alterations control plasma prolactin levels
(Shaw and Renfree, 1984). Between 48 and 72 h post decrease
of prolactin levels either after the summer solstice or upon loss
of the pouch young, the corpus luteum increases the secretion of
progesterone, which leads to embryo reactivation and eventual
implantation on day 17. The delayed reactivation of the embryo
might be due to slow diffusion of activating factors through the
embryonic shell coat.

The mink differs from mouse and wallaby in that neither
prolactin nor progesterone is highly secreted during diapause
(Møller, 1973; Douglas et al., 1994). Mink diapause is largely
controlled by photoperiod-mediated changes in nocturnal
melatonin levels. Following the March equinox, decreased
melatonin levels lead to an increase in prolactin, progesterone
secretion from the corpus luteum, endometrium receptivity, and
embryo reactivation 3 days later (Pilbeam et al., 1979; Murphy
et al., 1981; Stoufflet et al., 1989).

The failure of the uterus to establish a receptive state under the
influence of upstream hormonal regulation is likely the principal
cause for the initiation of diapause (Figure 2). This notion is
further supported by genetic studies. LIF is secreted by the
uterine glandular epithelium cells in response to estradiol and
is necessary for implantation (Stewart et al., 1992). Maternal
LIF knock-out (KO) results in non-implanted blastocysts with
morphological features of diapause (Stewart et al., 1992). LIF
expression correlates with the implantation window also in mink,
Western spotted skunk, and humans (Song et al., 1998; Hirzel
et al., 1999; Aghajanova, 2004). Although low LIF levels correlate
with failed implantations in humans, a requirement for LIF in
human implantation has not been proven (Aghajanova, 2004).
Other important regulators of implantation and diapause are
the muscle segment homeobox genes Msx1 and Msx2 (Daikoku
et al., 2011). Msx genes are repressed directly by LIF, thus are
highly expressed in the uterine luminal and glandular epithelial
cells during diapause (mouse, mink, wallaby) and downregulated
for implantation (Cha et al., 2013). Mouse diapause can be
induced but not maintained in Msx KO mothers (Cha et al.,
2013). However, whether Msx upregulation is sufficient to
induce diapause is unclear and inducible overexpression in the
uterus is necessary to prove causality. Taken together, uterus
non-receptivity suffices to trigger diapause, however, additional
factors are likely necessary to maintain prolonged pausing.

The Uterine Microenvironment
The uterine fluid comprises of growth factors, soluble metabolites
and extracellular vesicles, and serves as a communication
medium between the embryo and the mother. Uterine fluid
composition, i.e., free amino acids, glucose, lactate, and pyruvate
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FIGURE 2 | Inducers and features of embryonic diapause. Seasonal variations in photoperiod or lactational stress lead to hormonal alterations. The uterus then fails
to establish a receptive state, which blocks implantations and induces diapause. Uterine fluid and extracellular vesicle composition is altered in diapause. The
embryo in diapause shows minimal metabolic activity, globally reduced transcription and translation, and diminished or reduced proliferation. Depicted in the figure is
a mouse embryo. Parent species where evidence supportive of each statement was derived are shown as icons.

concentrations, is tailored to the developing embryo (Harris et al.,
2005), indicating stage-specific metabolic requirements across
species, e.g., cattle (Forde et al., 2014), sheep (Gao et al., 2009),
mice (Kelleher et al., 2016), and pig (Kim et al., 2013). Metabolite
uptake is also regulated in a stage-specific manner by altered
expression of metabolite transporters (Winkle, 2001). During
diapause, the embryo stays in close proximity to the uterus and
responds to diffusible factors such as LIF (Nichols et al., 2001).
The uterine tissue, uterine fluid, and the embryo have been
separately studied to identify molecular regulators of diapause.
Reactivation from diapause is clearly associated with increased
soluble growth factors in the uterine fluid, e.g., epidermal growth
factor (EGF) and heparin-binding EGF (HBEGF) in the tammar
wallaby (Fenelon et al., 2017), together with increased expression
of growth factor receptors in the blastocyst, e.g., EGFR increase
in mouse 12–24 h after estradiol injection (Hamatani et al., 2004).
The absence of growth factors does not induce diapause in ex vivo
cultured embryos, indicating that growth factor pathways are
more relevant for reactivation.

Absence of certain metabolites do induce or maintain
diapause, as shown by delayed activation of diapause mouse
blastocysts ex vivo in the absence of glucose, and by delayed
implantation of mink and mouse blastocysts in vivo in
the absence of polyamines (Naeslund, 1979; Fenelon and
Murphy, 2017). Polyamines are synthesized from ornithine,
arginine, proline, and methionine by ODC1 downstream of
mTOR in response to prolactin and play important roles in
reproductive physiology by regulating endothelial cell growth
and proliferation, cell migration, and via antioxidant functions
(Lenis et al., 2017). Chemical inhibition of uterine ODC1 induces
diapause in both mink and mouse blastocysts and uterine ODC1
is upregulated upon reactivation (Lefèvre et al., 2011b; Fenelon
and Murphy, 2017). Likewise, polyamine abundance, i.e., less
spermine, more spermidine and putrescine, likely increase upon

reactivation in the uterine fluid of roe deer (van der Weijden
et al., 2019). Other diapause-associated microenvironmental
changes include adhesion- and cell cycle-related proteins, further
corroborating maternal control over embryo attachment and
proliferation (Lefèvre et al., 2011a; Martin et al., 2016; van der
Weijden et al., 2019).

Metabolic Profile of the Diapause
Embryo
Similar to other dormant cells, the diapause embryo presents
a significantly lowered metabolic rate with altered usage of
metabolic pathways (Naeslund et al., 1980; Lee et al., 2011;
Hussein et al., 2020; Sousa et al., 2020). The diapause mouse ICM
is metabolically more quiescent compared to TE, suggesting cell
type-specific regulation of metabolic activity (Houghton, 2006).
In general, reduced oxidative phosphorylation, structurally
altered mitochondria and increased autophagy characterize
the diapause metabolism (Naeslund et al., 1980; Lee et al.,
2011; Hussein et al., 2020; Sousa et al., 2020). Reactivation
from diapause results in activation of mitochondria in the
mural TE, as evidenced by increased mitochondrial membrane
potential (Fu et al., 2014). However, the role of glycolysis is
less clear, with studies reporting either increased or decreased
glycolysis downstream of mTOR inhibition in ES cells and
in diapause embryos (Fu et al., 2014; Boroviak et al., 2015;
Hussein et al., 2020; Sousa et al., 2020). Reactivated mouse
embryos display a rapid increase in expression of glycolytic
pathway genes (Fu et al., 2014) as well as pyruvate and
glucose uptake (Spindler et al., 1996). Reactivation is delayed
in the absence of glucose (Naeslund, 1979) pointing to the
critical role of glycolysis in exit from diapause (Spindler
et al., 1996). The glutamine transporter Slc38a1 is also
upregulated in the ICM during diapause and inhibition
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of it is detrimental to the embryos capacity to pause
(Hussein et al., 2020).

Although RNA, protein, and metabolome profiling provide
insights into metabolic pathway usage, real-time measurement of
metabolic activity via colorimetric assays or the Seahorse system
has the potential to provide more direct evidence of metabolic
activity. However, these assays often require a large number of
cells and therefore direct metabolic characterization of embryos
remains challenging.

Dormant stem cells across tissues and species utilize lipid
reserves for maintenance (Kinder et al., 2010; Singh et al.,
2016). Recently, lipids have been shown to be a major energy
source during diapause as well. Free fatty acids and phospholipid
phosphatidylcholine are in greater abundance in diapause
blastocysts compared to proliferating embryos, suggesting active
lipolysis (Hussein et al., 2020). The lipid content of the mouse
oocyte is relatively low compared to other species (4 ng compared
to 161 ng in the pig, 63 in cows, and 89 in sheep) (Loewenstein
and Cohen, 1964; McEvoy et al., 2000; Sturmey and Leese,
2003). Nonetheless, removal of lipid droplets from mouse zygotes
impairs the survival of the diapause blastocysts, indicating active
utilization during diapause (Arena et al., 2021). This functional
evidence is supported by molecular analysis of different lipid
species during diapause, which found depletion of neutral lipids
usually enriched in lipid droplets (e.g., triacylglycerol) and
increase in processed intermediates such as phosphatidylcholines
and fatty acids (Hussein et al., 2020). Intriguingly, and contrary
to this finding, fatty acid oxidation was shown to counteract a
naturally arising quiescent subpopulation in mouse ES cells, with
inhibition of it increasing the G0 population from 4 to ∼17%
(Khoa et al., 2020).

The metabolic profile of a cell not only determines
energy availability and levels of cellular building blocks, it
also affects the epigenome, genome integrity, and cellular
fitness. Preimplantation development takes place in a hypoxic
environment, with intrauterine oxygen levels ranging from 1.5%
in the rhesus monkey to 5.3% in rabbits and hamsters (Fischer
and Bavister, 1993). The low-capacity oxidative phosphorylation
mandated by hypoxia is further lowered during diapause, which
may result in less oxidative DNA damage in the diapause embryo
(Houghton, 2021). In addition, existing DNA damage may be
more efficiently repaired during diapause. Cells turn to autophagy
when other energy sources do not suffice to sustain the energy
needs or reduced uptake or metabolism do not allow the use of
existing resources. In addition to providing energy, autophagy
also clears out defective organelles, mostly mitochondria, which
is more prone to oxidative DNA damage compared to genomic
DNA. Increased autophagy is a common feature of diapause (Lee
et al., 2011; Hu et al., 2020) and dormancy and may in this
way enhance cellular fitness. Fu et al. (2014), however, showed
that mitochondria numbers remain constant during diapause.
Thus, how autophagy contributes to overall diapause metabolism
remains unclear. In contrast to its short-term benefits, ongoing
autophagy could, in the long-term, compromise embryo health if
organelles are depleted below a threshold required to sustain the
embryo. Indeed, mouse embryos that have been diapause longer
than 10 days resulted in fewer fetuses, potentially due to poorer

development of fetal placenta vessels (Weitlauf and Greenwald,
1968). In this sense autophagy may not be an important factor in
cell nutrition in species with long periods of diapause such as the
tammar wallaby (Renfree and Fenelon, 2017).

Cell Cycle
Dormancy mandates alterations in cell cycle progression and,
indeed, cell cycle related genes are among the most altered
between dormant and activated blastocysts. Evidence supports
p21-mediated cell cycle control at the G1/S checkpoint, thereby
retaining cells in the G0/G1 phase and reducing DNA replication
(Hamatani et al., 2004; Kamemizu and Fujimori, 2019).
Diapausing killifish cells similarly arrest at G0/G1, and upon
activation immediately enter the S phase (Dolfi et al., 2019). In
mice, it has been suggested that cell cycle arrest is estrogen-
mediated and thus controlled maternally via downregulation
of the tumor repressor Brca1 and upregulation of the anti-
proliferation gene Btg1 (Hamatani et al., 2004).

In mouse ES cells, induction of a paused-like state by
inhibition of mTOR reduces the proliferation rate while
distribution of cells among the stages of the cell cycle is
only modestly altered, suggesting that paused-like cells proceed
through the cell cycle, albeit at a very slow pace (Bulut-Karslioglu
et al., 2016). In contrast, Myc inhibition, which also leads to a
diapause-like state, enriches G0/G1 cells and depletes the S phase
(Scognamiglio et al., 2016). Although the latter cell cycle profile
is closer to true dormancy, the Myc-inhibited cells cannot be
sustained longer than a day. These findings suggest that in vivo
and in vitro regulation of diapause might be distinct and warrants
further studies on cell cycle control in paused pluripotency or
embryonic stem cell dormancy.

GENOMIC REGULATION

Cell cycle and metabolism rewiring appear to be hallmarks
of diapause, as expected from a largely dormant state. Yet,
distinguishing causal and consequential alterations in diapause
remains a challenge. Several RNA and protein profiling studies
have mapped gene expression changes during diapause to
identify altered pathways and to isolate inducers of diapause
and reactivation. Here we outline in detail the recent advances
in genomic regulation of diapause. We note that functional
perturbations are necessary to show causality. In addition, we
caution the reader to take the following critical confounding
factors into account when applicable: (1) significant inter-embryo
heterogeneity in diapause response, as evidenced by variable
durations of pausing in vivo and ex vivo, may conceal changes
if pooled embryo profiling is performed, (2) whole-blastocyst
analysis may prevent identification of Epi-, TE-, and PrE-specific
regulators, (3) static analysis (i.e., comparing a single time point
vs. control) likely misses dynamically altered pathways, and
(4) gene expression levels cannot be precisely mapped, due to
global reductions in RNA and protein levels, unless exogenous
spike-in controls are used. Despite these complications, exciting
new insights into genomic regulation have illuminated diapause
biology in the recent years.
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Chromatin Rewiring in Diapause: Cause
or Consequence?
Epigenetic marks, such as post-translational modifications of
histones, DNA and RNA, together with TFs and chromatin
remodelers, regulate gene activity. Epigenetic modifications
either control or result from transcriptional activity. Irrespective
of causality, highly transcribed or repressed genes show
characteristic histone modifications, e.g., histone acetylation
is associated with high transcriptional output (Bannister and
Kouzarides, 2011). Additionally, the chromatin state is linked
to metabolism, as for example the citric acid intermediate
α-ketoglutarate affects DNA and histone methylation levels
(Donohoe and Bultman, 2012). As such, chromatin rewiring
is an expected outcome of diapause, although a detailed
characterization is missing. Chromatin of ICM cells is
particularly sensitive to diapause and shows depletion of
histone acetylation such as H4K16ac (Bulut-Karslioglu et al.,
2016). Interestingly, knock-out of MOF, the enzyme that
acetylates H4K16, increases the naturally-occurring dormant
subpopulation of ES cells observed in the study, suggesting
that depletion of histone acetylation could induce pausing by
reducing global transcriptional output (Khoa et al., 2020). On
the contrary, inhibition of histone acetyltransferase activity via
chemical inhibitors does not suffice to pause mouse blastocysts
ex vivo (Bulut-Karslioglu et al., 2016).

Transcriptional activity reduces the abundance of
heterochromatin (Ahmad and Henikoff, 2001), therefore
global reductions in transcription and associated histone
acetylation in diapause may result in abundant heterochromatin.
In agreement, electron microscopy analysis of diapause vs. active
blastocysts revealed more condensed nucleoli and abundant
heterochromatin in Epi and TE cells, which decondensed
within 12 h of reactivation (Fu et al., 2014). Polycomb-mediated
H3K27me3, which represses transcription, represses key
metabolic and developmental genes during killifish diapause
(Hu et al., 2020) and may also play a role in maintaining
diapause in mammals. Although most of the genome is silent
and potentially heterochromatinized during diapause, the
diapause epiblast retains naïve pluripotency features (Boroviak
et al., 2015). Additionally, a subset of genes is upregulated and
possibly induces or maintains dormancy (Hamatani et al., 2004;
Bulut-Karslioglu et al., 2016). The regulatory pathways by which
such genes escape silencing is a question that invites attention in
the coming years.

Transcription and Translation Are
Globally Reduced During Diapause
Inhibition of cellular growth and proliferation during diapause
leads to global reductions in transcription and translation,
resulting in smaller cell size. Paused-like ES cells have 2–
4-fold less RNA per cell and are smaller than proliferative
ES cells (Bulut-Karslioglu et al., 2016). Dormant cells across
different systems, e.g., tissue stem cells, are smaller than their
activated counterparts and have reduced transcriptional and
translational output (Rodgers et al., 2014). The impact of
reduced transcriptional and translational capacity is particularly

relevant for the imminent expansion of the epiblast after
implantation. Pluripotent cells of the late epiblast are among
the most rapidly proliferating cells, with one cell division
taking ∼5–6 h (Snow, 1977). This rapid proliferative rate
mandates prolific transcription and translation. In proliferative
ES cells, levels of transcription and associated chromatin
modifications such as histone acetylation are acutely responsive
to translational output, which is in turn correlated with
transcriptional output (Schwanhäusser et al., 2011; Percharde
et al., 2017; Bulut-Karslioglu et al., 2018). Reactivation of
the diapause embryo, combined with the fast proliferative
rate of the early post-implantation embryo, requires a major
ramp-up in transcriptional and translational output. How the
transcription-translation cycle builds back to prior levels and
the associated chromatin regulation is an area of interest for
future studies. In other situations requiring an accelerated
transcriptional response, e.g., signal-induced transcription at
heat shock or hormone-responsive genes (Sawarkar et al.,
2012), pre-loaded RNA polymerase and chromatin modifiers
enable rapid activation. Similar regulation may be utilized in
diapause, as mouse embryos reactivate within 12 h after release
from diapause (Kamemizu and Fujimori, 2019). In addition,
post-transcriptional and post-translational mechanisms such
as miRNA activity complement nascent regulation to achieve
repression and on-demand activation of proliferative pathways.

Transcriptional Networks and Cellular
Signaling in Diapause
Stem cell identity is governed by transcriptional networks
downstream of cellular signaling pathways (Young, 2011).
Altered signaling pathway activity defines transcriptional outputs
and can result in cell state or fate switches. In the mouse,
pluripotency is maintained through combinatorial activity of
master TFs such as Oct4, Klf4, Esrrb, Sox2, and Nanog under
the control of signaling pathways such as Fgf/Mek/Erk, Wnt,
or LIF/Jak-Stat. Long-term pluripotency maintenance during
diapause entails distinct signaling pathway activity as compared
to only transient regulation in proliferative blastocysts. For
instance, although the cytokine leukemia inhibitory factor (LIF)
is expressed in the blastocyst (Nichols et al., 1996), it is
dispensable for early embryo development (Stewart et al., 1992).
It is, however, required to maintain pluripotency during diapause,
as gp130 (LIF receptor component) knock-out embryos lose
the epiblast during diapause (Nichols et al., 2001). ES cell
pluripotency is alternatively maintained through inhibition of the
differentiation-promoting Mek/Erk pathway and enhancement
of Wnt pathway activity (Ying et al., 2008). Wnt activity is
minimal in the early embryo but is increased during diapause
(Boroviak et al., 2015), illustrating another case where prolonged
pluripotency maintenance in ES cultures has physiological
roots in diapause. In general, naïve pluripotency networks are
intact in the diapause epiblast, indicating active maintenance of
pluripotency despite global transcriptional silencing (Boroviak
et al., 2015). However, the effect of diapause on PrE- and TE-
specific transcriptional networks is unclear. Technical challenges
in dissecting Epi, PrE, and TE cells in the blastocyst so
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far prevented comparative studies of stem cell networks and
crosstalk between the three cell types in the diapause blastocyst.
Of note, although PrE is clearly defined in the diapause blastocyst,
observations suggest altered transcriptional networks, e.g., all
Gata4+ PrE cells were shown to retain Oct4 expression, in
contrast to only a subset of Gata4+/Oct4+ cells in normal
mouse blastocysts (Batlle-Morera et al., 2008; Figure 3). ICM
cell numbers decrease by half (Epi) and 40% (PrE) during
diapause (Batlle-Morera et al., 2008). Thus, the remaining ICM
cells during diapause may be selectively retained based on
their transcriptional state, allowing them to express both Gata4
and Oct4, or transcriptional rewiring may override previous
separation of Gata4+ and Oct4+ in a subset of cells. Mouse
trophectoderm shows signs of apoptosis during diapause, and its
deterioration may underlie embryo loss in prolonged diapause
(Bulut-Karslioglu et al., 2016). Thus, whether TE identity and
transcriptional networks remain uncompromised is unclear.
Species in which a single embryo experiences an extremely long
diapause, such as the tammar wallaby, likely safeguard cellular
potency via multiple redundant mechanisms, as the loss of
the single embryo would have significant consequences on the
species’ survival. Interestingly, wallaby blastocysts are composed
of a monolayer of cells without an ICM, which may underlie their
increased resistance to prolonged pausing.

A prominent pathway in controlling embryonic diapause
in mice is the PI3K/mTOR pathway. mTOR promotes cell
growth, and thus proliferation, via direct control over translation,
metabolism, and transcription (Laplante and Sabatini, 2012).
It acts as a cellular rheostat to adjust cellular growth to the
availability of nutrients and energy. Modulation of mTOR
activity is necessary for dormancy-activation cycles in adult
stem cells, as hyperactive mTOR results in loss of stem cell
pools (Kharas et al., 2010; Zhang et al., 2015; Hu et al.,
2017). Similar to dormant tissue stem cells, the mTOR pathway
is downregulated in the diapause epiblast, suggesting that
the PI3K/insulin/mTOR axis governs dormancy decisions in
mammals (Boroviak et al., 2015). Importantly, inhibition of
mTOR activity induces diapause in mouse blastocysts ex vivo
for up to 30 days (Bulut-Karslioglu et al., 2016). This diapause-
like state can also be applied to ES cells in culture via treatment
with catalytic mTOR inhibitors. The paused-like ES cells show
characteristics of diapause such as a reduced metabolic rate,
globally downregulated transcription and translation, and a
transcriptional signature reminiscent of the diapause epiblast.
Establishment of such in vitro diapause-mimicking stem cell
culture conditions is critical to overcome technical and material
limitations in embryo studies and for detailed mapping and
functional investigation of regulatory networks.

Although translational inhibition is one of the most
prominent consequences of mTOR inhibition, inhibition of
translation does not suffice to induce diapause ex vivo (Bulut-
Karslioglu et al., 2016), suggesting that combinatorial control
downstream of mTOR inhibition drives cellular adaptation to
diapause. A major regulator that controls global transcription
as well as specific gene networks is TF Myc (Kress et al., 2015).
Myc is a component of the pluripotency network and is also
functional across somatic tissues (Kress et al., 2015). Myc activity

is reduced in diapause (Boroviak et al., 2015) and its inhibition
can induce a diapause-like state for short periods (18–24 h in
mouse blastocysts) (Scognamiglio et al., 2016).

Wnt Pathway Activity and the Interplay
With Cellular Polarization
In contrast to reduced mTOR and Myc signaling, Wnt activity
is transiently increased during diapause in the epiblast (Fan
et al., 2020). The Wnt pathway is stimulated via multiple
ligands (Wnt1-16 in mice and humans with variants, in total
19 genes) and can assume conflicting roles in promoting
pluripotency or differentiation in a cell type specific and context-
dependent manner (ten Berge et al., 2008, 2011). Wnt is also
an upstream regulator of cellular polarization, thus spearheading
epithelial-mesenchymal transition in gastrulation and body
patterning. The ICM of the pre-implantation embryo comprises
of unpolarized cells (Rivera-Pérez and Hadjantonakis, 2014).
Immediately after implantation the ICM polarizes, assumes
a rosette-shaped pattern, creates a lumen and undergoes
morphological transformation to generate the classical “egg
cylinder” of the mouse post-implantation epiblast (the post-
implantation morphology is species-dependent, e.g., in human
the post-implantation epiblast forms a disc shape) (Rivera-
Pérez and Hadjantonakis, 2014). Morphological changes in the
epiblast correspond to progression of the embryo along the
pluripotency spectrum, i.e., from rosette (Neagu et al., 2020)
to formative (Kinoshita et al., 2021) to primed pluripotency
(Brons et al., 2007; Tesar et al., 2007). Interestingly, the late-
stage diapause epiblast (EDG9.5 onward) assumes a polarized
pattern despite retaining naïve pluripotency networks (Fu
et al., 2014; Fan et al., 2020). Fan et al. (2020) recently
showed that transient Wnt activity during early stages of
mouse diapause (peaking at EDG7.5 and downregulated by
EDG9.5) is required to delay polarization and retain naïve
pluripotency of the Epi cells. Polarization is prevented via
the naïve pluripotency TF Essrb. The epiblast of Esrrb null
blastocysts is not maintained during prolonged diapause (Fan
et al., 2020). Wnt pathway activity thus promotes naïve
pluripotency and prevents polarization in ES cells, as well as
in the diapause epiblast, despite its dispensability in normal
blastocysts. These observations indicate that establishment of
diapause is thus an active process that entails both transcriptional
rewiring and morphological alterations. Open questions that
remain unanswered are how naïve pluripotency is retained
once the epiblast polarizes at EDG9.5 and whether other naïve
pluripotency factors are indispensable for epiblast maintenance
during diapause.

Wnt pathway activity controls cell polarity by modulating
the activities of ROCK and JNK kinases, which control cellular
cytoskeleton structure including e.g., actin polymerization. In
addition, β-catenin is required for cell adhesion by connecting
E-cadherin and α-catenin (Drees et al., 2005). Following the
trend for general Wnt activity, β-catenin is also dispensable for
normal blastocyst formation (Haegel et al., 1995; Huelsken et al.,
2000). Yet, β-catenin null blastocysts collapse upon induction of
diapause (before EDG5.5) (Fan et al., 2020). This more severe
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FIGURE 3 | Hallmarks of the inner cell mass (ICM) of normal and diapause blastocysts. Establishment and maintenance of diapause entails alterations in cellular
signaling pathways, transcriptional networks and the chromatin state. The epiblast retains naïve pluripotency during diapause but is polarized due to transient Wnt
pathway activity. LIF is required to sustain the epiblast throughout diapause. The transcription-associated histone H4K16 acetylation is depleted in diapause ICM.

phenotype compared to Esrrb KO suggests the involvement of
cellular adhesion pathways in establishing the diapause state
(Fan et al., 2020). Indeed, several genomic profiling studies
comparing diapause and active blastocysts documented altered
expression of cellular adhesion genes (Hamatani et al., 2004; Fu
et al., 2014; van der Weijden et al., 2019). Adhesion pathways
and the cytoskeleton are not merely structural components
of the cell, but also affect transcriptional networks, as they
are additionally involved in signaling pathways and chromatin
regulation (Klages-Mundt et al., 2018; Griffith et al., 2021). Thus,
altered adhesion properties may have an impact on the diapause
blastocyst at multiple levels, e.g., by altering implantation
capacity of the TE and polarity of the epiblast, by maintaining
the blastocoel and adjusting the blastocyst in its new elongated
form, and by altering transcriptional networks to adapt cellular
states. Detailed analysis on how adhesion, mechanotransduction,
and cytoskeleton pathways impact stem cell states in diapause are
missing to date.

Post-transcriptional and
Post-translational Gene Regulation in
Diapause
Post-transcriptional mechanisms, such as miRNA-based gene
control, are critical regulators of gene activity. Indeed, only about
40% of gene activity is explainable by nascent transcription,
although the exact fraction is cell-type dependent (Buccitelli
and Selbach, 2020). MicroRNAs (miRNA) are small non-coding
RNAs that largely repress gene activity via transcriptional
silencing, transcript degradation or translation inhibition
(Treiber et al., 2019). MiRNA-mediated gene repression
combines sequence specificity with promiscuity (due to short
seed sequence and by allowing mismatches), thereby allowing
control of multiple target genes at once (O’Brien et al., 2018).
Combinatorial miRNA activity, i.e., multiple miRNAs controlling
a given gene and one miRNA controlling multiple genes, provides
pathway-level control (Bartel and Chen, 2004) and thus is suited
to mediate cell state shifts that entail alterations of many
pathways. Furthermore, miRNAs usually control metabolic,
proliferation, apoptosis, and developmental pathways, all of
which are essential components of diapause. As such, miRNAs
are potential prominent regulators of diapause and therefore

have attracted attention. As miRNA activity fine-tunes gene
expression and increases the robustness of genetic programs,
miRNA-mediated control of diapause likely acts in combination
with other regulatory units to achieve the final outcome
(Bartel and Chen, 2004).

The evidence for miRNA function in diapause largely
originates from genomic profiling studies. Diapause results
in altered miRNA profiles in many mammalian and non-
mammalian species (silk worms (Fan et al., 2017), mosquito
(Meuti et al., 2018), C. elegans (Meuti et al., 2018), mouse
(Liu et al., 2012). It is therefore possible that distinct miRNAs
mediate diapause induction, maintenance, and reactivation. Cell-
type specific miRNAs may mediate tissue specificity. For example,
in C. elegans diapause, the miRNA miR-71 suppresses the growth-
promoting PI3K/insulin pathway and miR-235 acts downstream
of the insulin pathway to arrest development, pointing at the
central role of the insulin pathway in diapause control across
species. Knock-outs of these miRNAs are not lethal in diapause,
suggesting auxiliary roles in dormancy transition. In the mouse,
overexpression of let-7, among the first miRNAs to be discovered
in C. elegans and a major regulator of developmental timing,
induces ex vivo diapause by suppressing mTOR and Myc activities
and by inhibiting polyamine synthesis (Liu et al., 2020). In
mouse diapause, let-7 is of maternal origin and is transferred
to the embryo via extracellular vesicles (Figure 2), exemplifying
direct maternal control of the embryonic state (Liu et al., 2020).
The authors state that let-7 can also induce diapause in human
embryos, however, the duration and rate of pausing is marginal
(day 7 survival 52% vs. 30%, day 8 survival 5% vs. 0% in let-7 vs.
control embryos).

Given the promise of miRNA control over diapause, it
is desirable to dissect spatial and temporal regulation by
combinatorial action of miRNAs. Mechanistically, miRNA
targets are easy to predict but hard to precisely define, since
sequence complementarity may not suffice. Studies focusing
on individual miRNAs would benefit from identification
of miRNA targets. Dissection of downstream pathways can
enhance our understanding of how miRNAs regulate diapause.
MiRNAs are often in feedback control with cellular pathways
and active miRNA levels are regulated either transcriptionally,
post-transcriptionally (with selective processing), or via
sequestration of mature miRNAs, thus acute functional
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perturbations are necessary to dissect the regulatory complexity
of miRNA activity (Treiber et al., 2019).

Many miRNAs have oncogenic activity (Dhawan et al., 2018).
Given the importance of understanding dormancy pathways in
cancer, investigating miRNA-mediated dormancy in diapause
may enlighten oncogenic miRNA activity. miRNAs are assembled
into extracellular vesicles and circulating oncogenic miRNAs
are used as cancer biomarkers (Hou et al., 2015). It is an
intriguing possibility to use circulating miRNAs as potential
diapause biomarkers, especially in wildlife species where diapause
detection has otherwise not been successful.

Among other post-transcriptional or -translational regulators
of pluripotency maintenance in diapause are mRNA stability,
alternative splicing, and protein localization. Cnot3, a
deadenylator that controls RNA stability, is required to maintain
the pluripotent epiblast during mouse diapause by targeting
mRNAs of differentiation genes for degradation (Zheng et al.,
2016). Cnot3 is not required in normal blastocysts and its
deletion is only embryonic lethal at ∼E6.5, thereby illustrating
the occurrence of another regulator required for prolonged
pluripotency maintenance in ES cells and in diapause (Zheng
et al., 2016). Lkb1, an upstream regulator of the starvation-
induced AMPK kinase, is controlled by alternative splicing
during diapause (Hussein et al., 2020). Other genes such as
the developmental TF Pitx1, which also regulates prolactin
expression, are also subject to alternative splicing in diapause
(Hussein et al., 2020). Finally, the Forkhead family TFs Foxo1/3/4
are associated with dormant states in C. elegans (Sun et al., 2017),
tammar wallaby, and mink and may control diapause via altered
cellular localization in response to altered PI3K/insulin signaling
(Fenelon et al., 2017). Although Foxo/Daf-16 has been established
as a master regulator of dauer diapause in C. elegans, evidence of
mammalian Foxo activity in diapause is largely based on stainings
and requires functional perturbations (Sun et al., 2017). Foxo
function is dispensable for normal development (Kuscu et al.,
2019), but is essential to maintain pluripotency in mouse and
human ES cells (Zhang et al., 2011), as well as tissue stem cells.
This suggests that it may be another factor specifically required to
maintain prolonged pluripotency and may be a common inducer
of dormancy. Foxo involvement in metabolism, cell cycle, DNA
repair control, and protection against oxidative stress (Kops et al.,
2002; Fenelon et al., 2017) are highly relevant for diapause, and
suggest it may be a master regulator of dormancy.

OUTLOOK

In this review we highlight the complex biology of diapause
that we are only beginning to understand. Current evidence

supports a model in which diapause is initially triggered due to
the embryo’s inability to implant into the non-receptive uterus.
Entry into diapause is followed by morphological, metabolic,
and genomic restructuring of the embryo as well as maternal
tissues. Soluble and vesicle-delivered factors in the uterine
microenvironment mediate maternal-embryo crosstalk and
control diapause. Absence of key metabolites, e.g., polyamines,
induce diapause and presence of others, e.g., lipids, sustain
embryos in diapause. Key pluripotency-maintenance factors, e.g.,
LIF, are required to maintain the epiblast throughout diapause.
Diapause-like states can be induced ex vivo, e.g., via mTOR
and Myc inhibitors or miRNA supplementations. Taken together,
diapause is induced through multiple routes and entails complex
restructuring of embryonic and extraembryonic networks.

Current challenges in further investigation of diapause include
technical limitations in embryo accessibility, recovery, and
manipulation. These challenges illustrate the need for ex vivo
and in vitro diapause model systems. Spatial and temporal
regulation can only be understood by designing dynamic
experiments and by addressing inter-embryo heterogeneity
and cell-type specificity. Implementing single-cell transcriptome
and accessibility profiling methods will greatly enhance our
understanding of spatiotemporal regulation. Recovering normal
or diapause embryos in many wild animals is not feasible
and identification of diapause biomarkers would facilitate
reproductive technology in these species. ES pluripotency
pathways are rooted in prolonged pluripotency maintenance in
diapause, thus studying diapause could enable establishment of
ES or iPS cells from so-far refractive species.
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