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Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disease caused by
expanded CTG repeats in the 3’ untranslated region (3’'UTR) of the DMPK gene.
The myogenesis process is defective in DM1, which is closely associated with
progressive muscle weakness and wasting. Despite many proposed explanations for
the myogenesis defects in DM1, the underlying mechanism and the involvement of
the extracellular microenvironment remained unknown. Here, we constructed a DM1
myoblast cell model and reproduced the myogenesis defects. By RNA sequencing
(RNA-seq), we discovered that periostin (Postn) was the most significantly upregulated
gene in DM1 myogenesis compared with normal controls. This difference in Postn was
confirmed by real-time quantitative PCR (RT-gPCR) and western blotting. Moreover,
Postn was found to be significantly upregulated in skeletal muscle and myoblasts of
DM1 patients. Next, we knocked down Postn using a short hairpin RNA (shRNA) in
DM1 myoblast cells and found that the myogenesis defects in the DM1 group were
successfully rescued, as evidenced by increases in the myotube area, the fusion index,
and the expression of myogenesis regulatory genes. Similarly, Postn knockdown in
normal myoblast cells enhanced myogenesis. As POSTN is a secreted protein, we
treated the DM1 myoblast cells with a POSTN-neutralizing antibody and found that
DM1 myogenesis defects were successfully rescued by POSTN neutralization. We also
tested the myogenic ability of myoblasts in the skeletal muscle injury mouse model and
found that Postn knockdown improved the myogenic ability of DM1 myoblasts. The
activity of the TGF-B/Smad3 pathway was upregulated during DM1 myogenesis but
repressed when inhibiting Postn with a Postn shRNA or a POSTN-neutralizing antibody,
which suggested that the TGF-B/Smad3 pathway might mediate the function of Postn
in DM1 myogenesis. These results suggest that Postn is a potential therapeutical target
for the treatment of myogenesis defects in DM1.
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INTRODUCTION

Myotonic dystrophy type 1 (DM1) is an autosomal inherited
neuromuscular disease caused by aberrant expanded (CTG)
trinucleotide repeats in the 3’ untranslated region (3'UTR) of the
DMPK gene. The copy number of CTG repeats is higher than
50 in DM1 patients but lower than 37 in healthy individuals.
The individuals with 38-49 CTG repeats are considered to
have premutations. The expanded CTG repeats in DM1 are
transcribed, along with the DMPK gene, into mRNA containing
expanded CUG repeats, referred to as “toxic RNA” (Udd and
Krahe, 2012). This toxic RNA forms a hairpin-like secondary
structure in cell nuclei, leading to MBNL1 sequestration (Miller
et al,, 2000) and CELF1 upregulation (Kuyumcu-Martinez et al.,
2007; Kalsotra et al., 2010). Both MBNLI1 and CELF1 are RNA-
binding proteins and regulate alternative splicing of RNA. Thus,
the dysregulation of MBNLI and CELF1 leads to isoform switches
of several important genes related to skeletal muscle function,
including CLCN1, BINI, TNNT2, IR, and PKM, which directly
cause DM1 disease phenotypes (Philips et al., 1998; Savkur et al,,
2001; Charlet et al., 2002; Mankodi et al., 2002; Ho et al., 2004;
Fugier et al,, 2011). Among these phenotypes, the myogenesis
defect is a particularly serious problem in DMI1 as it has been
shown to be closely related to progressive muscle weakness and
wasting (Kanadia et al., 2003; Ward et al., 2010).

Myogenesis is a complicated and precisely regulated process
that produces myotubes of skeletal muscle. Many myogenic
regulatory factors (MRFs) have been documented, including
MyoD, MyoG, and Mrf4 (Hernandez-Hernandez et al., 2017).
Myogenesis consists of two stages, cell cycle withdrawal and
myoblast fusion (Andre et al, 2018). In the initial stage,
myoblast proliferation is required to generate sufficient cells for
myoblast fusion. The proliferation process, however, should be
terminated to enable the subsequent myogenesis process (Andres
and Walsh, 1996). This cell cycle withdrawal is governed by
p21 (Halevy et al,, 1995) and Rb (Zacksenhaus et al., 1996).
Following cell cycle arrest, the myoblasts undergo cell fusion
to generate multinucleated myotubes (Schnorrer and Dickson,
2004). Although the detailed mechanism remains elusive,
many fusion-related regulators have been discovered, including
Myomaker (Millay et al., 2013, 2014) and Myomixer (Bi et al.,
2017). Many studies have proposed possible explanations for the
defective myogenesis in DM1. CelfI is directly phosphorylated
and regulated by Akt and cyclin D3/cdk4, which leads to CCNDI
upregulation and p21 downregulation and causes impaired
myogenesis in DM1 (Timchenko et al.,, 2001a; Salisbury et al,
2008). Consistently, recent studies have observed suppression of
cell cycle withdrawal in DM1 or Celfl-overexpressing myoblasts
(Furling et al, 2001; Peng et al, 2015), probably due to
dysregulation of cyclin D1 and p21. DMPK, a rho kinase, may be
involved in the regulation of myosin light chain phosphorylation,
and its isoform E has been shown to be crucial for normal muscle
development (Jansen et al., 1996; Mulders et al., 2011). Although
studies have shown that DMPK is dispensable for myoblast
differentiation (Jansen et al., 1996), the DMPK dysregulation that
occurs as a result of expanded CUG repeats suggests a potential
role of this gene in myoblast differentiation. Moreover, MRFs

including MyoD and Six5 are altered in DM1 owing to the
expanded CUG repeats and DMPK dysregulation, respectively
(Inukai et al., 2000; Apponi et al., 2011). Although each of the
above findings can partially explain the defective myogenesis in
DM1, the underlying mechanism remains unclear.

Periostin (Postn) is a matricellular protein that consists of
seven domains: a signal peptide, a cysteine-rich domain, a
C-terminal region, and four FAS1 domains. Postn is well known
as an important microenvironment component that favors tumor
growth and metastasis. In ovarian cancer, Postn is upregulated
by the TGF-p pathway and promotes migration and invasion
(Yue et al.,, 2021). Postn is also a candidate prognostic marker
in colorectal cancers (Oh et al.,, 2017) and promotes colorectal
cancer progression through activating YAP/TAZ (Ma et al,
2020). In glioma, Postn promotes tumor growth, epithelial-
mesenchymal transition (EMT), invasion, and resistance to
antiangiogenic therapy by recruiting M2 macrophages and
activating STAT3 (Zhou et al., 2015; Park et al., 2016). Postn
is targeted by miR-876 and facilitates EMT and fibrosis of
hepatocellular carcinoma (Chen et al., 2020). Postn also plays an
important part in cancer stem cell maintenance by recruiting Wnt
ligands to enhance Wnt signaling in cancer stem cells (Malanchi
et al.,, 2011). In addition to its roles in cancer, Postn has been
reported to regulate skeletal muscle regeneration; it is temporally
expressed during skeletal muscle regeneration (Ozdemir et al.,
2014), and Postn knockout improves muscle recovery and
inhibits fibrosis after skeletal muscle injuries. Moreover, POSTN-
neutralizing antibody treatment promotes recovery from skeletal
muscle injuries in a mouse model (Hara et al, 2018). In a
muscular dystrophy mouse model, Postn knockout was found
to improve myogenesis and inhibit fibrosis by upregulating the
TGEF-p pathway (Lorts et al., 2012). Nevertheless, the function of
Postn in regulating DM1 has remained unknown.

In this study, we used a DM1 mouse myoblast cell model
to study myogenesis defects in DMI. Postn was found to
be significantly upregulated both during the DMI1 myoblast
differentiation process and in skeletal muscles and myoblasts
of DM1 patients. By downregulating Postn with short hairpin
RNA (shRNA) or a neutralizing antibody, the myogenesis defects
in DM1 were successfully rescued. Moreover, Postn knockdown
in DM1 myoblasts improved the efficiencies of myogenesis and
regeneration in a skeletal muscle injury mouse model. The TGEF-
B/Smad3 pathway that was enhanced in the DM1 myogenesis
process was suppressed with Postn inhibitions, which might
mediate the function of Postn in the myogenesis process of
DM1 myoblasts. These results suggest that Postn is a potential
therapeutical target for the treatment of DMI.

MATERIALS AND METHODS

Cell Culture

C2C12 cells (RRID: CVCL_0188) were provided by the Stem
Cell Bank, Chinese Academy of Sciences. C2C12 cells were
cultured in high-glucose Dulbecco’s Modified Eagle Medium
(DMEM, HyClone, Cat #SH30022.01) supplemented with
20% fetal bovine serum (Clark, Cat #FB15015), 50 U/mL
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penicillin (Biosharp, Cat #BL505A), and 50 pg/mL streptomycin
(Biosharp, Cat #BL505A). In vitro myoblast differentiation
was induced by switching the above medium to high-
glucose DMEM (HyClone) supplemented with 2% horse serum
(HyClone, Cat #SH30074.03), 50 U/mL penicillin (Biosharp),
50 pg/mL streptomycin (Biosharp), and 1 pM insulin (Beyotime,
Cat#P3376-100IU) when cells were confluent. The in vitro
myoblast differentiation process typically spanned 6 days.
When neutralizing the secreted POSTN during myoblast
differentiation, 1.5 pg/ml anti-POSTN antibody (Sino Biological,
Cat #50450-RP02, RRID: AB_2891098) was added to the
differentiation medium. 1.5 pug/ml IgG control antibody (Santa
Cruz Biotechnology, Cat #sc-2025, RRID: AB_737182) was used
as control. Both antibodies were added from day 0 to day 6 of
in vitro myoblast differentiations.

Construction of Plasmids and Cell Lines
The pcDNA-GFP-(CUG)5 (GFP-CUG5) and pcDNA-GEFP-
(CUG)200 (GFP-CUG200) plasmids were as described previously
(Amack and Mahadevan, 2001). The pLL4.0 vector was
previously developed by our laboratory (Shen et al., 2020).
The pLL4.0 vector was constructed by replacing a CMV-EGFP
cassette in the pLL3.7 vector with a PGK-puromycin cassette.
Scrambled, shPostn, and shMbnll plasmids were generated
by ligating the scrambled, Postn, and Mbnll shRNA coding
sequences into the pLL4.0 vector, respectively. The sequences
of the scrambled, Postn, and Mbnll shRNAs are listed in
Supplementary Table 1.

Plasmids were transduced into cells using PolyJet (SignaGen,
Cat #SL100688) according to the manufacturer’s instructions.
Normal (C2C12 GFP-CUGS5) and DM1 (C2C12 GFP-CUG200)
myoblast cell models were produced by transfecting C2C12
cells with GFP-CUG5 and GFP-CUG200 plasmids, respectively,
followed by G418 selection until stable. Control and Postn
knockdown DMI1 myoblast cell lines were produced by
transfecting C2C12 GFP-CUG200 cells with the scrambled and
shPostn plasmids, respectively, followed by puromycin selection
until stable. Control and Postn knockdown normal myoblast
cell lines were produced by transfecting C2C12-CUGS5 cells with
the scrambled and shPostn plasmids, respectively, followed by
puromycin selection until stable. Control and Mbnl1 knockdown
myoblast cell lines were produced by transfecting C2C12 cells
with the scrambled and shMbnl1 plasmids, respectively, followed
by puromycin selection until stable.

Total RNA Extraction and Real-Time

Quantitative PCR

Total RNA was extracted using Total RNA Isolation Reagent
(Biosharp, Cat #BS259A). Reverse transcription was performed
using the FastKing RT Kit (Tiangen, Cat #KR118-02).
Quantitative PCR was performed using the Powerup SYBR
Master Mix (Applied Biosystems, Cat #A25778). These
experiments were conducted according to the corresponding
manufacturer’s manuals. Gapdh was used as a normalized control
gene. The primer sequences used in real-time quantitative PCR
(RT-qPCR) are listed in Supplementary Table 1.

RNA Sequencing and Data Analysis

The library construction and sequencing steps of RNA
sequencing (RNA-seq) were performed by Anhui Microanaly
Genetech Co., Ltd. Raw data were subjected to adapter trimming
and read filtering using the trim_galore software (Trim Galore,
RRID: SCR_011847). The filtered data were aligned to the mouse
genome (GRCm38) using Hisat2 (HISAT2, RRID: SCR_015530)
and then analyzed with StringTie (RRID: SCR_016323) to
generate readcount tables. Differentially expressed genes (DEGs)
were determined by DESeq2 (RRID: SCR_015687) (Love et al.,
2014) using |log2(fold change)| > 1 and adjusted P-value < 0.05
as the cutoffs. Gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses were performed using
the clusterProfiler package (clusterProfiler, RRID: SCR_016884)
(Yu et al., 2012). RNA-seq data generated during this study are
deposited at the Gene Expression Omnibus (GEO) database
(GSE174119). The RNA-seq data of tibialis anterior (TA) muscles
and myoblasts from healthy, and DM1 individuals were obtained
from the GEO database using accession numbers GSE86356 and
GSE158216, respectively.

Protein Extraction and Western Blotting
Intracellular protein samples were extracted using Cell Lysis
Buffer (Beyotime, Cat #P0013) supplemented with EASYpack
Protease Inhibitors (Roche, Cat #5892970001). Protein
concentrations were measured with a BCA protein assay
kit (Biosharp, Cat # BL521A) and then adjusted to be the same.
Supernatant protein samples were obtained by collecting the
culture medium of the corresponding cells. For normalization,
the volumes of the cell culture medium were initially the same
when culturing cells and the loading volumes of the culture
medium were normalized to their corresponding cell numbers
when doing gel electrophoresis. Samples were subjected to
sodium dodecyl sulfate polyacrylamide gel electrophoresis and
the proteins were transferred onto PVDF membranes. The
membranes were then blocked and incubated with primary
antibodies overnight at 4°C. On the next day, the membranes
were incubated with horseradish peroxidase (HRP)-conjugated
secondary antibodies and reacted with chemiluminescent
substrates (Biosharp, Cat #BL520A). Images were taken with
a Tanon 5200 Imaging System. The antibodies and dilutions
were as follows: anti-POSTN pAb (1:1,000, Sino Biological, Cat
#50450-RP02, RRID: AB_2891098), anti-SMAD3 (1:2,000, Santa
Cruz, Cat #sc-101154, RRID: AB_1129525), anti-p-SMAD3
(1:2,000, Santa Cruz, Cat #sc-517575, RRID: AB_2892229),
anti-MBNLI mAb (1:2,000, Novus, Cat #NB110-37256, RRID:
AB_792678), anti-GAPDH pAb (1:2,000, Biosharp, Cat #BL006B,
RRID: AB_2890028), goat anti-mouse HRP antibody (1:2,000,
Biosharp, Cat #BLO01A, RRID: AB_2827665), and donkey
anti-rabbit HRP antibody (1:2,000, Invitrogen, Cat #31458,
RRID: AB_228213). The intensities of the western blot gel bands
were measured using Image] (RRID: SCR_003070).

Immunostaining
Samples (cells and slides) were fixed with 4% paraformaldehyde
at room temperature. After that, the samples were blocked with
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the blocking solution (10% normal goat serum and 0.1% Triton
X-100 in PBS). The samples were then incubated with primary
antibodies that were diluted in the blocking solution at 4°C
overnight. On the next day, the samples were incubated with
fluorescence conjugated secondary antibodies and DAPI. The
antibodies and dilutions were as follows: anti-myosin heavy
chain (MHC) mAb (1:10, DHSB, Catalog No. AB_2147781, and
RRID: AB_2147781) and goat anti-mouse Alex Fluor Plus 555-
conjugated IgG (1:500, Invitrogen, Catalog No. A32727, and
RRID: AB_2633276). All images were obtained with a Leica
DMi8 fluorescence microscope and analyzed with ImageJ (RRID:
SCR_003070). Fusion index equaled to the ratio of nuclei number
in the cells with at least two nuclei vs. total nuclei number.
Myotube area equaled to the ratio of the MHC fluorescence
positive area vs. the whole area in the immunostaining images.

Mice and Skeletal Muscle Injury Models

All mouse-related experiments were performed according to the
protocols approved by the Institutional Animal Care and Use
Committee of Anhui Normal University. Eight-week old male
Swiss mice were anesthetized and injected with 25 1 of 10 uM
cardiotoxin (CTX, Sigma, Cat #217503) into TA muscles to
produce skeletal muscle injury models. On the next day, the
CTX injected TA muscles were injected with scramble control
and Postn knockdown DM1 myoblast cells (5 x 10* cells per
TA muscle), respectively, to test their myogenic abilities in vivo.
PBS was used as a sham control. The TA muscles were harvested
14 days after the cell injections and subjected to cryosectioning
using OCT (Sakura, Cat #4583). The slices of TA muscles
were then stained with hematoxylin & eosin (H&E, Biosharp,
Cat #BL700B) and immunostained against MHC to determine
muscle regeneration efficiencies after injury.

Statistical Analysis

All experiments were performed at least three times. Shapiro—
Wilk test was used for data normality test. Students ¢-test
was used for two-group comparisons, and one-way analysis of
variance (ANOVA) followed by post hoc Tukey tests was used
for comparisons of three or more groups. An asterisk is used to
label significant differences (P < 0.05) in the figures. All data are
presented as mean =+ SD.

RESULTS

Myogenesis Was Significantly Impaired

in the DM1 Myoblast Cell Model

The myogenesis process is severely impaired in DM1 according
to most studies (Amack et al., 2002; Timchenko et al., 2004;
Kuyumcu-Martinez et al, 2007; Peng et al, 2015), although
several groups have reported no significant change in myogenic
abilities in myoblasts derived from some DMI patients (Jacobs
et al., 1990; Loro et al., 2010). Therefore, we first compared
the myogenic abilities of DM1 and normal murine myoblast
cell models. To construct DM1 and normal myoblast cell
models, we stably transfected murine myoblast C2C12 cells

with the GFP-CUG5 and GFP-CUG200 plasmids, respectively.
Normal and DMI1 myoblasts were subjected to in vitro
myoblast differentiation. At differentiation day 6, the DM1
group displayed markedly less myotube formation compared
with the normal control, as visualized by immunostaining against
MHC (Figure 1A). The myotube area was 51.69% =+ 9.51%
in the normal group but 14.25% = 5.24% in the DM1 group;
and the fusion index was 43.20% =+ 7.34% in the normal
group but 15.72% =+ 2.77% in the DM1 group (Figure 1B).
Through RT-qPCR, we found that MRFs (MyoD, MyoG,
Mef2C, and Mrf4) were significantly inhibited in the DM1
group during in vitro myoblast differentiation. Moreover, the
essential myoblast fusion markers Myomaker and Myomixer
were also downregulated (Figure 1C). These results confirmed
that myoblast differentiation and fusion were both impaired
in DM1 myoblasts.

Periostin Might Mediate Aberrant
Myogenesis in DM1 Myoblasts

Although many studies have proposed possible explanations for
the myogenesis defects in DMI, the underlying mechanism,
especially the involvement of the microenvironment, has
remained unclear. To investigate this mechanism, we performed
RNA-seq on total RNA samples of normal and DM1 myoblasts
at differentiation day 4, when myotubes started to form during
in vitro myoblast differentiation. Principal components analysis
(PCA) indicated that the gene expression patterns between
normal and DM1 groups were different (Figure 2A). Next,
we analyzed DEGs of the two groups using DESeq2, with
[log2(fold change)| > 1 and adjusted P-value < 0.05 as the
cutoffs for DEG determination. There were 279 upregulated and
158 downregulated genes in the DMI1 vs. the normal group
(Figure 2B). As shown in the heatmap of relative levels of all
DEGs in Figure 2C, Postn was markedly upregulated in the DM1
group. Table 1 shows the top 20 level-changed genes in the
DM1 group. Pdha2, Pcdhga9, Lgr5, Rarb, Trhde, Postn, Sema5b,
Tspan8, and Sectmla were significantly upregulated, while miR-
686, Pagrla, Gdf5, Myh8, Slc25a23, Uncl3c, and Frasl were
significantly downregulated. Postn was the most significantly
altered gene, with log2(fold change) = 2.86 and adjusted
P-value = 1.79E—178. We then performed GO and KEGG
analyses on all DEGs. The GO results showed that all striated
muscle-related biological processes (BP), cellular components
(CC), and molecular functions (MF) were inhibited (Figure 2D).
The KEGG results showed that striated muscle-related pathways
(Jak-STAT signaling, insulin signaling, and insulin resistance)
were significantly repressed. Surprisingly, some components of
the Wnt signaling pathway were upregulated but some other
components were downregulated (Figure 2E). In summary, Postn
was the most significantly upregulated gene in the DM1 group,
implying that Postn might be associated with DM1 pathogenesis.

We then studied the expression levels of Postn in various
tissues of normal adult mice. Postn was highly expressed in
spleen, lung, and stomach but showed relatively low expression
in skeletal muscle (TA, gastrocnemius, and soleus) (Figure 3A).
To verify the changes in Postn levels observed by RNA-seq, we
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FIGURE 1 | Myogenesis was significantly impaired in the myotonic dystrophy type 1 (DM1) myoblast cell model. (A) Myotube formation by myoblast cells of both
normal control and DM1 groups, detected by immunostaining against myosin heavy chain (MHC) at differentiation day 6. (B) Myotube area and fusion index in both
the normal control and DM1 groups quantified with Imaged software. (C) Expression levels of myogenic regulatory factors (MRFs; MyoD, MyoG, Mef2C, and Mrf4)
and fusion markers (Myomaker and Myomixer) in normal control, and DM1 groups, measured by real-time quantitative PCR (RT-gPCR). All expression levels were
normalized to the values of the normal control group at day 0. CUG5, normal control myoblast cells (C2C12 GFP-CUGS5); CUG200, DM1 myoblast cells (C2C12

first performed western blotting against POSTN at differentiation
day 4 for normal and DM1 myoblasts. As POSTN is a
secreted protein, we detected both intracellular and supernatant
POSTN levels. Both intracellular and supernatant POSTN were
upregulated in DM1 (Figures 3B,C). Next, we checked the
expression pattern of Postn during myoblast differentiation. Postn
was significantly upregulated from days 4 to 6 of myoblast
differentiation in DM1 compared with the normal group
(Figure 3D). We then investigated whether POSTN was also
upregulated in the skeletal muscle of DM1 patients. We analyzed
an RNA-seq dataset for TA muscle of healthy individuals (n = 10)
and DM1 patients (n = 40) from the DMseq Deep Sequencing
Data Repository' and found a significant upregulation of POSTN
in the DMI1 group (Figure 3E). Moreover, by analyzing the
RNA-seq data of myoblasts from healthy and DM1 individuals,

'http://dmseq.org/

we also observed a significant upregulation of POSTN in the
myoblasts of DMI patients (Figure 3F). Next, we studied if the
Postn upregulation correlated with the Mbnl1 downregulation in
DMI1. By western blotting, we found that the intracellular and
secreted POSTN were both significantly upregulated with Mbnl1
knockdown in C2C12 cells (Figures 3G,H). These results suggest
a correlation between DM1 pathogenesis and Postn upregulation.

Downregulation of Postn Using shRNA

Rescued Myogenesis Defects in DM1

As Postn was aberrantly upregulated in DMI1 myoblast
differentiation, we investigated whether downregulation
of Postn could rescue the myogenesis defect in DMI1. We
constructed scrambled control and Postn-knockdown DMI
myoblast cell lines by stably transfecting C2C12 GFP-CUG200
cells with the scrambled and shPostn plasmids, respectively.
Western blots showed that both intracellular and supernatant
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POSTN were significantly downregulated in Postn-knockdown
DMI1 myoblast cells (Figures 4A,B). The Postn knockdown
and control DM1 myoblast cells were subjected to in vitro
myoblast differentiation. RT-qPCR showed that Postn was
significantly downregulated throughout the differentiation
process (Figure 4C). Immunostaining against MHC showed
that Postn knockdown robustly improved myotube production
(Figure 4D). The myotube area was 61.32% = 2.58% in the Postn

knockdown group but 27.53% = 4.13% in the scrambled control
group; and the fusion index was 41.96% = 7.38% in the Postn
knockdown group but 7.64% =+ 2.32% in the scrambled control
group (Figure 4E). Consistently, MRFs (MyoD, MyoG, Mef2C,
and Mrf4) were all markedly upregulated, and fusion markers
(Myomaker and Myomixer) were also boosted (Figure 4F).

We also determined the effect of Postn inhibition on normal
myoblast differentiation. Postn-knockdown and control normal
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TABLE 1 | Top altered genes in RNA sequencing (RNA-seq).

Gene log2(fold change) Adjusted P-value Direction of change
Gm45062 11.08 2.55E-02 Upregulated
Gm49948 8.25 1.93E—-06 Upregulated
Gm47308 5.98 2.02E-03 Upregulated
Pdha2 5.48 6.79E-07 Upregulated
Pcdhga9 5.14 5.18E-03 Upregulated
Lgr5 3.26 2.93E-06 Upregulated
Rarb 2.97 1.93E—-17 Upregulated
Trhde 2.94 6.42E—-03 Upregulated
Postn 2.86 1.79E-178 Upregulated
Semabb 2.71 4.62E—-06 Upregulated
Tspan8 2.70 2.18E-55 Upregulated
Sectmia 2.64 7.53E-08 Upregulated
Gm43488 2.62 3.34E-04 Upregulated
miR-686 —7.41 8.74E-08 Downregulated
Pagria —4.49 1.99E—-06 Downregulated
Gdfs —4.29 9.99E-06 Downregulated
Myh8 —2.90 1.97E-71 Downregulated
Slc25a23 —-2.70 3.39E-04 Downregulated
Unc13c —2.58 3.32E-02 Downregulated
Fras1 —2.54 8.09E—-07 Downregulated

myoblast cell lines were produced by stably transfecting C2C12
GFP-CUG5 cells with the shPostn and scrambled plasmids,
respectively. The knockdown efficiency was verified by western
blotting (Figures 5A,B). Next, we performed in vitro myoblast
differentiation on these two cell lines. At differentiation day 6,
we found that myotube formation in normal myoblast cells was
enhanced by Postn knockdown, as indicated by immunostaining
against MHC (Figure 5C). Myotube area and fusion index
were both increased with Postn knockdown (Figure 5D), and
the expression levels of MRFs (MyoD, MyoG, Mef2C, and
Mrf4) were significantly elevated (Figure 5E). Taken together,
besides rescuing myogenesis defect in DM1 myoblast cells, Postn
inhibition in normal myoblast promotes the myogenesis process
in normal myoblasts.

Neutralizing Antibody Treatment Against
POSTN Also Rescued Myogenesis
Defects in DM1

As Postn shRNA successfully rescued myogenesis defects in
DM1, and POSTN is a secreted protein, we considered whether
neutralizing excess extracellular POSTN could also rescue
myogenesis defects in DM1. We performed in vitro myoblast
differentiation on DM1 myoblast cells and treated them with
a neutralizing antibody against POSTN and a control IgG,
respectively (Figure 6A). Immunostaining against MHC at
differentiation day 6 showed that myogenesis was improved
with POSTN antibody treatment (Figure 6B). The myotube
area was 56.27% =+ 9.08% in the POSTN antibody group but
25.67% =+ 7.74% in the control group; and the fusion index
was 41.74% =+ 12.92% in the POSTN antibody group but
10.22% =+ 1.79% in the control group (Figure 6C). The RT-qPCR
results showed that MRFs and fusion markers were upregulated

with POSTN antibody treatment (Figure 6D). In conclusion,
neutralizing excessive POSTN in the DM1 myoblast extracellular
microenvironment could rescue myogenesis defects in DM1.

Periostin Knockdown Improved the
Myogenic Ability of DM1 Myoblasts

in vivo

To determine whether Postn inhibition affected the myogenic
ability of DM1 myoblasts in vivo, we injected scramble control
and Postn knockdown DM1 myoblasts into the TA muscles that
were treated with CTX to induce skeletal muscle injuries as
described previously (Lee et al.,, 2015). The TA muscles were
harvested 2 weeks after the cell injections. By HE staining
and immunostaining against MHC, we found that the Postn
knockdown DM1 myoblasts group displayed a better skeletal
muscle morphology than the scramble control group, though
the scramble control group also showed slight advantages over
the sham control group (Figures 7A,B). The distributions of
myotube size, on the whole, were the largest in the Postn
knockdown group, the middle in the scramble control group,
and the smallest in the sham group (Figure 7C). These
results suggested that Postn knockdown improved the myogenic
ability of DM1 myoblasts, which contributed to skeletal muscle
regeneration in vivo.

Periostin Regulated Myogenesis Likely
Through the TGF-/Smad3 Pathway in
DM1 Myoblasts

Periostin expression was reported to be controlled by the
TGF-p/Smad pathway, which also, in turn, regulated the TGF-
B/Smad pathway (Blanchard et al, 2008; Lortsetal., 2012;
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Noguchi et al, 2016; Mitamura et al., 2018; Yue et al,
2021). TGF-p inhibits the myogenesis process through
Smad3 rather than Smad2 (Liu et al., 2001). Thus, we here
investigated whether Postn regulated myogenesis through

the TGF-B/Smad3 pathway in DMI1 myoblasts. Compared
to normal myoblasts, both p-SMAD3 and SMAD3 were
upregulated in DM1 myoblasts at differentiation day 0 and day
4 (Figures 8A,B). When inhibiting Postn using shRNA, both
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p-SMAD3 and SMAD3 were downregulated in DM1 myoblasts
(Figures 8C,D). Similarly, both p-SMAD3 and SMAD3 were
downregulated when DMI1 myoblasts were treated with a
POSTN-neutralizing antibody during myoblast differentiation
(Figures 8E,F). These results suggested that Postn might
regulate the myogenesis process in DM1 myoblasts through the
TGF-B/Smad3 pathway.

DISCUSSION

In this study, we discovered that Postn was aberrantly
upregulated during the myogenesis process of DM1 myoblast
cells, particularly from in vitro differentiation day 4, when
myotubes started to form as a result of myoblast fusion.
Next, we downregulated Postn in DM1 myoblast cells using
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both shRNA and a neutralizing antibody and found that the
inhibition of Postn significantly rescued myogenesis defects in
DMLI. Consistently, inhibiting Postn also improved the myogenic
ability of DM1 myoblast cells in the skeletal muscle injury mouse
model. The TGF-B/Smad3 pathway might mediate the function

of Postn in the myogenesis process of DM1 myoblast cells.
Moreover, we tested whether Postn downregulation also affected
the myogenesis process of normal myoblast cells. Knockdown
of Postn in normal myoblast cells significantly facilitated the
myogenesis process. Taken together, these results show that

Frontiers in Cell and Developmental Biology | www.frontiersin.org

August 2021 | Volume 9 | Article 710112


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Shen et al.

Postn Inhibition Rescues DM1 Myogenesis

A
g DAPI/MHC
sham
o
c
50 >
-
[3]
3 40
©
(0]
N
©
£ 30
[0}
[&]
£
Z 20
@
Ee]
)
10
L d
b d

myoblasts; and shPostn, Postn knockdown DM1 myoblasts; “P < 0.05.

scramble

<25 25-35 35-45 45-55 55-65 65-75 75-85 85-95 95-105 >105
Diameter (um)

FIGURE 7 | Knockdown improved the myogenic ability of DM1 myoblasts in vivo. (A) H&E staining of cross-sections of the TA muscles from the sham, scramble,
and Postn knockdown groups. (B) Immunostaining against MHC of cross-sections of the TA muscles from the sham, scramble, and Postn knockdown groups.
(C) The diameters of myofibers of the TA muscles from the sham, scramble control, and Postn knockdown groups. Sham, PBS; scramble, scramble control DM1

shPostn

50um 50um

B - sham
B - scramble
[l - shPostn

|*

Postn, which encodes an extracellular protein, mediates defective
myogenesis in DM1, which contributes to our understanding of
the DM1 pathogenic mechanism. Targeting extracellular Postn
is a potential approach for the therapy of myogenesis defects in
DM1, with advantages of delivery convenience compared with
classical intracellular therapeutic strategies.

To study myogenesis defects in DMI, we employed a
widely used DM1 mouse myoblast cell model, produced by
stable transfection with a plasmid containing 200 copies of
CTG repeats at the 3'UTR of the GFP gene. The control

cell model was constructed with a plasmid containing five
copies of CTG repeats at the 3’UTR of the GFP gene.
In previous work, we validated the pathological features of
DMI in this DMI1 myoblast model, including ribonuclear
foci, aberrant alternative splicing, and defective myogenesis
(Shen et al., 2020). Other studies have also suggested using
this cell model to investigate myogenesis defects in DMI1
(Timchenko et al., 2001b; Peng et al., 2015). Consistently, we
observed similar DM1 myogenesis defects to those reported
by prior studies.
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To discover the DEGs during the DM1 myogenesis process, we
performed RNA-seq on RNA samples from both the normal and
DML1 groups. There were 279 upregulated and 158 downregulated
genes in the DM1 group. Table 1 showed the top 20 level-
changed genes in the DM1 group. To our best knowledge, none
of these genes were reported to function in DM1 before. Four
genes (Lgr5, Gdf5, Myh8, and Uncl3c) were known to regulate
skeletal muscle myogenesis and homeostasis: Lgr5 is a marker
for a group of activated satellite cells for muscle regeneration
(Leung et al., 2020); Gdf5 was found to promote myogenesis
process in sciatic denervation mouse model (Traore et al,
2019); Myh8, encoding embryonic and neonatal type MHCs,
are transient elevated following muscle injury (Schiaffino et al.,

2015; Yoshimoto et al, 2020); Uncl3c facilitates myogenesis
process, whose expression is repressed by TNF-a (Meyer et al.,
2015). Particularly, there were four genes (Gm45062, Gm49948,
Gm47308, and Gm 43488) upregulated in DM1, whose official
gene symbols, however, had not been assigned yet. These top-
altered genes deserved further investigations in the future, as
their functions were mostly unclear in skeletal muscle and
DM1. GO analysis showed that skeletal muscle-related processes
and structures were repressed in DM1. These results confirmed
the myogenesis defects in DM1 myoblast cells. Moreover, we
found that Postn was the most significantly altered gene in
the DM1 group, with log2(fold change) = 2.86 and adjusted
P-value = 1.79E—178. The upregulation of DM1 was confirmed
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by western blots and RT-qPCR. Through analyzing the datasets
from the GEO database, we also discovered that the expression
of Postn was enhanced in skeletal muscle and myoblasts of
DM1 patients. MBNLI is sequestered by the toxic RNA in
DMI, which results in the downregulation of active MBNL1
in cells. We here found that inhibiting Mbnll using shRNA
significantly upregulated the intracellular and secreted POSTN,
which suggested a correlation between Mbnll and Postn. This
finding was consistent with the RNA-seq data from a recent
study that showed upregulations of Postn in DM1 mice models
(HSALR20b and Mbnl3/4KO mice) (Tanner et al., 2021). These
results imply a potential regulatory role of Postn in DMI1
pathogenesis. Previous studies have indicated that Postn could
serve as serum biomarkers for many diseases, including cancer
(Dong et al., 2018a,b), rhinosinusitis (Ninomiya et al., 2018),
and asthma (Hachim et al., 2020). Based on the upregulations
of Postn in the DM1 myoblast cell model and the skeletal
muscle and myoblasts from DMI patients, we thought Postn
might be used as a biomarker for DM1, which, however, needed
further verifications of the expressions of Postn in the serum
of DM1 patients.

We then investigated whether downregulating Postn in DM1
myoblasts could rescue myogenesis defects. Knockdown of
Postn with shRNA significantly increased myogenesis levels in
DMI myoblasts, as characterized by elevated myotube area and
fusion index values that were close to those of the normal
control group (C2C12 GFP-CUGS5), and increased expression
levels of MRFs and fusion markers. As POSTN is a secreted
protein, we considered whether POSTN in the extracellular
microenvironment mediated the myogenesis defects in DM1.
We treated DM1 myoblast cells with a POSTN-neutralizing
antibody and found that this antibody treatment successfully
rescued the myogenesis defects, indicating that POSTN in
the microenvironment is at least partially responsible for the
defective myogenesis in DM1. In line with our findings here,
a previous study demonstrated that a POSTN-neutralizing
antibody promoted recovery from muscle injuries (Hara et al.,
2018). Combined with the finding that Postn was significantly
upregulated in skeletal muscle of DM1 patients, these results
suggest that targeting extracellular POSTN - for example, using
neutralizing antibodies - is a potential approach for treating
muscle wasting in DM1. This can be an alternative approach
to strengthen myogenesis in addition to previously reported
therapeutic strategies against muscular dystrophies, such as stem
cell transplantation, the inhibition of myostatin, and IGF-1
supplementation (Shavlakadze et al., 2004; Bo Li et al., 2012;
Fakhfakh et al., 2012).

Next, we studied how Postn regulated the myogenesis process
in DM1. Many studies have revealed that Postn had crosstalk
with the TGF-B/Smad pathway (Blanchard et al., 2008; Lorts
et al., 2012; Noguchi et al, 2016; Mitamura et al., 2018; Yue
et al., 2021). TGF-B involved pathway was discovered to inhibit
myogenesis and promote myoblast proliferation (Massague et al.,
1986; Ge et al., 2011). Smad3 rather than Smad2 was responsible
for the inhibition of TGF-B on the myogenesis process (Liu
et al., 2001). Moreover, TGF-B1 and TGF-B2 were found to be
upregulated in DM1 patients and associated with arrhythmia and

sudden death (Turillazzi et al.,, 2013). We here tested the levels
of SMAD3 and p-SMAD3 in various myoblast differentiation
sets. SMAD3 and p-SMAD3 were significantly upregulated in
DM1 myoblast cells. When inhibiting Postn using an shRNA or a
neutralizing antibody, SMAD3 and p-SMAD3 were significantly
downregulated. These results strongly suggested that Postn might
regulate the myogenesis process in DM1 through the TGF-
B/Smad3 pathway. This was in line with a previous study that
Postn was upregulated in muscular dystrophy and its knockout
improved muscle structure and function in the muscular
dystrophy mouse model via the TGF-p pathway (Lorts et al.,
2012). It was also noticeable that the TGF-p/Smad3 pathway
was highly activated in both normal and DM1 myoblasts at
differentiation day 0, which was consistent with the previous
reports that the activation of TGF- involved pathway inhibited
differentiation but induced quiescence of myoblasts (Rathbone
et al, 2011). As to Postn knockdown in DMI myoblasts,
both SMAD3 and p-SMAD3 were significantly repressed at
differentiation day 0 besides day 4, whereas Postn showed a
significant upregulation in DM1 myoblasts at differentiation day
4 rather than day 0. This conflicting result implied that there
might be complicated underlying mechanisms of Postn and the
TGEF-B/Smad3 pathway in undifferentiated myoblasts.

Moreover, the expression of Postn gradually increased during
in vitro myoblast differentiation in both the normal and DM1
groups; this trend was similar to that of many important
myogenesis-facilitating factors (Panda et al., 2014; Lee et al,
2017; Horibata et al., 2020). However, this was contrary to the
finding that Postn downregulation promoted the myogenesis
process in both normal and DM1 myoblasts. Meanwhile, there
was no significant difference in Postn expression levels between
the normal and DMI1 groups until day 4. However, when
Postn was downregulated in myoblast cells of both the normal
and DM1 groups using shRNA and a neutralizing antibody,
myogenesis and fusion markers (MyoD, MyoG, Mef2C, Mrf4,
Mpyomaker, and Myomixer) displayed significant differences
earlier than day 4. According to previous reports, Postn is
upregulated during the regeneration process following muscle
injury and disease, suggesting a possible role of Postn in myoblast
activation. Based on these conflicting findings, we propose a
hypothesis: on the one hand, Postn is an important factor
for myoblast maintenance and its downregulation promotes
myoblast activation and differentiation; on the other hand, Postn
must be upregulated during myoblast differentiation to maintain
undifferentiated myoblasts during and after myogenesis. This
hypothesis is consistent with the established role of POSTN
in maintaining cancer stem cells (Malanchi et al., 2011) and
warrants further investigation in the future.
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