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Background: Newbiomarker combinations have been increasingly developed to improve the
precision of current diagnostic and therapeutic modalities. Recently, researchers have found
that tumor cells are more vulnerable to ferroptosis. Furthermore, ferroptosis-related genes
(FRG) are promising therapeutic targets in breast cancer patients. Therefore, this study aimed
to identify FRG that could predict disease-specific survival (DSS) in breast cancer patients.

Methods: Gene expression matrix and clinical data were downloaded from public
databases. We included 960, 1,900, and 234 patients from the TCGA, METABRIC,
and GSE3494 cohorts, respectively. Data for FRG were downloaded from the FerrDb
website. Differential expression of FRG was analyzed by comparing the tumors with
adjacent normal tissues. Univariate Cox analysis of DSS was performed to identify
prognostic FRG. The TCGA-BRCA cohort was used to generate a nine-gene panel
with the LASSO cox regression. The METABRIC and GSE3494 cohorts were used to
validate the panel. The panel’s median cut-off value was used to divide the patients into
high- or low-risk subgroups. Analyses of immune microenvironment, functional pathways,
and clinical correlation were conducted via GO and KEGG analyses to determine the
differences between the two subgroups.

Results: The DSS of the low-risk subgroupwas longer than that of the high-risk subgroup.
The panel’s predictive ability was confirmed by ROC curves (TCGA cohort AUC values
were 0.806, 0.695, and 0.669 for 2, 3, and 5 years respectively, and theMETABRIC cohort
AUC values were 0.706, 0.734, and 0.7, respectively for the same periods). The panel was
an independent DSS prognostic indicator in the Cox regression analyses. (TCGA cohort:
HR � 3.51, 95% CI � 1.792–6.875, p < 0.001; METABRIC cohort: HR � 1.76, 95% CI �
1.283–2.413, p < 0.001). Immune-related pathways were enriched in the high-risk
subgroup. The two subgroups that were stratified by the nine-gene panel were also
associated with histology type, tumor grade, TNM stage, and Her2-positive and TNBC
subtypes. The patients in the high-risk subgroup, whose CTLA4 and PD-1 statuses were
both positive or negative, demonstrated a substantial clinical benefit from combination
therapy with anti-CTLA4 and anti-PD-1.
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Conclusion: The new gene panel consisting of nine FRG may be used to assess the
prognosis and immune status of patients with breast cancer. A precise therapeutic
approach can also be possible with risk stratification.

Keywords: breast cancer, ferroptosis, prognosis model, immune status, disease-specific survival

INTRODUCTION

Breast cancer (BRCA) has entered the era of precision
treatment at the molecular level. The molecular hallmarks
of BRCA, including ER, PR, HER2, Ki-67, and PD-1, and
PD-L1, have been employed for personalized and
individualized treatment (Harbeck et al., 2019; Waks and
Winer, 2019). For instance, the endocrine therapy, HER2
targeted therapy, and immune checkpoint therapy are
employed for ER/PR-positive, Her2-positive, and PD-1/PD-
L1-positive BRCA tumors, respectively2.

Since the advancement of microarray and high-throughput
sequencing, multi-gene prediction, such as the PAM50 signature
(Cheang et al., 2015), 70-gene assay, and 21-gene recurrence
score2, has been widely used to guide decision making in the
therapeutic approach for various BRCA subtypes. Multi-gene
prediction has been commonly used to predict the benefits of
chemotherapy or to estimate patient’s prognosis. Thus, new
biomarker combinations have been developed to improve the
precision of current diagnostic and therapeutic modalities.
Currently, researchers are looking for new therapeutic targets
and biomarkers for BRCA treatment. Moreover, there is still an
insurmountable therapeutic challenge for triple negative breast
cancer (TNBC) because therapeutic targets and biomarkers have
not yet been identified. A few previous studies found that several
ferroptosis-related genes (FRG) could be promising therapeutic
targets in BRCA (Hangauer et al., 2017; Zhang et al., 2019),
especially for the TNBC subtype (Chen et al., 2017; Zhu et al.,
2020; Ding et al., 2021; Zhang et al., 2021). Therefore, it is
necessary to develop a panel involving FRG biomarkers for
risk stratification and identification of new targets.

Ferroptosis refers to cell death resulting from iron-mediated
lipid peroxidation and is characterized by intracellular
accumulation of reactive oxygen species (ROS) (Supplementary
Figure S3) (Dixon et al., 2012). According to preliminary data,
ferroptosis inhibits tumor development and proliferation; hence,
ferroptosis can be targeted for cancer therapy (Stockwell et al.,
2017). Correspondingly, researchers have increasingly focused on
the role of ferroptosis in BRCA, especially in TNBC and Her2-
positive BRCA. Due to the high recurrence and metastatic rate,
TNBC and Her2-positive BRCA have been regarded as refractory
and aggressive BRCA subtypes (Foulkes et al., 2010; Cesca et al.,
2020). Ma et al. (Dixon et al., 2012) found that siramesine and
lapatinib induced ferroptosis more than other canonical ferroptotic
reagents did, implying that lapatinib participated in modulating
ferroptosis without targeting EGFR and HER2 (Ma et al., 2016).
Moreover, a recent study discovered that neoadjuvant neratinib
induced ferroptosis and prevented brain metastasis in Her2-
positive BRCA (Nagpal et al., 2019). Furthermore, several
studies reported that ferroptosis could be a useful therapeutic

target in the treatment of TNBC (Chen et al., 2017; Zhu et al.,
2020; Ding et al., 2021; Zhang et al., 2021). It has been found that
through the stimulated GCN2-eIF2-ATF4 pathway, CHAC1
degradation of GSH increases cystine-starvation-induced
ferroptosis in TNBC cells (Chen et al., 2017). The anti-TNBC
impact of DMOCPTLwas demonstrated in a cell deathmethod test
by triggering ferroptosis via GPX4 ubiquitination (Ding et al.,
2021). Chen et al. found that treatment of TNBC cells with
holo-Lf increased total iron concentration, boosted ROS
production, increased the lipid peroxidation end product
malondialdehyde, and improved ferroptosis (Zhang et al., 2021).
In addition, chemotherapy, radiotherapy, and immunotherapy
were all influenced by ferroptosis; thus, targeting both
ferroptosis and the identified biomarkers could be an effective
treatment strategy for BRCA (Chen et al., 2021).

The aim of this research was to develop a panel consisting of
FRG that could be used to predict the disease-specific survival
(DSS) of patients with BRCA and to develop a risk stratification
system that could aid diagnosis and provide novel therapeutic
strategies.

MATERIALS AND METHODS

An overview of our methodology is summarized in Figure 1.

Acquisition of the Gene, miRNA, and
Genome Mutation Data; FRG; and Clinical
Data
On January 30, 2021, 1,068 patients with BRCA were identified.
Their gene, miRNA, genome mutation data (containing somatic
mutations and copy number variations (CNV)), and clinical
information were downloaded from the TCGA website. On the
same day, the gene expression matrix and clinical data of 1,906
patients with BRCA were downloaded from the cBioPortal
website. The patients whose data were obtained from both
websites were the same patients involved in the Molecular
Taxonomy of BRCA International Consortium (METABRIC)
project. Since the data from both websites were open to the
public, this study was exempted from obtaining the approval of
the local ethics committee. The GSE3494 dataset were
downloaded from the Gene Expression Omnibus (GEO)
database. The current study adhered to the TCGA,
METABRIC, and GEO data access and publishing policies.
The exclusion criteria were as follows: male sex, incomplete
clinical and gene expression data, and less than 30 days of DSS
follow-up. Finally, we included 960, 1,900, and 234 patients from
the TCGA, METABRIC, and GSE3494 cohorts, respectively. The
baseline features of the three cohorts are presented in Table 1.
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The list of FRG was downloaded from the FerrDb website. The
website divided FRG into three categories: drivers, which stimulate
ferroptosis, suppressors, which prevent ferroptosis, and biomarkers,
which reveal the presence of ferroptosis (Zhou and FerrDb, 2020).
We reviewed the existing literature to identify these genes, and we
subsequently ruled out unrelated genes and added newly discovered
genes that were related to this study. The immunohistochemistry
(IHC) image data of prognostic ferroptotic proteins were
downloaded from the Human Protein Atlas (HPA) database.

Identification of Differentially Expressed
and Prognostic Genes
Running the “Limma” R package, the TCGA cohort was used to
identify differently expressed FRG by comparing the expression levels
in tumor and adjacent normal tissues (log FC > 0.5, FDR <0.05). We
subsequently used univariate Cox analysis of DSS to identify
prognostic FRG. For survival outcomes, DSS event was defined as
death due to BRCA,while no eventwas defined as death due to causes
other than BRCA or a living status. The intersect gene set was
identified as the FRG that were both differentially expressed and
prognostic. The LASSO process was used to pick and shrink the
important variables in the regression panel by running the “glmnet”R
package (Tibshirani, 1997;Wang and Liu, 2020). The DSS statuses of

the TCGA cohort patients were the response variables in the
regression, with the matrix of the intersect gene set as the
independent variable. The panel’s penalty parameter was
calculated using the cross validation, which was multiplied by ten,
and the optimal parameter was the λ value that corresponded to the
lowest deviation. The patients’ risk scores were calculated using each
of the selected gene expressing values, which were multiplied by their
coefficients. The formula was as follows:

the risk score formula
� coefficients p expressing values ofAgene + coefficients
pexpressing values ofBgene . . . . . .+

The patients were classified into the high- or low-risk
subgroups according to the median cut-off value of the
developed panel. PCA and t-SNE were used to investigate the
distribution of the two subgroups by running the “Rtsne” R
package. The optimal cut-off expressing values for each gene
were determined by running the “survminer” R package. The
“ggalluvial” R package was used to portray the Sankey map. The
predictive ability of the developed panel was determined by time-
dependent receiver operating characteristic (ROC) curves by
running the R “timeROC” package. The area under curve
(AUC) of the ROC curve was determined to show the
sensitivity and specificity of the panel in providing a

FIGURE 1 | An overview of our methodology is summarized.
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prognostic efficiency, which varied from 0.5–1. Values that were
closer to 1 indicated a good prognostic ability.

To establish the miRNA-FRG regulatory network in BRCA.
We put the FRG into the starBase database to identify
potential miRNAs (Li et al., 2013). We then conducted an
analysis in TCGA-BRCA and adjacent normal tissue to
identify the different miRNAs. In addition, we sought
candidate miRNAs that were only shared by the two
databases to enhance the veracity of the prediction. Finally,

the network was visualized using Cytoscape. (Supplementary
Figure S2).

The “maftools” and “Rcircos” R packages were used for
somatic mutations identification and CNV, respectively.

We looked for publications onm6Amethylation regulators in the
literature and found 23 of them, with 8 writers (METTL3,METTL14,
METTL16, RBM15, RBM15B, WTAP, ZC3H13, VIRMA), 2 erasers
(FTO and ALKBH5), and 13 readers (YTHDC1, YTHDC2,
YTHDF1, YTHDF3, HNRNPC, FMR1, IGFBP3, RBMX, IGFBP1,
YTHDF2, HNRNPA2B1, LRPPRC, and KIAA1429).

Function Enrichment Analysis,
single-sample Gene Set Enrichment
Analysis (ssGSEA), and
immunophenoscore (IPS)
Based on the differentially expressed genes between the two
stratified subgroups, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses were
performed by running.

the “clusterProfiler” R package. Differentially expressed genes
between the high- and low-risk subgroups were identified (|
log2FC| > 1, FDR <0.05). The Benjamini-Hochberg (BH)
method was used to adjust the p values.

The “GSVA” R package was used to measure the infiltrating score
of 16 immune cells and the activity of 13 immune-related pathways
with ssGSEA (Rooney et al., 2015). TheWilcoxon test was also used to
look at intergroup variations in putative immunological checkpoints,
such as PD-L1, PD-1, and CTLA4. Furthermore, to predict the
efficacy of immunotherapy, we downloaded an IPS file of immune
checkpoint inhibitors (ICIs) from the Cancer Immunome database;
the IPS is a good predictor for responsiveness to CTLA4 and PD-1,
andpredicts the intergroup differences in response to immunotherapy
using CTLA4 and PD-1 blockers (Charoentong et al., 2017).

Statistical Analyses
The gene matrix of tumor and adjacent normal tissues was
compared using the Student’s t-test. The Χ2 test was used to
compare the proportional differences. The ssGSEA scores of
immune cells or pathways were compared between the high- and
low-risk subgroups using the Mann-Whitney test with p values that
were adjusted by the BH method. The log-rank test was used to
compare the DSS of different subgroups using the Kaplan-Meier
analysis. The univariate and multivariate Cox regression tests were
used to identify independent predictors of DSS. The R program
(version 3.6.3) or Statistical Package for the Social Sciences (SPSS),
version 20 was used for all statistical analyses. A p value of less than
0.05 was deemed statistically significant, unless otherwise stated, and
all p values were two-tailed.

RESULTS

Identification of 177 Differentially
Expressed FRG and 40 DSS Prognostic FRG
There were 177 FRG,whichwere differentially expressed between the
tumor and adjacent normal tissues (all FDR <0.05, log FC > 0.5,

TABLE 1 | The baseline features of the TCGA, METABRIC and GSE3494 cohorts.

Characteristics TCGA METABRIC GSE3494

Number n = 960 n = 1900 n = 234

Age(average) 58 61.1 62.7
Race(%)
White 666 (69.4) —

Black 168 (17.5) — -
Asian and other 52 (5.4) — —

NA 74 (7.7) — —

Tumor grade(%)
G1 — 164 (8.6) 62 (2.5)
G2 — 740 (38.9) 120 (51.3)
G3 — 925 (48.7) 50 (21.4)
NA — 71 (3.7) 2 (0.9)

Histological type(%)
IDC 704 (73.3) 1450 (76.3) —

ILC 191 (19.9) 142 (7.5) —

Other 65 (6.8) 308 (16.2)
Menopause status(%)
Pre 209 (21.8) 411 (21.6) —

Post 616 (64.2) 1489 (78.4) —

Peri 37 (3.9) — —

NA 98 (10.2) — —

ER status (%)
Positive 716 (74.6) 1457 (76.7) 200 (87)
Negative 443 (23.3) 30 (13)
NA 41 (4.3) —

PR status (%)
Positive 624 (65) 1007 (53) 178 (76.1)
Negative 893 (47) 56 (23.9)
NA 43 (4.5) 0 —

HER2 status (%)
Positive 169 (17.6) 236 (12.4) —

Negative 672 (70) 1667 (87.7) —

NA 122 (12.7) 0 —

Molecular subtype
HR+/Her2- 535 (56) 1378 (73) —

HR+/Her2+ 132 (14) 104 (5) —

HR-/Her2+ 33 (3) 132 (7) —

TNBC 135 (14) 299 (16) —

NA 125 (13) — —

TNM stage(%)
0 — 4 (0.2) —

I 166 (17.3) 473 (24.9) —

II 545 (56.8) 800 (42.1) —

III 211 (22) 115 (6.1) —

IV 18 (1.9) 9 (0.5) —

NA 20 (2.1) 499 (26.3) —

follow up state(%)
alive 883 (92) 1279 (67.3) 180 (76.9)
dead 77 (8) 621 (32.7) 54 (23.1)
DSS years (median) 2.5 9.5 10.2

IDC: invasive ductal carcinoma, ILC: invasive lobular carcinoma.
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Figure 2A). In addition, there were 40 FRG, which were associated
with DSS (Figure 2A) in the univariate Cox regression study.
Moreover, 15 genes were maintained in the intersection of the
177 differentially expressed and 40 prognostic FRG genes. Most of

them were upregulated, except for the following genes: ACACB and
ALDH3A2 (Figure 2B). CHAC1, SIAH2, MAPT, SFXN2, and ASNS
were identified to be the hub genes in the interaction network among
these genes. Figure 2D shows the relationship among these genes.

FIGURE 2 | Identification of 177 differentially expressed genes (DEGs) and 40 DSS prognostic FRG. A venn diagram was used to identify overlapping genes (A).
Heatmap showed that 15 FRG were differentially expressed in breast cancer tissues and non-cancer tissues (B) Forest plots demonstrated the hazard ratio of the univariate
cox analyses inDSS (C). The correlation link of the selected genes in TCGAcohort (D). Lasso regression analysis reduced variable (E, F). Somaticmutations on a query of FRG
from TCGA cohort (G) The CNV frequency of FRG from the TCGA cohort (H), red dots represent CNV amplification, while green dots represent CNV deletion.
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Development of a Prognostic Panel With the
TCGA Cohort, and Analysis of Nine FRG
Genome Mutations
The expression values of the 15 overlapped genes were used to
create a prognostic panel with the LASSO regression analysis. The
following formula was used to measure the risk score. The

optimum value of λ was used to identify a nine-gene signature
(Figures 2E,F).

� risk score � 0.181pexpression values of (EV)SQLE + 0.247pEVofG6PD + 0.085
pEVofCHAC1 − 0.158pEVofALDH3A2 − 0.086pEVof SIAH2 − 0.149
pEVof SLC1A4 − 0.026pEVofFLT3 − 0.001pEVofEGLN2 − 0.084
pEVof SFXN5

TABLE 2 | Clinical features in different risk subgroups.

Characteristics TCGA-BRCA METABRIC-BRCA GSE3494-BRCA

High
risk

Low risk p
Value

High
risk

Low risk p
Value

High
risk

Low risk p
Value

number(%) 960 1900 234
480 (50) 480 (50) 1252 (65.9) 648 (34.1) 70 (30) 164 (70)

Age (%) 0.003 <0.001 0.309
<60y 283 (29.5) 237 (24.7) 598 (31.5) 241 (12.7) 31 (13.2) 61 (26.1)
≥60y 197 (20.5) 243 (25.3) 654 (34.4) 407 (21.4) 39 (16.7) 103 (44)
Race(%) <0.001
White 289 (30.1) 377 (39.3) — — — — —

Black 117 (12.2) 51 (5.3) — — —

Asian and other 36 (3.7) 16 (1.7) — — — —

NA 38 (4) 36 (3.8) — — — —

Tumor grade(%) — <0.001 <0.001
G1 — — 54 (2.8) 110 (5.8) 7 (3) 55 (23.5)
G2 — — 370 (19.5) 370 (19.5) 28 (12) 92 (39.3)
G3 — — 788 (41.5) 137 (7.2) 35 (15) 15 (6.4)
NA — — 40 (2.1) 31 (1.6) — 2 (0.9)
Histological type(%) <0.001 <0.001
IDC 430 (44.8) 274 (28.5) 1028 (54.1) 422 (22.2) — —

ILC 28 (2.9) 163 (16.9) 64 (3.4) 78 (4.1) — —

Other 22 (2.2) 43 (4.5) 161 (8.4) 148 (7.8) — —

Menopause status(%) 0.723 <0.001
Pre 106 103 301 (15.8) 110 (5.8) — —

Post 302 314 951 (50.1) 538 (28.3) — —

Peri 18 19 — — — —

NA 54 44 — — — —

ER status(%) <0.001 <0.001 <0.001
Positive 274 (28.5) 442 (46) 814 (42.8) 643 (33.8) 51 (22.2) 149 (93.1)
Negative 188 (19.6) 15 (1.6) 438 (23.1) 5 (0.3) 19 (8.3) 11 (4.8)
NA 18 (1.9) 23 (2.4) — —

PR status(%) <0.001 — — <0.001 <0.001
Positive 224 (23.3) 400 (41.7) 496 (26.1) 511 (26.9) 40 (17.1) 138 (59)
Negative 239 (24.9) 54 (5.6) 756 (39.8) 137 (7.2) 30 (12.8) 26 (11.1)
NA 17 (1.78) 26 (2.7) — — — —

HER2 status(%) <0.001 — — <0.001
Positive 114 (11.9) 55 (5.7) 227 (11.9) 9 (0.5) — —

Negative 306 (31.9) 366 (38.1) 1027 (54.1) 640 (33.7) — —

NA 63 (6.6) 59 (6.1) — —

Molecular subtype <0.001 <0.001
HR+/Her2- 182 (19) 353 (60) 732 (38.5) 646 (33.4) — —

HR+/Her2+ 77 (16) 55 (11.5) 96 (7.7) 8 (1.2) — —

HR-/Her2+ 33 (3.4) 0 131 (6.9) 1 (0.1) — —

TNBC 123 (12.8) 12 (1.3) 295 (15.5) 4 (1.3) — —

NA 65 (6.8) 60 (12.5) — — — —

TNM stage(%) 0.045 <0.001
0 3 (0.2) 1 (0.1) — —

I 67 (7) 99 (10.3) 263 (13.8) 210 (11.1) — —

II 279 (29.1) 266 (27.7) 560 (29.5) 240 (12.6) — —

III 113 (11.8) 98 (10.2) 98 (5.2) 17 (0.9) — —

IV 12 (1.3) 6 (0.6) 7 (0.4) 2 (0.1) — —

NA 9 (0.9) 11 (1.1) 321 (16.9) 178 (9.4) — —

Follow up state(%)
Alive 428 (44.6) 455 (47.4) 776 (40,8) 503 (26.5) 48 (20.5) 132 (56.4)
Dead 52 (5.4) 25 (2.6) 476 (25.1) 145 (7.6) 22 (9.4) 32 (13.7)
DSS years (median) 2.4 2.5 8.7 10.6 9.9 10.4
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According to the median cut-off value of the nine-gene panel,
patients were classified into the high- (n � 480) and low-risk (n �
480) subgroups. In the TCGA cohort, the risk score was associated
with the histological type; HER2, ER, and PR statuses; TNM stage,
and molecular subtype (Table 2). Moreover, the high-risk
subgroup was positively associated with an advanced TNM stage
and Her2-positive and TNBC subtypes (Table 2; Figure 4C). All of
these indicators were related to an unfavorable prognosis in BRCA
patients (Waks andWiner, 2019). The PCA and t-SNE showed that
the patients of these two subgroups were distributed in two
directions (Figure 3G and Supplementary Figure S1G). The

risk score of patients were positively associated with a higher
death toll (Supplementary Figures S1A, 1D). The Kaplan-
Meier curve consistently showed that the DSS of the high-risk
subgroup was substantially shorter than that of the low-risk
subgroup (Figure 3A, p � 0.001). The DSS predictive
performance of the nine-gene panel was assessed by ROC
curves, and the values of the AUC were 0.806, 0.695, and 0.669
in 2, 3, and 5 years, respectively, in the TCGA cohort (Figure 3D).
The IHC staining results also provided the levels of seven
(including G6PD, SQLE, CHAC1, ALDH3A2, SIAH2, SLC1A4,
and SFXN5) of nine prognostic ferroptotic proteins between

FIGURE 3 | Development the prognostic FRG panel in TCGA cohort (A, D, G). Validation the prognostic FRG panel in METABRIC cohort (B, E, H) and GSE3494
cohort (C, F, I). The Kaplan-Meier curve showed that the DSS of the high-risk subgroup was substantially shorter than that of the low-risk subgroup (A, B, C). AUC time-
dependent ROC curves for DSS (D, E, F).
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BRCA and adjacent normal tissues, consistent with the mRNA
expression data (Figure 7).

Analysis of Nine FRG Genome Mutations and
Establishing the miRNA-Nine-FRG Regulatory
Network
The somaticmutations and CNVof nine FRG in breast cancerwere
initially summarized. Only 18 of the 960 patients (1.88%) had
mutations in the nine FRG, and themutation frequencies were zero
in eight of nine except FLT3 (1%; Figure 2G).We found that higher
frequencies of CNV deletions were in ALDH3A2, FLT3 and
CHAC1; conversely, higher probabilities of CNV amplification
were in SQLE, SIAH2 and EGLN2 (Figure 2H). Cytoscape
showed that the network contains four hub miRNAs (hsa-miR-
23a-3p, hsa-miR-378a-3p, hsa-miR-146a-5p, and hsa-miR-146b-
5p). (Supplementary Figure S2).

Validation of the Nine-Gene Panel With the
METABRIC and GSE3494 Cohorts
The METABRIC and GES3494 cohorts were used to robustly
validate the nine-gene panel using the same formula as that used
for the construction of the panel using the TCGA cohort.
Correspondingly, the nine-gene panel was also associated with
the histological type, tumor grade; HER2, ER, and PR statuses;
and TNM stage (Table 2). Similarly, the high-risk subgroup was
positively associated with a high tumor grade; an advanced TNM
stage; and Her2-positive and TNBC subtypes (Table 2). All of the
above indicators were related to an unfavorable prognosis in
patients with BRCA (Table 2). The death toll of the high-risk
subgroup was also more than that of the low-risk subgroup
(Figures 3B,C). The PCA and t-SNE analyses also indicated
that the two subgroups were spread in discrete directions, which
was consistent with the findings obtained from the TCGA cohort
(Figures 3H,I and Supplementary Figures S1H, I). Patients in
the high-risk subgroup consistently died from the tumor much
sooner than those in the low-risk subgroup (Figures 3B,C), as
determined by the Kaplan-Meier curve. Furthermore, the AUC of
the ROC curve for the nine-gene panel was 0.706 after 2 years,
0.734 after 3 years, and 0.7 after 5 years in the METABRIC and
were respectively 0.624, 0.599, and 0.631 in the GSE3494 cohort
(Figures 3E,F).

The Nine-Gene Panel has an Independent
Prognostic Significance
We conducted univariate and multivariate Cox analyses to test if
the nine-gene panel was an independent predictor of DSS. The
univariate Cox regression analysis was conducted to reveal
obvious linkages between the nine-gene panel and DSS in both
the TCGA and METABRIC cohorts (TCGA cohort: HR � 3.555,
95% confidence interval [CI] � 2.253–5.611, p < 0.001;
METABRIC cohort: HR � 2.511, 95% CI � 2.075–3.04, p <
0.001; Figure 4A). After controlling other confounding variables
in the multivariate cox regression study, the nine-gene panel
remained an independent indicator of DSS (TCGA cohort: HR �
3.51, 95% CI � 1.792–6.875, p < 0.001; METABRIC cohort: HR �

1.76, 95% CI � 1.283–2.413, p < 0.001) (Figure 4B). The panel
had a high predictive accuracy for DSS and was even better than
the statuses of ER, PR, HER2, tumor size, and lymph nodes. It
offered a more reliable predictor of 2 years DSS in the TCGA
(AUC � 0.806) and the METABRIC cohorts (AUC � 0.706)
(Figures 3D,E). As a result, the panel had an outstanding
prognostic benefit for patients with BRCA.

Functional Studies Between the Stratified
Subgroups
To explore the preliminary function of the nine-gene panel,
KEGG pathway enrichment and GO function analyses were
performed to compare the two stratified subgroups by running
the ClusterProfiler R package (adjust p < 0.05, |logFC| > 1). The
GO analysis showed that the genes were significantly enriched in
immune-related functions (Figures 5A,B), such as humoral
immune response, circulating immunoglobulin-mediated
human immune response, complement activation, and classical
pathways. These pathways functioned in antigen binding,
immunoglobulin receptor binding, and chemokine activity.
Furthermore, the KEGG analyses showed that the genes were
enriched in the IL−17 signaling pathway, viral protein interaction
with cytokine and cytokine receptor, and PPAR signaling
pathway. IL−17 signaling transduction could regulate PD-1/
PD-L1 and the infiltration of CD8+ T cells in patients with
BRCA (Shuai et al., 2020), while the PPAR signaling pathway
is activated in patients with TNBC (Lin et al., 2021). The PPAR
pathway genes from KEGG analysis differentially expressed
between two subgroups. Compared with the low risk
subgroup, the expression of MMP1, FABP5, FADS2, FABP7,
and ME1 were upregulated, UCP1, PLIN5, ADIPOQ, PLIN4,
FABP4, and SLC27A2 were downregulated in high risk
subgroup (Supplementary Figure S4). Study found that
activating MMP1 expression could increases multi-drug
resistance in breast cancer (Shen et al., 2017). The FADS2
activity associated with the aromatase drug letrozole in breast
cancer cells (Park et al., 2021). The GO and KEGG analyses both
showed that all pathways were immune-related.

Analysis of Immune Cell Enrichment
ssGSEA was used to quantify the scores of various immune cell
subpopulations that corresponded to functions and pathways to
further investigate the relationship between the nine-gene panel
and immune status. Our findings revealed that the types of
immune cells were significantly different between the two
subgroups (Figures 6A,B). The high-risk subgroup had a
significantly higher score than did the low-risk subgroup for
most immune cells, including aDCs, CD8+ T, B, dendritic cells,
natural killer cells, macrophages, plasmacytoid dendritic cells, T
helper, Tfh, Th1 cells, Th2, TIL, and Treg cells, except for the
score of mast cells, which was lower (Figures 6A,B).
Furthermore, the high-risk subgroup had significantly higher
scores for immune functions than did the low-risk subgroup.
The immune functions were the check point, type I interferon
response, T cell co-stimulation/inhibition, major
histocompatibility class I, inflammation promotion, HLA,
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FIGURE 4 | The analysis nine gene panel of FRG based on TCGA. The hazard ratio of univariate and multivariate Cox regression analysis (A,B), (+/ -) means
(positive/negative). A Sankey map demonstrated the relationship between FRG risk score and molecular subtypes (C).

FIGURE 5 | The X-axis depicts adjust p values, whereas the Y-axis depicts the enriched mechanism or pathway (A). The X-axis depicts the gene ratio in the overall
number of differential expression genes between two subgroups, whereas the Y-axis depicts the enriched mechanism or pathway (B).
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FIGURE 6 | The role of nine-gene panel in immunotherapy based on TCGA cohort. Boxplots depict the scores of 16 immune cells (A) and 13 immune-related roles
(B) in high and low risk subgroup by“ssGSEA”. Expression of immune checkpoints among high and low subgroups, such as CTLA4, PD-L1, PD-1 (C); The
immunophenoscore (IPS) distribution was also compared between high and low risk subgroups (D–G). The gene expression levels of 22 m6A from TCGA cohort
between two subgroups (H). (ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001; pos means positive; neg means negative).
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cytolytic activity, cytokine-cytokine receptor, parainflammation,
and antigen presenting cell co-inhibition/stimulation (p < 0.05,
Figures 6A,B). Analyses of both the TCGA and the METABRIC
cohorts demonstrated that the results of the ssGSEA, GO, and
KEGG analyses were consistent with the different immune
functions and pathways of the two subgroups.

Analysis of m6A Methylation Regulators
A review summarized m6A methylation (Zaccara et al., 2019)
regulators that we used for analysis, with 8 writers (VIRMA,
ZC3H13, WTAP, METTL14, METTL16, METTL3, RBM15B, and
RBM15), two erasers (ALKBH5 and FTO), and 13 readers
(YTHDC1, YTHDC2, YTHDF1, YTHDF3, HNRNPC, FMR1,
IGFBP3, RBMX, IGFBP1, YTHDF2, HNRNPA2B1, LRPPRC,
and KIAA1429). We found substantial variations in the
expression of m6A regulators between high and low risk
subgroups (Figure 6H). Compared with the low risk
subgroup, the expression of IGFBP3,YTHDF1, HNRNPA2B1,
RBM15, FMR1, and LRPPRC were upregulated, RBMX,
ALKBH5, RBM15B, YTHDC2, FTO, YTHDC1, METTL3,
METTL14, METTL16, and ZC3H13 were downregulated in the
high risk subgroup.

The Risk Score Was Characterized by
Distinct Immunotherapy Landscapes
Circumstance
Targeting the immunological checkpoints CTLA4, PD-L1, and
PD-1, has made significant progress in recent years in Her2-
positive and TNBC patients. Our results showed that the high-
risk subgroup was closely associated with Her2-positive and
TNBC subtypes (Figure 4C; Table 2). As a result, we looked
at the differences in immunological checkpoint expression
between the two subgroups. The results showed that patients
in the high-risk subgroup displayed a high abundance of PD-1,
CTLA4, and PD-L1 (Figure 6C). Given the significant
connection between the risk subgroups and immunological
response, the response to ICIs treatment represented by
CTLA4/PD-1 inhibitors was further examined in terms of
immunotherapy across the two subgroups. Patients in the
high-risk subgroup showed higher ICIs scores than those in
the low-risk subgroup, when the CTLA4 and PD-1 statuses
were both positive or negative (Figures 6D–F). This indicated
that patients in the high-risk subgroup, whose CTLA4 and PD-
1statuses were both positive or negative, demonstrated a
substantial clinical benefit from combination therapy with
anti-CTLA4 and anti-PD-1. Our results, taken together, clearly
indicate that the nine-FRG panel is linked to immunotherapy
response.

DISCUSSION

Cell death plays an essential role in the homeostasis of the body.
An advantage of cell death is the prevention of the uncontrolled
growth and proliferation of cancer cells, which have excessive
energy demands to maintain their infinite self-renewal potential.

Cancer is associated with alterations in energy metabolism,
antioxidants, and intake of iron (Stockwell et al., 2017).
Therefore, tumor cells are more vulnerable to iron-induced
necrosis, which is also known as ferroptosis, due to their iron-
dependent growth mechanism (Dixon et al., 2012).

A few study developed a similar model to predict BRCA
prognosis and validated the FRG expression level using cell
lines (Zhu et al., 2021a; Wu et al., 2021). However, it did not
consider the molecular subtype and was not based on DSS.
Further, only three genes in that model (G6PD, FLT3, and
SLC1A4) overlapped with those in our DSS model. After the
multivariate Cox regression analysis, the ferroptosis-related nine-
gene panel that we discovered demonstrated an excellent
prognostic prediction capability in the TCGA, METABRIC,
and GSE3494 cohorts. The high-risk subgroup was
significantly associated with a high tumor grade, an advanced
TNM stage, and TNBC and Her2-positive subtypes, which were
all related to poor survival and refractory treatment response.
Conversely, the low-risk subgroup was positively associated with
positive statuses of ER and PR and a negative HER2 status
(Table2), which all corresponded to favorable survival
outcomes in the traditional classification. Due to the high
recurrence and metastatic rate, Her2-positive BRCA and
TNBC have been regarded as refractory and aggressive
subtypes (Foulkes et al., 2010; Cesca et al., 2020). Hence,
researchers are focusing on exploring more therapeutic
methods to fill this gap. Several studies suggested that
targeting ferroptosis may be a useful therapeutic approach in
the treatment of TNBC and Her2-positive BRCA (Chen et al.,
2017; Nagpal et al., 2019; Zhu et al., 2020; Ding et al., 2021; Zhang
et al., 2021).

The predictive capability of the nine-gene panel was more
significant than those of traditional indicators (Figure 4A) in
terms of tumor size, lymph node metastasis, and ER/PR and
HER2 statuses, especially for TNBC and Her2-positive BRCA
subtypes. This finding suggested that treatment could be escalated
or de-escalated depending on patients’ risk stratification
combined with canonical methods. However, the relationship
between the nine genes and ferroptosis needs further exploration.
The median follow-up of the TCGA was 2.5 years when the
events was only 8% (Table 1), while METABRIC and GSE3494
cohorts were about 10 years, resulting in the AUC value for
3 years and 5 years DSS prediction is lower than the 2 years in
TCGA. The nine-gene panel was a more reliable predictor of
2 years DSS in the TCGA (AUC � 0.806), METABRIC (AUC �
0.706), and GSE3494 cohorts (AUC � 0.624) (Figures 3D–F)
because it had a high predictive accuracy for DSS, which was even
better than those of the statuses of ER, PR, HER2, and lymph
nodes as well as tumor size (Figures 4A,B).

A total of nine FRG constituted our panel. These FRG were
ALDH3A2, SIAH2, G6PD, SLC1A4, FLT3, SQLE, EGLN2, SFXN5,
and CHAC1. G6PD, SQLE, and CHAC1 were unfavorable genes
for BRCA prognosis in this gene panel, and they were
significantly overexpressed in the tumor compared with levels
in the adjacent tissues (Figures 2B, 7). Contrastingly, the other
genes were protective. A few studies have discovered that these
nine genes are all associated with ferroptosis. The SQLE gene
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encodes squalene epoxidase to catalyze the oxidation of squalene
that could change the lipid profile of tumor cells and protect them
from ferroptosis (Garcia-Bermudez et al., 2019). In addition, it is
one of the most significantly upregulated genes in many tumors,
especially in BRCA (Xu et al., 2020). Moreover, Qin et al. (Shen
et al., 2017) found that SQLE mRNA is stabilized by lnc030 in
collaboration with poly (rC) binding protein 2(PCBP2), resulting
in an increase in cholesterol synthesis. They suggested that
targeting SQLE might be a potential mechanism of terbinafine
in the treatment of BRCA (Qin et al., 2021). The G6PD gene
encodes glucose-6-phosphate dehydrogenase, which produces
NADPH to keep the glutathione (GSH) in balance to inhibit
ferroptosis. In addition, G6PD eliminates ROS (Hao et al., 2018).
Hence, the upregulation of G6PD facilitates cancer development
and is thus associated with a poor prognosis in many forms of
carcinomas (Ju et al., 2017; Chen et al., 2018; Zhu et al., 2021b).
Likewise, the upregulated expression of CHAC1 could
prognosticate unfavorable outcomes in BRCA (Goebel et al.,
2012; Li et al., 2021). Additionally, CHAC1 has been
discovered to decease intracellular GSH levels, enhancing
tumor cell ferroptosis (Chen et al., 2017). Moreover, FLT3,
ALDH3A2, and SIAH2 gene depletion or deficiency can result in
ferroptosis (Kang et al., 2014; Hassannia et al., 2019;
Chillappagari et al., 2020). A loss in ALDH3A2 triggers
ferroptosis and cooperates with GPX4 inhibition (Yusuf
et al., 2020). SIAH2-deficient cells exhibit increased
vulnerability to ferroptosis, and re-expression of GPX4 can
rescue these cells from ferroptosis (Chillappagari et al.,
2020). Equally, EGLN2 knockdown inhibited ferroptosis in
mice, researchers validated the mRNA level of prostaglandin-
endoperoxide synthase two b y qPCR, it is as a marker for
assessing ferroptosis in vivo; and EGLN2 gene could mediate
HIF1A downregulation to promote ferroptosis (Yang et al.,
2019). Only few researches have focused on SLC1A4 and
SFXN5. However, they did not find an association between
these genes and ferroptosis. Nonetheless, SLC1A4may promote
ferroptosis and may function as a marker of ferroptosis,
according to the FerrDb website data. Moreover, SFXN5 may
be involved in cellular iron ion homeostasis (Tifoun et al.,
2021). These two genes need further study to confirm their
relationship with ferroptosis. Further, these genes are all linked
to the promotion or prevention of ferroptosis in various cancers
viamultiple mechanisms (Supplementary Figure S3); however,
it is unclear whether these genes influence the prognosis of
BRCA patients through ferroptosis.

Recently, researchers have been exploring the role of ferroptosis in
tumor therapy. However, the possible regulation of tumor immunity
and ferroptosis remains amystery. The idea that immunity stimulates
or inhibits cancer cells is widely known, and targeting the immune
checkpoint has become a promising and potential therapeutic
approach in recent years. Studies that involved the TCGA and
METABRIC cohorts revealed that the majority of the types of
immune cells in the high-risk subgroup had higher immune
scores than did those in the low-risk subgroup, except for mast
cells (Figure 6A). Furthermore, the high-risk subgroup also had
excessively higher scores for most immune functions (Figure 6B).
There may be a crosstalk between the ferroptosis of cancer cells and

those of infiltrating immune cells. One theory is that ferroptotic
cancer cells emit distinct signals, which cause phagocytosis and
induce antigen presentation by dendritic cells (Friedmann Angeli
et al., 2019). Meanwhile, the suppression of ferroptotic activity
impairs the capacity of CD8+ T and natural killer cells to destroy
cells in vivo (Wang et al., 2019).

The results of the GO analysis suggested that many immune-
related pathways and biological processes, such as humoral
immune response, circulating immunoglobulin-mediated
human immune response, complement activation, and classical
pathways were enriched. The enriched KEGG pathways were the
IL−17 signaling pathway and the PPAR signaling pathway
(Figures 5A,B). The IL−17 signaling transduction regulated
the infiltration of CD8+ T cells and PD-1/PD-L1 in BRCA
patients (Shuai et al., 2020), while the PPAR signaling
pathway was activated in TNBC patients (Lin et al., 2021).
Our results demonstrated that the TNBC subtypes (91% in
TCGA, 98.7% in METABRIC, Figure 4C) were mostly found
in the high-risk subgroup (Table2). The clinical trial of
combination anti-PD-1/PD-L1 showed that the progression-
free survival was significantly improved in TNBC patients with
metastasis (Cortes et al., 2020). The mechanism of anti-PD-L1
antibodies was to trigger ferroptosis, which subsequently
enhanced the efficacy of immunotherapy (Wang et al., 2019).
The resistance to anti-PD-1/PD-L1 in TNBC cells inhibited
ferroptosis and changed the proportion of macrophage cells
(Jiang et al., 2021). Therefore, ferroptosis may be induced
through changes in the immune system. According to our
panel, BRCA patients are stratified into the high- and low-risk
subgroups. The patients in the high risk subgroup, whose CTLA4
and PD-1statuses were both positive or negative, demonstrated a
substantial clinical benefit from combination therapy with anti-
CTLA4 and anti-PD-1 (Figures 6D,F). Therefore, the high-risk
subgroup should be administered intensive treatment or
immunotherapies, whereas the low-risk subgroup should be
administered de-escalated treatment. The relationship between
immunity and ferroptosis has not been thoroughly clarified.
However, there might be a strong relationship between the
immune microenvironment of the tumor and ferroptosis in
BRCA patients. Thus, further research is needed to validate
the above findings.

Our study has several limitations. First, since ferroptosis
research is a new and rapidly expanding field, more FRG are
likely to be discovered in the future. Second, because of the
observed heterogeneity between different populations, the
findings of this retrospective and cross-cohort research need
validation by further prospective reviews involving
multicenter cohorts. Third, since the data were
downloaded from public databases, several important
clinical details were not accessible. These inaccessible data
included chemotherapy regimens, drug information, and
tumor burden, and the lack of these data limited a more
in-depth comparison among the TCGA, METABRIC, and
GSE3494 data. Finally, since the results are based on RNA
sequence, verification of protein expression in terms of
immunohistochemistry is needed to conveniently apply
our findings in clinical practice.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 70918012

Li et al. Ferroptosis-Related Gene in Breast Cancer

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


CONCLUSION

We constructed a DSS prognostic prediction panel involving nine
FRG genes in BRCA. This panel was based on FRG and DSS
events. In the TCGA, METABRIC, and GSE3494 cohorts, our
panel was independently correlated with DSS prognosis. We also

found that the tumor immune microenvironment and ferroptosis
may have a strong inherent connection with BRCA. This panel
could be used to evaluate prognosis and to select patients for
escalation/de-escalation treatment. Our research provides a
preliminary theory for clinically individualized therapy by
targeting ferroptosis genes.

FIGURE 7 | The immunohistochemistry (IHC) of ferroptotic prognostic protein images from the HPA database. The G6PD, SQLE, CHAC1, ALDH3A2, SIAH2,
SLC1A4, and SFXN5 proteins level in breast cancer and adjcent normal tissues were shown by the IHC staining.
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