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Porcine species have been used in preclinical transplantation models for assessing
the efficiency and safety of transplants before their application in human trials.
Porcine-induced pluripotent stem cells (piPSCs) are traditionally established using four
transcription factors (4TF): OCT4, SOX2, KLF4, and C-MYC. However, the inefficiencies
in the reprogramming of piPSCs and the maintenance of their self-renewal and
pluripotency remain challenges to be resolved. LIN28 was demonstrated to play a vital
role in the induction of pluripotency in humans. To investigate whether this factor is
similarly required by piPSCs, the effects of adding LIN28 to the 4TF induction method (5F
approach) on the efficiency of piPSC reprogramming and maintenance of self-renewal
and pluripotency were examined. Using a retroviral vector, porcine fetal fibroblasts were
transfected with human OCT4, SOX2, KLF4, and C-MYC with or without LIN28. The
colony morphology and chromosomal stability of these piPSC lines were examined and
their pluripotency properties were characterized by investigating both their expression
of pluripotency-associated genes and proteins and in vitro and in vivo differentiation
capabilities. Alkaline phosphatase assay revealed the reprogramming efficiencies to be
0.33 and 0.17% for the 4TF and 5TF approaches, respectively, but the maintenance
of self-renewal and pluripotency until passage 40 was 6.67 and 100%, respectively.
Most of the 4TF-piPSC colonies were flat in shape, showed weak positivity for alkaline
phosphatase, and expressed a significantly high level of SSEA-4 protein, except for one
cell line (VSMUi001-A) whose properties were similar to those of the 5TF-piPSCs; that is,
tightly packed and dome-like in shape, markedly positive for alkaline phosphatase, and
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expressing endogenous pluripotency genes (pOCT4, pSOX2, pNANOG, and pLIN28),
significantly high levels of pluripotent proteins (OCT4, SOX2, NANOG, LIN28, and SSEA-
1), and a significantly low level of SSEA-4 protein. VSMUi001-A and all 5F-piPSC
lines formed embryoid bodies, underwent spontaneous cardiogenic differentiation with
cardiac beating, expressed cardiomyocyte markers, and developed teratomas. In
conclusion, in addition to the 4TF, LIN28 is required for the effective induction of
piPSCs and the maintenance of their long-term self-renewal and pluripotency toward
the development of all germ layers. These piPSCs have the potential applicability for
veterinary science.

Keywords: LIN28, reprogramming, induced pluripotent stem cells, porcine, self-renewal, pluripotency,
differentiation, cardiomyocytes

INTRODUCTION

The development of genetic reprogramming tools for generating
induced pluripotent stem cells (iPSCs) from somatic cells is a
promising strategy in regenerative medicine. The iPSC cultures
can provide limitless sources of cells for biomedical research,
disease modeling, drug discovery and screening, toxicity testing,
and patient-specific cell transplantation (Takahashi et al.,
2007; Yu et al., 2007; Singh et al., 2015). However, iPSC
transplants must undergo various stages of animal testing
of their efficiency and safety before they can be applied
to humans. Because Sus scrofa species (domestic pigs) have
similar anatomical, physiological, and immunological attributes
to humans (Hall, 2008; Groenen et al., 2012; Moradi et al.,
2019), they have been widely used as test models in preclinical
transplantation medicine (Harding et al., 2013) and especially
in myocardial therapy (Li et al., 2013). Moreover, piPSCs would
produce available cell resources to study embryonic development
and cell differentiation of these species for screening and
establishing desired traits for sustainable agricultural production
for veterinary medicine. Therefore, piPSCs are innovative
therapies for veterinary medicine (Su et al., 2020).

Porcine iPSCs (piPSCs) are typically generated using both
viral-based integration and non-integration methods. Although
most piPSCs are established using four transcription factors
(4TF)–octamer-binding transcription factor 4 (OCT4), SRY-box
transcription factor 2 (SOX2), Kruppel-like factor 4 (KLF4),
and MYC proto-oncogene, basic helix–loop–helix transcription
factor (C-MYC)–which are introduced via retroviral vector
transduction, the reprogramming efficiency is lower than that
for mouse iPSCs (miPSCs) and human iPSCs (hiPSCs) (Esteban
et al., 2009; Ezashi et al., 2009; Wu et al., 2009). It was
previously found that hiPSCs could be efficiently reprogrammed
using a viral method expressing the 4TF OCT4, SOX2, Lin-
28 (LIN28), and Nanog homeobox (NANOG) (Yu et al., 2007).
Subsequently, Tanabe et al. (2013) combined LIN28 with the
4TF approach for generating hiPSCs and reported a significant
increase in the number of colonies produced and that LIN28
had supported complete cell reprogramming. The endogenous
LIN28 was activated later during the reprogramming of the
hiPSCs while maturation was taking place and therefore also
improved the maturation of the cells (Tanabe et al., 2013). Aside

from improving hiPSC colony formation, LIN28 overexpression
could enhance the efficiency of hiPSC derivation. Conversely,
the depletion of endogenous LIN28 decreased the efficiency
of miPSC reprogramming (Zhang J. et al., 2016). Moreover,
LIN28 promoted high reprogramming efficiency during miPSC
generation by inducing an increase in the rate of cell division
(Hanna et al., 2009).

LIN28, an RNA-binding protein found in nucleolus precursor
bodies during embryogenesis (Vogt et al., 2012), has two
paralogs: LIN28A and LIN28B. The expression of LIN28 in
an embryo is restricted to some differentiated cells, such as
cardiomyocytes, epithelial cells of the lung and kidney, and
neuroepithelial cells (Yang and Moss, 2003). In adult cells, LIN28
remains expressed in kidney epithelial cells, cardiomyocytes,
skeletal myocytes, and red blood cells (Tsialikas and Romer-
Seibert, 2015). LIN28 plays an essential role in both embryonic
stem cell (ESC) and iPSC self-renewal and also promotes the
number of ESCs and their proliferation (Xu et al., 2009). When
LIN28 is highly upregulated, it binds to both pri- and pre-
let-7 microRNAs, thereby inhibiting the maturation of let-7
and restraining the differentiation of iPSCs (Shyh-Chang and
Daley, 2013). When mouse ESCs differentiate, the expression of
LIN28 is downregulated. It was demonstrated that LIN28 could
regulate glucose and amino acid metabolism in both ESCs and
iPSCs, where the lack of LIN28 decreased nucleotide and glucose
metabolism in the stem cells and inhibited their proliferation
(Nguyen and Zhu, 2015).

LIN28 has already been used together with core embryonic
TFs to generate miPSCs and hiPSCs. In 2017, our group
registered the establishment of one piPSC line reprogrammed
from porcine fetal fibroblasts (PFFs) with the addition of
LIN28 to OSKM (hOCT4, hSOX2, hKLF4, and hC-MYC) TF
(Chakritbudsabong et al., 2017). However, no comparison was
performed to understand the reprogramming advantages
of 5TF (OSKM with Lin28) over 4TF (OSKM without
Lin28). Hence, a comparative study is deemed necessary.
This current study was carried out to investigate the effects
of LIN28 addition to the traditional 4TF on the efficiencies
of piPSC generation and reprogramming. Additionally,
the biological effects of LIN28 on piPSC self-renewal
and pluripotency were evaluated. Our findings provide a
solution for improving the induction and reprogramming
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efficiencies of piPSCs and the maintenance of their self-
renewal and pluripotency and allow for the effective
scale-up production of piPSC-derived cardiomyocytes
for application in research studies on cardiovascular
diseases and treatments.

MATERIALS AND METHODS

Ethics Statement
The Institutional Animal Care and Use Committee at the Faculty
of Veterinary Science, Mahidol University, Thailand, approved
the experimental use of animals (Approval ID: VSMU-2012-57).

Animals
A male porcine fetus (at embryonic day 28) from a crossbred
pig (Large White/Landrace × Duroc) was procured from a
certified farm at Ratchaburi Province, Thailand. Pregnant ICR
mice at 13–14 days post-coitum were used for the generation
of feeder cells, and 6-weeks-old female nude mice (BALB/cAJcl-
nu/nu) were used for testing the formation of teratomas. All
mice were purchased from Nomura Siam International Co., Ltd.,
Bangkok, Thailand.

Reagents
All cell culture reagents and chemical compounds were obtained
from Thermo Fisher Scientific (Waltham, MA, United States) and
Sigma-Aldrich (St. Louis, MO, United States), respectively, unless
otherwise stated.

Cell Culture
Porcine fetal fibroblasts from the porcine fetus were prepared
using standard procedures (Cheng et al., 2012). The GP2-293
cells (a HEK 293-based retroviral packaging cell line), PFFs, and
mitomycin C-inactivated mouse embryonic fibroblasts (iMEFs)
were maintained in fibroblast medium made up of Dulbecco’s
modified Eagle’s medium (DMEM)-high glucose supplemented
with 10% fetal bovine serum (cat. no. SV30160, Hyclone,
Logan, UT, United States), 1% GlutaMAXTM, and 1% antibiotic-
antimycotic solution. The piPSC lines were cultured in piPSC
medium made up of DMEM/F-12 supplemented with 10%
KnockoutTM serum replacement, 10% fetal bovine serum (cat no.
SH30070, Hyclone, Logan, UT, United States), 1% GlutaMAXTM,
1% antibiotic-antimycotic solution, 0.1 mM non-essential amino
acids, 0.1 mM 2-mercaptoethanol, 1,000 U/mL mouse leukemia
inhibitory factor (LIF; ESG1107, Millipore, Burlington, MA,
United States), and 10 ng/mL human basic fibroblast growth
factor (bFGF; 233-FB-025/CF, R&D Systems, Minneapolis, MN,
United States). The piPSCs were maintained on iMEF and
passaged using 1% TrypLETM Select every 2 days. The cells
were cultured in differentiation medium (piPSC medium without
LIF and bFGF) to induce their differentiation into all three
germ layers and cardiomyocytes. All cells were incubated in
a humidified incubator under 5% CO2 at 37◦C. The piPSC
medium was changed daily, whereas the differentiation medium
was changed every 2 days.

Retroviral Vector Transduction and
piPSC Generation
The retroviral vector transduction and piPSC generation were
performed according to the protocols described in a previous
report (Esteban et al., 2009). Two different reprogramming
factor combinations were used: 4TF, and 4TF plus LIN28
(i.e., 5TF). In brief, GP2-293 cells were seeded at 2 × 106

cells in 100 mm dishes. After 24 h, pMX plasmids carrying
the human monocistronic reprogramming factors (4TF or
5TF) were transfected into the GP2-293 cells using the
calcium phosphate transfection protocol. The supernatant
with virus particles was collected at 48 and 72 h after
transduction, filtered through a 0.45 µm membrane (Millipore),
and then directly used to infect the PFFs. At day 2 post-
reprogramming, the PFFs were dissociated with 0.25% trypsin-
EDTA solution and re-seeded in six-well plates containing
iMEFs and piPSC medium. At days 9–15 post-reprogramming,
primary colonies with an ESC-like morphology were separated
mechanically into small fractions using a Pasteur pipette
and transferred to a Falcon R© IVF one-well dish with iMEFs
(Figure 1A). After the colonies had redeveloped, they were
routinely passaged with TrypLETM Select. The reprogramming
efficiency was calculated as the number of AP positive
colonies divided by the total number of transfected cells
(Setthawong et al., 2019).

Alkaline Phosphatase and
Immunofluorescence Staining
The piPSCs and differentiated cells were fixed with 4%
paraformaldehyde in phosphate-buffered saline (PBS) for 15 min
and then washed three times with cold PBS. The piPSCs were
subjected to the alkaline phosphatase (AP) assay by staining with
a Leukocyte AP Kit (86R-1KT) according to the manufacturer’s
protocol. The immunofluorescence (IF) assay was used for
detecting pluripotency and cardiac differentiation markers. In
brief, the fixed cells were incubated with a cell permeabilization
solution (0.25% Triton-X 100 in PBS) for 10 min and then
incubated with a blocking solution (2% bovine serum albumin)
for 1 h. Then, the cells were treated with the primary antibodies
at 4◦C overnight and subsequently incubated with the secondary
antibodies at 37◦C for 1 h (see Supplementary Table 1 for
the list of primary and secondary antibodies used). The cell
nuclei were counterstained with 4′-6-diamidino-2-phenylindole.
All cells were visualized using a Leica DMi8 inverted fluorescence
microscope, and images were captured with an attached Leica
DFC7000 camera (Leica Microsystems, Wetzlar, Germany). At
least 30 z-stacks were obtained for each sample, with 0.6–0.7 µm
intervals. Leica Application Suite X (LAS X) imaging software
was used for the analysis of all images and for the quantitative
measurement of the IF signals. The IF intensities of the
immunoreactive pixels of OCT4, SOX2, LIN28, NANOG, stage-
specific embryonic antigen (SSEA)-1, and SSEA-4 were measured
in 20 randomly selected fields per piPSC line under ×400
magnification. At least three slides per group were scanned for the
expression of these markers. Data are presented as the mean IF
intensity value± SEM after subtraction of the background signal.
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FIGURE 1 | Establishment of porcine-induced pluripotent stem cells (piPSCs). (A) Schematic diagram of the establishment of piPSCs. (B) The process of generation
of 4TF-piPSC and 5TF-piPSC; scale bar, 50 µm. 4TF, induction using OCT4, SOX2, KLF4, and C-MYC; 5TF, induction using OCT4, SOX2, KLF4, C-MYC, and
LIN28.

G-Banding Karyotype Analysis
Karyotype analysis was performed using a previously published
protocol, with slight modifications (Phakdeedindan et al., 2019).
In brief, the various piPSCs (passage 20) were incubated with
5 µg/mL colcemid (KaryoMAXTM ColcemidTM Solution in PBS)
at 37◦C for 1 h. Then, the cells were dissociated and treated with
75 M KCl at 37◦C for 15 min. Thereafter, the cells were fixed
three times in a cold fixative solution (1:3 acetic acid:methanol
concentration) for 10 min each time with gentle inversion to
allow mixing. The fixed cells were then dropped onto cold glass
slides and incubated at 37◦C overnight. Finally, the cells were
observed under a Nikon Eclipse Ni microscope equipped with a
DS-Ri2 camera (Nikon Instruments, Tokyo, Japan). In total, 50
G-banded metaphases per piPSC culture were analyzed using the
LUCIA Cytogenetics System (Nikon Instruments).

Spontaneous Cardiogenic Differentiation
of the piPSCs via Embryoid Body
Formation
Spontaneous cardiogenic differentiation of the piPSCs was
induced as described in a previously published report

(Rungarunlert et al., 2013). In brief, floating embryoid bodies
(EBs) were formed in the poly(2-hydroxyethyl methacrylate)-
coated wells of 96-well plates using 5,000 piPSCs per well and
maintained in differentiation medium for 21 days. On days 7 and
21 of culture, the floating EBs were collected for morphological
characterization and for determination of their gene expression
levels by reverse transcription polymerase chain reaction (RT-
PCR) assay. To obtain adherent EBs, the EBs at day 3 were plated
onto 0.1% gelatin-covered coverslips placed in the wells of a
24-well plate (1 EB/well) together with differentiation medium.
The morphology of the differentiated cells and their cardiac
beating were checked daily. Cells were collected at days 7, 14,
and 21 for analysis of their gene expression profiles using RT-
PCR. Additionally, cells were fixed with 4% paraformaldehyde
for IF staining.

Teratoma Formation
For each piPSC line, two nude mice (8 weeks old) were
subcutaneously injected with 8 × 106 cells into the right flank.
After 35 days, the mice were euthanized and the teratomas
were collected, fixed with PBS containing 10% neutral buffered
formalin, and embedded in paraffin. Sections sliced from the
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paraffin blocks were then stained with hematoxylin and eosin
to confirm the capacity of the cells to differentiate into all three
embryonic germ layers in vivo. Images of the teratomas were
captured using an Axioskop 40 microscope equipped with an
AxioCam MRc camera (Carl Zeiss, Oberkochen, Germany).

RT-PCR Analysis of Transgene and
Endogenous Gene Expression
The expression of transgenes and endogenous genes by the
various piPSCs and differentiated cells was examined by RT-PCR
assay. Cells were lysed for RNA extraction using the RNeasy
Mini Kit (Genaid Biotech Ltd., New Taipei City, Taiwan). Then,
1 µg of total RNA was reverse transcribed to cDNA using
the SuperScriptTM III First-Strand Synthesis System. The PCR
mixture contained 50 ng of template cDNA, 12.5 µL of GoTaq
PCR master mix (Promega, WI, United States), and 0.2 µM
of each primer. The PCR-amplified products were separated on
2% agarose gels and then visualized with GelRed R© nucleic acid
staining (Biotium, Fremont, CA, United States). The primer
oligonucleotide sequences are shown in Supplementary Table 2.

Capillary Western Blot Analysis
Cell samples were lysed by sonication in
radioimmunoprecipitation assay buffer and the protein
quantity was then detected using a protein assay kit (Bio-
Rad Laboratory, Hercules, CA, United States). Next, capillary
western blot analysis of the proteins was performed in 25
capillary cartridges according to the 12–230 kDa Jess and Wes
Separation Module protocol (SM-W004, ProteinSimple, San
Jose, CA, United States). In brief, a mixture of total protein with
a fluorescent dye (4:1 ratio) was heated at 95◦C for 5 min. After
this denaturation step, the biotinylated ladder, protein sample,
blocking reagent, primary antibodies (Supplementary Table 1),
horseradish peroxidase-conjugated secondary antibodies, and
chemiluminescent substrate were dispensed into a Jess assay
plate according to the kit manual instructions. Thereafter, the
separation and immunodetection of the proteins were performed
with the Jess automated western blotting system (ProteinSimple).
The results were analyzed using Compass for Simple Western
version 5.0.1 software (Build 0911; ProteinSimple).

Flow Cytometric Analysis
The piPSCs were harvested and dissociated into single cells using
1% TrypLETM Select. Thereafter, the cells were incubated with
BD Cytofix/CytopermTM (BD Biosciences, Franklin Lakes, NJ,
United States) at 4◦C for 20 min and then washed three times
with PBS. A blocking solution (3% bovine serum albumin) was
then added and the cells were incubated for 30 min at ambient
temperature. Then, the cells were stained with primary antibodies
against the various markers at 4◦C overnight. After washing with
PBS, the cells were stained with fluorescence-labeled secondary
antibodies at 37◦C for 1 h. All samples were single-color stained,
with 20,000 cells used for each marker. Samples incubated with
IgG isotype antibodies were used as a negative control. The results
were analyzed using FACScalibur and Cell Quest software (BD

Biosciences). The list of primary and secondary antibodies used
is shown in Supplementary Table 1.

Statistical Analysis
All experiments were repeated three times. Quantitative data
are presented as the mean ± SEM from three independent
experiments. One-way analysis of variance was used for the
comparison of more than two groups, and Tukey’s test was
used as a post hoc test. All statistical analyses were performed
using SPSS version 25.0 (IBM, Armonk, NY, United States), with
statistical significance set at P < 0.05.

RESULTS

Establishment of the Various piPSC Lines
To test the role of LIN28 in cell reprogramming, PFFs were
transduced with retroviral vectors designed to express either
4TF or 5TF. The schematic diagram of the establishment of the
piPSCs is shown in Figure 1A. The ESC-like colonies generated
through the 4TF and 5TF approaches were first observed on
day 9 after retroviral transduction. On day 15 after transduction,
the colonies were picked and mechanically passaged on iMEFs
(Figure 1B). The 4TF− and 5TF-induced clones were designated
as 4TF-piPSCs and 5TF-piPSCs, respectively. AP staining of the
cells revealed the reprogramming efficiency (i.e., as reflected by
the percentage of AP-positive colonies) of 4TF to be 0.33% and
that of 5TF to be 0.17%. We obtained approximately fifteen
4TF-piPSC-like colonies from 4,500 initial transfected cells and
three 5TF-piPSC-like colonies from 1,800 initial transfected cells
(Supplementary Table 3). The percentage of cells maintaining
self-renewal and pluripotency until passage 20 was 13.33% with
the 4TF system but increased to 100% with 5TF induction.
Moreover, the percentage of cells maintaining self-renewal and
pluripotency until passage 40 increased from 6.67% with the
4TF system to 100% with 5TF induction. The induced day of
4TF and 5TF system was 11.5 ± 2.65 and 12 ± 3, respectively.
In total, we generated three 5TF-piPSC and two 4TF-piPSC
lines. We selected only two cell lines from each induction group
based on their unlimited self-renewal ability and pluripotency
(AP positive staining), namely, VSMUi001-A and VSMUi001-B
from the 4TF group and VSMUi001-C and VSMUi001-E from
the 5TF group as observed in Figure 2A. The discarded cell
lines with limited self-renewal ability and pluripotency are shown
in Supplementary Figure 1 and on our previous publication
(Chakritbudsabong et al., 2017).

Morphology and Proliferation of the
piPSCs
Except for VSMUi001-A, all the 4TF-piPSC lines had flat-
shaped colonies. By contrast, the VSMUi001-A colonies were
tightly packed and dome-like in shape with clear edges and
were indistinguishable from the 5TF-piPSC lines and mouse
ESCs in terms of morphology. Moreover, the cells had a high
nuclear-to-cytoplasm ratio, with dominant nucleoli (Figure 2A).
VSMUi001-A and all the 5TF-piPSC lines were strongly positive
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FIGURE 2 | Characterization of piPSCs. (A) Colony morphology and alkaline phosphatase (AP) staining of various piPSC lines; scale bar, 20 µm. (B) Karyotypes of
the various piPSC lines. 4TF, induction using OCT4, SOX2, KLF4, and C-MYC; 5TF, induction using OCT4, SOX2, KLF4, C-MYC, and LIN28. AP, alkaline
phosphatase; piPSCs, porcine-induced pluripotent stem cells.

for AP staining (Figure 2A), whereas the rest of the 4TF-piPSC
lines were weakly positive in this regard. The proliferative
activity of the piPSC lines was determined from their population
doubling times, which were calculated by quantifying the cell
count at every 12 h over a 48 h period. The VSMUi001-C cell line
had the lowest population doubling time (∼9–10 h) compared
with all the other piPSC lines (∼12 h) (Supplementary Figure 2).
Moreover, only the VSMUi001-A and 5TF-piPSC lines could be
passaged continuously for more than 40 passages (a maximum
passages) as followed: VSMUi001-A (P47), VSMUi001-C (P42),
and VSMUi001-E (P42). By contrast, all the other 4TF-piPSC
lines could not be maintained beyond 20 passages owing to
their low expansion rates and morphological changes. Both
the 4TF-piPSCs and 5TF-piPSCs carried the normal porcine
diploid karyotype (38, XY) throughout the extended culture
periods (Figure 2B).

Pluripotency in the Various piPSC Lines
Reverse transcription polymerase chain reaction analysis
confirmed the re-activation of the human exogenous genes
and the activation of the porcine endogenous genes in the
piPSCs. The 4TF-piPSCs displayed high expression levels of
the endogenous pluripotency-associated transcription factors
pOCT4, pSOX2, and pNANOG, whereas the 5TF-piPSCs
expressed pOCT4, pSOX2, pNANOG, and pLIN28 at a high level.
By contrast, the PFFs and parent cells did not express any of
the human exogenous and porcine endogenous pluripotency-
associated genes (Figure 3A, Supplementary Figure 3). To
confirm the RT-PCR data, capillary western blot analysis was
performed to detect the endogenous OCT4, SOX2, and LIN28

proteins. Quantitative analysis of the protein levels relative to
that of β-actin (an internal control) revealed that the expression
of OCT4 was similar in the 4TF-piPSC and 5TF-piPSC lines
(1.1± 0.14, 1± 0.11, 1.3± 0.12, and 1.1± 0.29 in VSMUi001-A,
VSMUi001-B, VSMUi001-C, and VSMUi001-E, respectively).
Moreover, in VSMUi001-A, VSMUi001-C, and VSMUi001-E,
the expression levels of the SOX2 (0.29 ± 0.05, 0.21 ± 0.07,
and 0.1 ± 0.03, respectively) and LIN28 proteins (0.06 ± 0.005,
0.045 ± 0.006, and 0.039 ± 0.006, respectively) were higher
than those of VSMUi001-B. The PFFs expressed the lowest
level of OCT4 (0.12 ± 0.006) and did not express SOX2 and
LIN28 at all (Figure 3B and Supplementary Figure 4). After
IF staining, only the VSMUi001-A and 5F-piPSC colonies
were found to express proteomic pluripotency markers: OCT4,
SOX2, NANOG, and LIN28 in their nuclei, and SSEA-1 on
their surface. None of these colonies expressed SSEA-4. By
contrast, a few colonies of VSMUi001-B expressed LIN28
and SSEA-1, and some also expressed OCT4 and SSEA-4
(Figure 4A). Additionally, the quantitative analysis of the IF
staining under identical optical conditions confirmed that the
mean fluorescence intensities of the immunoreactive pixels of
OCT4, SOX2, LIN28, NANOG, and SSEA-1- were significantly
brighter in the VSMUi001-A and 5TF-piPSC colonies than in
the VSMUi001-B colonies. By contrast, that of SSEA-4 was
significantly brighter in VSMUi001-B than in the other cell
lines (Figure 4B). Furthermore, the flow cytometric analysis of
the VSMUi001-A, VSMUi001-C, and VSMUi001-E cell lines
revealed the percentage of OCT4+ cells to be greater than 89%
(88 ± 1.63, 91.3 ± 1.50, 91.1 ± 1.78%, respectively) and that of
SOX2+ cells to be greater than 80% (84.5 ± 1.49, 79.6 ± 2.15,
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FIGURE 3 | Expression of pluripotency markers in various piPSC lines. (A) Expression of exogenous pluripotency genes (hOCT4, hSOX2, hKLF4, hC-MYC, and
hLIN28) and endogenous pluripotency genes (pOCT4, pSOX2, pNANOG, and pLIN28) in the PFFs and various piPSC lines. (B) Western blot images of endogenous
pluripotent protein (OCT4, SOX2, and LIN28) expression and quantification of the western blot results. β-Actin was used as an internal control. Means with different
lowercase letters are significantly different at P < 0.05. PFF, porcine fetal fibroblast; piPSCs, porcine-induced pluripotent stem cells; h, exogenous human gene; p,
endogenous porcine gene; OCT4, octamer-binding transcription factor 4; SOX2, SRY-box transcription factor 2; KLF4, Kruppel-like factor 4; C-MYC, MYC
proto-oncogene, basic helix–loop–helix transcription factor; LIN28, Lin-28 homolog A; NANOG, Nanog homeobox.

77.1 ± 2.29%, respectively). By contrast, the percentage of
OCT4+ and SOX2+ VSMUi001-B cells was significantly lower
(69.3 ± 1.11 and 4.9 ± 0.13%, respectively). Moreover, the
percentage of LIN28+ cells was greater than 95% (96.9 ± 0.82,
97.9 ± 0.63, 96 ± 0.93%, respectively) and that of SSEA-1+ cells
was 92% (92.1± 1.90, 92.7± 2.39, 92.1± 0.80%, respectively) in
the VSMUi001-A, VSMUi001-C, and VSMUi001-E cell lines. By
contrast, in the VSMUi001-B cell line, the percentages of LIN28+
and SSEA-1+ cells were also significantly lower (67.2 ± 1.27 and
0.5 ± 0.07%, respectively), whereas the percentage of SSEA-4+
cells (67.6 ± 0.67%) was significantly higher than that in the
other cell lines (Figure 5).

Spontaneous Cardiogenic Differentiation
All four piPSC lines were tested for EB formation to determine
their differentiation capability in vitro. VSMUi001-A and the
two 5TF-piPSC lines were able to form floating EBs, which

were homogeneous in size and shape on day 7 and displayed
cystic cavities on day 21 (Figure 6A). These three cell lines were
therefore evaluated for spontaneous cardiogenic differentiation.
However, because VSMUi001-B could not form floating EBs
after day 3 and the ones that it did form in the first
3 days showed a limited ability to differentiate (Supplementary
Figure 5), it was not evaluated for spontaneous differentiation.
Spontaneously beating cardiomyocytes were visible on day 6,
with the VSMUi001-C line being significantly faster than the
other two cell lines in developing into these cardiac cells,
displaying 100% of cardiac beating on day 8 and maintaining
this percentage until day 14 (P < 0.01). VSMUi001-A and
VSMUi001-E showed approximately 80% of cardiac beating
on day 10 (78 ± 2.78%) and day 12 (77.78 ± 11.11%),
respectively (Figure 6C). Moreover, the area of spontaneous
cardiac beating appeared to be smaller for VSMUi001-E than
for VSMUi001-A and VSMUi001-C (2.58 ± 0.59 × 105,
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FIGURE 4 | Immunofluorescence analysis of pluripotency markers in various piPSC lines. (A) Detection of pluripotency markers in 4TF-piPSC and 5TF-piPSC lines
using fluorescence microscopy; scale bar: 50 µm. (B) Quantitative analysis of the pluripotency markers in the various piPSC lines. The mean fluorescence signals for
OCT4, SOX2, LIN28, NANOG, SSEA-1, and SSEA-4 were measured in 20 randomly selected fields per piPSC colony under identical optical settings. Means with
different lowercase letters are significantly different at P < 0.05. 4TF, induction using OCT4, SOX2, KLF4, and C-MYC; 5TF, induction using OCT4, SOX2, KLF4,
C-MYC, and LIN28. OCT4, octamer-binding transcription factor 4; SOX2, SRY-box transcription factor 2; LIN28, Lin-28 homolog A; NANOG, Nanog homeobox;
SSEA, stage-specific embryonic antigen.
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FIGURE 5 | Flow cytometric analysis of pluripotency markers expressed by various porcine-induced pluripotent stem cell lines. 4TF, induction using OCT4, SOX2,
KLF4, and C-MYC; 5TF, induction using OCT4, SOX2, KLF4, C-MYC, and LIN28. OCT4, octamer-binding transcription factor 4; SOX2, SRY-box transcription factor
2; LIN28, Lin-28 homolog A; SSEA, stage-specific embryonic antigen.
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2.86 ± 0.26 × 105, and 3.39 ± 0.19 × 105 µm2, respectively)
(Figures 6A,B, and Supplementary Videos 1–3). All three
piPSC lines expressed cardiac troponin T (cTnT), a specific
cardiomyocyte marker (Figure 6A).

The abilities of VSMUi001-A, VSMUi001-C, and VSMUi001-
E to express differentiation-related genes specific for the
three germ layers were confirmed by RT-PCR. All three
piPSC lines used for in vitro differentiation expressed
the endogenous pluripotency markers pOCT4, pSOX2, and
pNANOG. VSMUi001-A expressed the marker troponin T2,
cardiac type (TNNT2) at day 7 and 21 of floating EB formation
as well as at days 7, 14, and 21 of adherent EB formation.
VSMUi001-C consistently expressed pSOX2 at days 7 and 21 of
floating EB formation and pOCT4 at days 7 and 21 of floating
EB formation and at days 14 and 21 of adherent EB formation.
Moreover, VSMUi001-C also expressed differentiation-related
gene markers for all three germ layers; namely, SRY-Box
Transcription Factor 17 (SOX17) (endoderm) and Neuronal
Differentiation 1 (NEUROD1) (ectoderm) at days 14 and 21
of adherent EB formation and Enolase 3 (ENO3), troponin
T2, cardiac type (TNNT2) and troponin I1, slow skeletal type
(TNNI1) (mesoderm) at days 7 and 21 of floating EB formation
and days 7, 14, and 21 of adherent EB formation. By contrast,

VSMUi001-E expressed only pSOX2 at day 7 of floating EB
formation and day 14 of adherent EB formation (Figure 7A and
Supplementary Figure 6).

Teratoma Formation
VSMUi001-A, VSMUi001-C, and VSMUi001-E were tested for
their abilities to form teratomas as part of their in vivo
differentiation capability. VSMUi001-B was excluded as it was
undergoing apoptosis. At 35 days after piPSC injection, all
nude mice developed solid tumors in each of the three
germ layers, as shown by hematoxylin and eosin staining
(Figure 7B). The teratomas contained a broad range of
tissue types, including keratinized squamous epithelia and
immature neuroepithelia forming rosettes (ectoderm), cartilage
and skeletal muscle (mesoderm), and respiratory-like epithelia
(endoderm) (Figure 7B).

DISCUSSION

In this study, we successfully generated piPSC colonies via the
induction of PFFs by both four and five reprogramming factors
using retroviral biotechnology. The reprogramming efficiency of

FIGURE 6 | In vitro cardiogenic differentiation of various porcine-induced pluripotent stem cell lines. (A) Morphology of floating embryoid bodies (fEB) at days 7 and
21, area of cardiac beating (scale bar, 100 µm), and cTnT expression of VSMUi001-A, VSMUi001-C, and VSMUi001-E; scale bar, 50 µm. (B) Area of cardiac
beating per embryoid body. (C) Percentage of spontaneous cardiac beating. 4TF, induction using OCT4, SOX2, KLF4, and C-MYC; 5TF, induction using OCT4,
SOX2, KLF4, C-MYC, and LIN28; cTnT, cardiac troponin T.
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FIGURE 7 | Expression of differentiation-related genes and in vivo differentiation of the various porcine-induced pluripotent stem cell (piPSC) lines. (A) Expression of
differentiation genes specific for the three germ layers: pOCT4, pSOX2, and pNANOG (pluripotency genes); SOX17 (endoderm); NEUROD1 (ectoderm); and ENO3,
TNNT2 and TNNI1 (mesoderm). fEB, floating embryoid body; aEB, adherent embryoid body. (B) Teratoma formation; all nude mice developed teratomas.
Hematoxylin and eosin staining of the teratoma section generated by piPSCs showing a broad range of tissues of the three germ layers: keratinized squamous
epithelia (VSMUi001-A and VSMUi001-E) and immature neuroepithelia forming rosettes (VSMUi001-C; ectoderm), cartilage (VSMUi001-A and VSMUi001-C), and
skeletal muscle (VSMUi001-E; mesoderm), and respiratory-like epithelia (VSMUi001-A, VSMUi001-C, and VSMUi001-E; endoderm); scale bar, 25 µm. 4TF, induction
using OCT4, SOX2, KLF4, and C-MYC; 5TF, induction using OCT4, SOX2, KLF4, C-MYC, and LIN28; pOCT4, endogenous porcine octamer-binding transcription
factor 4; pSOX2, endogenous porcine SRY-box transcription factor 2; pNANOG, endogenous porcine Nanog homeobox; SOX17, SRY-box transcription factor 17;
NEUROD1, neuronal differentiation 1; ENO3, enolase 3; TNNT2, troponin T2, cardiac type; TNNI1, troponin I1, slow skeletal type.
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the 4TF approach was quite low, resulting in only 0.002–2.7% AP-
positive cells (Ruan et al., 2011; Gao et al., 2014; Setthawong et al.,
2019). Furthermore, although the reprogramming efficiency of
the 4TF system was higher than that of the 5TF system (0.33
versus 0.17%), its maintenance of self-renew and pluripotency
(6.67%) was significantly lower than that of 5TF (100%). Taken
together, this comparison study showed for the first time that the
addition of Lin28 to OSKM TFs is more effective than OSKM
alone for the following reasons: (1) 5TF can consistently establish
self-renewal and pluripotency in all cell lines until passage 40 with
100% efficacy, whereas 4TF achieves this with 6.67% (1 out of 15
cell lines); and (2) further, all 5TF piPSC lines have the ability
to differentiate into the three germ layers. Thus, the addition of
LIN28 to 4TF was critical in enhancing the pluripotency and self-
renewal capacity of piPSCs. In mammalian blastocysts, LIN28 is
highly expressed in pluripotent cells of the inner cell mass and
epiblast, which correlates with the intrinsic self-renewal ability of
ESCs (Shyh-Chang and Daley, 2013). Moreover, LIN28 represses
the maturation of let-7 and prevents premature differentiation of
the pluripotent cells of the inner cell mass and epiblast (Melton
et al., 2010). Several studies have demonstrated that high LIN28
expression can improve the self-renewal capacity of ESCs in vitro
(Bin et al., 2012; Shyh-Chang and Daley, 2013; Parisi et al.,
2017; Mens and Ghanbari, 2018). Furthermore, models of LIN28
knockdown led to proliferative defects in mouse ESCs (Peng
et al., 2011; Pan et al., 2018). LIN28, together with a cocktail of
core reprogramming factors (OCT4, SOX2, and NANOG), was
shown to promote hiPSC self-renewal (Hanna et al., 2009). In
other studies, LIN28 promoted the self-renewal of mouse and
human ESCs during reprogramming by upregulating numerous
cell-cycle and cell growth regulators via let-7 family repressors,
such as Ras, Myc, high-mobility group A2 (Hmga2), insulin-
like growth factor-2 mRNA-binding proteins (Igf2bps), and
insulin–phosphoinositide 3-kinases (Pi3K)–mechanistic target
of rapamycin (mTOR) pathways as well as other mRNAs
encoding enzymes relevant to cell metabolism (Xu et al., 2009;
Peng et al., 2011).

In this study, one of the 4TF-piPSC lines (VSMUi001-A)
and two 5TF-piPSC lines revealed a typical mouse-like ESC
morphology characterized by dome-shaped compact colonies
with large nuclei and clear nucleoli and had SSEA-1 expression
patterns similar to those reported in other piPSC studies (Cheng
et al., 2012; Kwon et al., 2013; Zhang W. et al., 2015; Yuan
et al., 2019) and our previous reports (Chakritbudsabong et al.,
2017). As indicated in a previous report, LIN28 overexpression
can enhance the derivation efficiency of miPSCs, where the loss
of endogenous LIN28 facilitated the conversion of miPSCs from
naïve to primed pluripotent cells through the induction of the
FGF/activin signaling pathway (Zhang J. et al., 2016). Most of the
4TF-piPSCs exhibited low levels of SSEA-1 and LIN28, whereas
they expressed high levels of SSEA-4. However, piPSCs have
been shown to display varied expression patterns of the surface
pluripotency markers SSEA-1, SSEA-3, and SSEA-4 (Ruan et al.,
2011; Liu et al., 2012; Gao et al., 2014; Chakritbudsabong et al.,
2017). This is of concern because it shows the high heterogeneity
of the cells being generated by the different induction and
maintenance methods (Koh and Piedrahita, 2014). Although

the 4TF-piPSC line VSMUi001-A and the two 5TF-piPSC lines
required both bFGF and LIF for maintaining pluripotency, the
surface of all piPSCs expressed SSEA-1. Moreover, VSMUi001-A
could express a high level of LIN28 as a result of the activation of
core pluripotency TFs. OCT4, SOX2, and NANOG could regulate
the transcription of LIN28 in mammalian ESCs (Marson et al.,
2008) and SOX2 has been found to be the most critical factor
for regulating LIN28A expression during iPSC reprogramming
(Buganim et al., 2012). SOX2 is closely related to LIN28A in
pluripotency because it binds directly to LIN28A to form a
nuclear protein–protein complex (Cox et al., 2010).

In human and mouse iPSCs, retroviral vectors are
transcriptionally silent as the endogenous genes maintain
the pluripotent during iPSC induction, known as a fully
reprogrammed iPSC state. On the contrary, partially
reprogrammed iPSCs express both the viral transgenes and
endogenous pluripotency genes (Maherali et al., 2007; Okita
et al., 2007; Wernig et al., 2007; Hotta and Ellis, 2008). Substantial
obstacles remain in the establishment of piPSCs, including the
lack of transgene silencing of plasmid DNA integrated into
the genome and the inability of cells to proliferate in the
absence of transgene expression. These challenges suggest that
reprogramming of these piPSCs is not fully complete (Esteban
et al., 2009; Cheng et al., 2012; Liu et al., 2012; Zhang W. et al.,
2015). Similarly, all piPSC lines in our study do not fully undergo
reprogramming, expressing viral transgenes and endogenous
pluripotency genes from the retrovirus-mediated gene delivery
approach. Up to now, only one study in the literature has
described silenced retroviral transgene expression (Zhang S.
et al., 2015). To try to overcome this issue, researchers have made
efforts to establish transgene-free piPSCs using integration-free
reprogramming approaches such as episomal vectors (Telugu
et al., 2010; Du et al., 2015; Li et al., 2018; Yuan et al., 2019).
However, from these latter four reports, three demonstrated
genome integration of the plasmid DNA into the piPSC genome
(Telugu et al., 2010; Du et al., 2015; Yuan et al., 2019), and one
described persistent exogenous gene expression in most piPSC
lines with partial reprogramming (Li et al., 2018). Regarding
reprogramming techniques using Sendai-viral vectors, only one
study showed integration-free reprogramming though this group
still reported strong exogenous transgene (hsOCT4) expression
(Congras et al., 2016). Our reprogramming approach using
monocistronic vectors can cause random expression of TFs in
cells and partial reprogramming of piPSCs, which may potentially
lead to partial reprogramming of piPSCs (Esteban et al., 2009).
This is a limitation that can be overcome by using polycistronic
vectors in future studies. Recently, polycistronic vectors have
recently enabled the simultaneous delivery and expression of
numerous genes, as well as the efficient co-expression of TFs
(Shaimardanova et al., 2019).

Numerous previous studies have demonstrated that human
and mouse TFs are capable of reprogramming porcine somatic
cells to form piPSCs (Ma et al., 2014; Fukuda et al., 2017;
Setthawong et al., 2019; Yuan et al., 2019). Similarly, in our
study, piPSCs were successfully generated using factors associated
with human reprogramming. Additionally, a previous report
observed no differences in the morphology, AP staining, or
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expression of pluripotency markers between piPSC generated
from mouse or human TFs (Esteban et al., 2009). Contrary
to other studies, only piPSCs reprogrammed with human
TFs were capable of completely reprogramming porcine cells
to piPSCs (Zhang S. et al., 2015) and developing live
chimeric offspring (West et al., 2010). At the moment, the
researchers are using porcine TFs to generate piPSCs. The
reprogramming of piPSCs with porcine TFs has the potential
to generate both embryonic and extraembryonic cells (Gao
et al., 2019; Xu et al., 2019). In terms of DNA methylation,
the previous study indicated that while piPSCs had a higher
proportion of methylation at the OCT4 promoter, blastocyst
and PFFs had a low rate of methylation. It demonstrated
that the OCT4 gene was substantially expressed in piPSCs
when compared to blastocysts and PFFs (Fujishiro et al.,
2013). In this study, the methylation patterns in porcine
OCT4 promoter region were not established using bisulfite
sequencing as published previously (Choi et al., 2016) and require
further assessment.

For in vitro differentiation, VSMUi001-A and the two 5TF-
piPSC lines had the capability to differentiate into the three
embryonic germ layers and toward a specific cardiac lineage,
during which the SOX2 gene was continuously upregulated.
SOX2 is expressed not only in pluripotent stem cells but
also in neural stem cells, which are maintained during the
expansion of neural precursors throughout the development
of the central nervous system and into adulthood (Pevny and
Nicolis, 2010; Mercurio et al., 2019). Hence, the expression of
SOX2 in the EBs as well as the in vitro spontaneous cardiogenic
differentiation suggested that our piPSCs could also differentiate
toward the neural lineage. For in vivo differentiation, teratoma
development was slightly faster after 5TF-piPSC injection than
after 4TF-piPSC injection. According to another study, high
LIN28 expression generates higher-grade teratomas, whereas
LIN28 knockdown induces smaller tumors (West et al., 2009).
The chimera formation assay is the gold standard for determining
the pluripotency of stem cells in vivo. Gao et al. (2019) generated
extended pluripotent stem cells (EPSCs) that differentiate into
both embryonic and extra-embryonic tissue in the pig blastocyst.
Until now, this was the only report describing the production of
a live chimeric pig in which piPSCs were discovered in the ears
and tails (West et al., 2010).

Porcine iPSCs are a promising cellular source for the three-
dimensional reconstruction of human-like organoids mimicking
organ/system homeostasis or diseases, especially those related
to the cardiovascular system. Cardiomyocytes derived from
piPSCs can fulfill the application of PSCs in cardiac regenerative
medicine and especially provide a porcine model for the
evaluation of the efficiency, safety, and side effects of iPSC
transplants (Zhou et al., 2012, 2014). Gu et al. (2012) revealed that
piPSC-derived endothelial cells could induce neovascularization
and important paracrine factors for myocardial healing, making
them an effective treatment for myocardial infarction. However,
there are not many studies that have reported the differentiation
of piPSCs into cardiomyocytes (Montserrat et al., 2011;
Chakritbudsabong et al., 2017). In this study, the cardiac lineage
markers (TNNT2 and TNNI1) were visible since day 7 of floating

EB formation. The three piPSC lines could differentiate into
cells with mature cardiac phenotypes that expressed cTnT and
cardiac contractile protein and displayed a high percentage of
spontaneous cardiac beating. Xiang et al. (2019) have shown
that LIN28 plays a critical role in the tumor necrosis factor
receptor-2 (TNFR2)-mediated differentiation of hiPSC-derived
cardiac stem cells by inducing the expression of TNFR2,
which is usually found in mature cardiomyocytes, vascular
endothelial cells, and hematopoietic cells. Conversely, LIN28
inhibition significantly reduced cardiac stem cell differentiation
and activation (Xiang et al., 2019). In summary, our study
demonstrated an effective method for inducing the spontaneous
differentiation of piPSCs into cardiomyocytes via EB formation.
In ongoing research, we aim to develop a robust biotechnology
culture platform to (1) increase the number of piPSC-derived
cardiomyocytes for future scalability, (2) develop organ-on-
dish cardiac models for studying cardiovascular diseases and
screening novel compounds for drug discovery; and (3) study
the efficiency of piPSC-derived cardiomyocytes for use as
a swine model for studying human cardiovascular diseases.
Besides, these piPSCs are an innovative tool that can be
used for study of disease pathologies and drug discovery for
veterinary science.

CONCLUSION

The addition of LIN28 to the 4TF-induced reprogramming of
piPSCs promoted the long-term maintenance of piPSC self-
renewal and pluripotency and enhanced both the in vitro and
in vivo differentiation capabilities of the cells toward all three
embryonic germ layers and the cardiac lineage. Additionally, the
spontaneous beating of the differentiated cardiomyocytes was
augmented under the 5TF induction approach. This study proves
that the vital role of LIN28 in the induction of pluripotency
applies not only to hiPSCs but to piPSCs as well, thereby resolving
the current challenges faced over the long-term maintenance of
piPSC self-renewal and pluripotency. Importantly, our findings
allow for the efficient scale-up of piPSC-derived cardiomyocytes
for application in research studies on cardiovascular diseases
and treatments. Further, the application of piPSCs and their
differentiated cells are also great valuable in veterinary research.
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