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The regulation of mRNA translation, both globally and at the level of individual
transcripts, plays a central role in the development and function of germ cells across
species. Genetic studies using flies, worms, zebrafish and mice have highlighted the
importance of specific RNA binding proteins in driving various aspects of germ cell
formation and function. Many of these mRNA binding proteins, including Pumilio,
Nanos, Vasa and Dazl have been conserved through evolution, specifically mark germ
cells, and carry out similar functions across species. These proteins typically influence
mRNA translation by binding to specific elements within the 3′ untranslated region
(UTR) of target messages. Emerging evidence indicates that the global regulation
of mRNA translation also plays an important role in germ cell development. For
example, ribosome biogenesis is often regulated in a stage specific manner during
gametogenesis. Moreover, oocytes need to produce and store a sufficient number of
ribosomes to support the development of the early embryo until the initiation of zygotic
transcription. Accumulating evidence indicates that disruption of mRNA translation
regulatory mechanisms likely contributes to infertility and reproductive aging in humans.
These findings highlight the importance of gaining further insights into the mechanisms
that control mRNA translation within germ cells. Future work in this area will likely have
important impacts beyond germ cell biology.
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INTRODUCTION

Germ cells are essential for the propagation of multicellular species and share many features that
have long fascinated biologists. They undergo extensive epigenetic reprogramming back to a state
that supports totipotency in the fertilized zygote, they are exceptionally good at repairing DNA
damage, they are the only cells in our bodies that undergo meiosis, and they protect against the
invasion and proliferation of transposable elements. Germ cells also spend portions of their life in a
transcriptionally quiescent state, necessitating the use of translation-based mechanisms to achieve
changes in their gene expression programs. Indeed, genetic studies in Drosophila, Caenorhabditis
elegans, zebrafish, and mice have demonstrated that stage-specific regulation of mRNA translation,
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both at the level of individual transcripts and on a global scale,
plays a central role in the formation, differentiation, and function
of germ cells across species. This review will be divided into
two main sections. The first will focus on how RNA binding
proteins influence the translation of key regulators of germ cell
formation and female germ cell differentiation. Many of these
RNA binding proteins bind to elements within the 3′UTR of
target transcripts and directly or indirectly interfere with cap
dependent translation initiation. Through the course of this first
section, we will also touch upon emerging models of in trans
regulation between mRNAs and how condensate formation may
influence translation of individual transcripts. The second section
will be devoted to discussing how ribosome biogenesis, ribosomal
protein paralogs, global regulation of translation, and ribosome
storage impact germ cell function. The dynamic regulation of
ribosome biogenesis and global protein synthesis represents a
relatively new and underexplored theme in the context of germ
cell development. As such, we will highlight key questions that
remain in this area.

RNA BINDING PROTEINS AND THE
REGULATED TRANSLATION OF mRNAs
DURING GERM CELL FORMATION

Genetic studies in a variety of model systems (Figure 1) have
led the way in establishing our current understanding of how
RNA binding proteins and the regulated translation of individual
mRNAs drive various aspects of germ cell development and
early embryogenesis. Many of these proteins, including Nanos,
Pumilio, Vasa, and Dazl, have long served as useful markers of
germ cell identity across different species (Lesch and Page, 2012)
(Table 1). These proteins play central roles in establishing germ
cell identity, regulating germ cell differentiation, preparing germ
cells for entry into meiosis and controlling other aspects of germ
cell function. In the interest of space, we will primarily focus on
how the regulated translation of individual mRNAs controls the
specification and differentiation of Drosophila female germ cells.
Importantly, many excellent recent reviews describe important
findings from other model systems (Voronina et al., 2011; Lai and
King, 2013; Susor et al., 2016; Jamieson-Lucy and Mullins, 2019;
Huggins and Keiper, 2020). We will touch upon commonalities
in the regulation of translation between these different species.

Germ Plasm Formation in Drosophila
Characterization of Drosophila germ cell formation has served
as a useful platform for understanding how the regulation of
mRNA translation initiation (Figure 2) impacts cell fate decisions
[reviewed in Lehmann (2016)]. While we have gained substantial
knowledge regarding many of the RNA binding proteins
involved in controlling germ cell specification and development,
several important questions remain: how do different regulatory
mechanisms coordinate with one another, how is the translation
of specific messages turned on and off in a temporally specific
manner, and to what extent does condensate formation and
phase transitions allow for the translation of specific messages
to be toggled back and forth between an active and repressed

state? Reviewing the current knowledge will provide context for
discussing these and other open questions in the field.

Early Drosophila embryos initially develop as a syncytium in
which nuclei undergo mitotic divisions in a common cytoplasm.
This cytoplasm is patterned, with RNAs and proteins localized
to specific regions within the embryo. Nuclei move to the
periphery of the embryo and are eventually surrounded by plasm
membrane to form individual cells, through a process known as
cellularization. Primordial germ cells form during cellularization
in the posterior pole of the embryo through uptake of specialized
cytoplasm referred to as germ plasm (Figure 1). Germ plasm
formation depends on Oskar protein, which contains two RNA-
binding domains: the OSK RNA-binding domain and the OST-
HTH/LOTUS domain (Markussen et al., 1995; Rongo et al., 1995;
Lehmann, 2016). Oskar mRNA and protein are first localized to
the posterior pole of the oocyte during oogenesis. To begin to
understand the mechanisms that control Drosophila germ plasm
formation, we must first consider the process of oogenesis.

Drosophila ovaries are composed of tube-like structures
called ovarioles, which house sequentially developing egg
chambers (Figure 1). Each developing egg chamber contains
16 interconnected germ cells (15 nurse cells and 1 oocyte),
surrounded by a layer of somatically derived follicle cells
(Spradling, 1993). During most of oogenesis, the oocyte is
transcriptionally quiescent. The synthesis of RNAs and many
proteins occurs in the nurse cells and these molecules are
then actively transported to the oocyte, often in a microtubule
dependent manner. The transport of oskar mRNA from nurse
cells to the oocyte, and its repression during this transport,
depends on several proteins including Staufen, components of
the Exon Junction Complex and Bruno (Kim-Ha et al., 1991; St
Johnston et al., 1991; Hachet and Ephrussi, 2004). Importantly,
the translation of oskar mRNA is repressed until it localizes to the
posterior pole in the oocyte, and then only at a developmentally
appropriate time. This repression depends on the mRNA binding
protein Bruno. Sequencing the Drosophila genome revealed 3
Bruno paralogs: Bruno1, 2, and 3. Bruno1 binds to Bruno
Response elements (BREs) within the 3′UTR of oskar mRNA
through its RNA recognition motifs (Snee et al., 2008). BREs
and other regulatory elements cluster within two regions at
opposite ends of the oskar 3′UTR: the AB region and the C region
(Reveal et al., 2010). All three participate in the translational
repression of oskar mRNA and region C has an additional role
in promoting oskar translation once the mRNA reaches the
posterior pole of the oocyte. Bruno binding to these regions
serves to recruit a second protein, Cup (Nakamura et al., 2004)
(Figure 3). Cup was originally characterized based on its female
sterile phenotype and regulation of nurse cell chromosome
morphology (Keyes and Spradling, 1997). Cup resides in the
cytoplasm (Keyes and Spradling, 1997), and a collection of studies
found that this protein plays an important role in regulating
the translation of key transcripts during oogenesis (Verrotti and
Wharton, 2000; Wilhelm et al., 2003, 2005; Macdonald, 2004;
Nakamura et al., 2004; Nelson et al., 2004; Zappavigna et al.,
2004; Piccioni et al., 2005, 2009; Chekulaeva et al., 2006; Clouse
et al., 2008; Igreja and Izaurralde, 2011; Wong and Schedl,
2011; Kinkelin et al., 2012; Gotze et al., 2017). Cup contains a
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FIGURE 1 | Schematics of where Drosophila, Caenorhabditis elegans, and mouse PGCs originate from and adult ovary structures.

TABLE 1 | Germ cell enriched genes across species.

Caenorhabditis
elegans

Drosophila Zebrafish Mammals Function

Vasa GLH-1, GLH-2,
GLH-3, GLH-4

Vasa DDX4 DDX4 RNA helicase; Polar granule component; Positive regulation
of mRNA translation

Nanos NOS-1, NOS-2 Nanos NANOS-1
NANOS-2
NANOS-3

NANOS-1
NANOS-2
NANOS-3

Zinc finger RNA binding protein;
Negative regulation of mRNA translation

Pumilio FBF-1, FBF-2,
PUF-3, PUF-5, PUF-6,
PUF-7, PUF-9, PUF-11

Pumilio PUM1, PUM2 PUM1, PUM2 RNA binding protein;
Negative regulation of mRNA translation;
Linked with inhibition of meiosis

Dazl DAZ-1 Boule DAZL DAZ, DAZL,
BOULE

RNA binding protein;
Negative and positive regulation of mRNA translation;
Promotes progression through meiosis

YxxxxLϕ (where x is any amino acid and ϕ is a hydrophobic
amino acid) motif found in several eIF4E binding proteins,
including the translation initiation factor eIF4G (Figure 3). Cup
binding to eIF4E associated with the 7-methylguanosine cap
blocks eIF4G binding and thus prevents translation initiation
(Wilhelm et al., 2003; Nakamura et al., 2004; Nelson et al.,
2004; Kinkelin et al., 2012). Packaging of oskar mRNA into
silencing particles, which prevent mRNAs from engaging with

ribosomes may also contribute to the spatial and temporal
regulation of oskar mRNA translation (Chekulaeva et al., 2006).
Traditionally, Bruno and Cup are typically modeled as acting
in cis. Intriguingly, expression of an oskar mRNA engineered
to not produce a protein but carrying all the endogenous
regulatory elements can rescue the correct regulation of oskar
mRNAs which have had all their BREs mutated (Reveal et al.,
2010). This observation suggests the possibility of additional in
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FIGURE 2 | Schematic of general translation initiation. mRNAs generally have a 7-methylguanosine cap and a poly-A tail. The cap serves to recruit the translation
initiation factor eIF4E to mRNAs. eIF4E then recruits the scaffold protein eIF4G, which in turn brings the RNA helicase eIF4A to mRNA. eIF4A serves to unwind
secondary structure within the 5′UTR of mRNAs, which allows for the recruitment of the 43S pre-initiation complex. This complex then scans the mRNA for a start
codon, typically AUG. Next the 60S subunit is recruited to the mRNA to form a 80S monosome. Multiple ribosomes can associate with mRNAs to form polysomes.

trans regulation, whereby Bruno binding to one oskar transcript
influences the regulation of other oskar transcripts. In a follow-
up study, Macdonald et al. (2016) presented additional transgenic
rescue experiments and molecular modeling to provide further
support the model of in trans regulation of oskar mRNA
regulation. Importantly, this regulation likely takes place in
the context of higher order ribonucleoprotein particles (RNPs).
RNPs belong to a group of structures collectively referred to as
biomolecular condensates, which represent a local concentration
of molecules in membrane-less foci. While liquid-liquid phase
separation, defined as process by which liquid phases form
to minimize free energy, underlies the formation of many
condensates, this is not always the case [reviewed in Lyon
et al. (2021)]. How phase separation and condensate formation
contributes to the regulation of mRNA translation is an ongoing
area of study. An intriguing possibility is that the in trans
regulation of oskar translation reflects the association of co-
regulated oskar mRNAs with specific condensates. In light
of growing evidence that RNAs and RNA binding proteins
accumulate in discrete compartments within cells, the further
study of in trans regulation of mRNA translation and the control

of condensate formation will have important implications beyond
germ cell specification.

Once oskar mRNA localizes to the posterior pole of the
oocyte, repression of its translation is relieved. The mechanisms
that regulate this switch from a repressed to an active state
are coming into focus. For example, over-expression of oskar
3′UTR promotes oskar translation, suggesting that repressors
such as Bruno are expressed at limited levels and may be titrated
away from oskar mRNA under the right circumstances (Smith
et al., 1992; Kanke and Macdonald, 2015). In addition, several
factors including the poly-A-binding proteins Orb and PABP are
needed for oskar translation (Castagnetti and Ephrussi, 2003;
Vazquez-Pianzola et al., 2011). More recent results indicate that
a member of the Makorin family of proteins, which contain
C3H-type zinc fingers and a RING E3 ubiquitin ligase domain,
helps to regulate oskar translational activation (Dold et al.,
2020). Drosophila Makorin 1(Mkrn1) has previously been linked
with embryonic patterning (Liu and Lasko, 2015), and new
results from the Lasko lab provide evidence that this protein
promotes pole plasm formation in the oocyte (Dold et al., 2020).
Mkrn1 mutants exhibit proper localization of oskar mRNA to
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FIGURE 3 | Schematic showing how different factors contribute to the
regulation of oskar mRNA translation. Bruno binds to Bruno Response
Elements (BREs) in the 3′UTR of target mRNAs, including oskar. Bruno
associates with Cup protein, which in turns binds to eIF4E, preventing the
recruitment of eIF4G and effectively blocking translation initiation. The
YxxxxLϕ (where x is any amino acid and ϕ is a hydrophobic amino acid) motif
is indicated. Other mRNA binding proteins, including Mkrn1, compete with
Bruno for binding. Once these proteins displace Bruno and Cup, translation
initiation can proceed.

the posterior pole but do not produce Oskar protein. Mkrn1
itself localizes to the pole plasm and associates with BREs within
oskar mRNA. More Bruno1 appears to associate with oskar
mRNA in Mkrn1 mutants and the Oskar protein defect in Mkrn1
mutants is partially suppressed by Bruno1 mutations. Together
these data support a model whereby Mkrn1 and Bruno1 compete
for binding to oskar mRNA (Figure 3). Whether the E3 ligase
activity of Mrkn1 is needed to promote Oskar protein expression
remains an open question. In other contexts, Mrkn1 has also been
associated with ribosome-associated translation quality control
of polyadenylated transcripts (Hildebrandt et al., 2019). Whether
this activity impacts oskar translation also remains unknown.

The oskar gene encodes short and long protein isoforms
(Markussen et al., 1995; Rongo et al., 1995), which serve to
recruit a number of other RNA binding proteins to the pole
plasm including Vasa (Breitwieser et al., 1996; Jeske et al., 2015).
Drosophila vasa was originally discovered in a maternal effect
lethal screen (Lasko and Ashburner, 1988). vasa mutants lack
primordial germ cells and have disrupted posterior segments,

resulting in embryonic lethality. Vasa is expressed in the germ
cells of ovaries and testes, but its function is not required in the
testes as male vasa mutants are fertile. Several excellent reviews
describing Vasa function have been written (Yajima and Wessel,
2011; Lasko, 2013; Wessel, 2016; Dehghani and Lasko, 2017).
Briefly, Vasa is a DEAD-box RNA helicase that marks germ
cells across species. Vasa activates translation of several mRNAs
including nanos in the pole plasm of the Drosophila embryo
(Gavis and Lehmann, 1994). This activity appears to depend
on its association with the general translation factor eIF5B
(Johnstone and Lasko, 2004), which promotes recruitment of the
60S subunit and formation of 80S monosomes. Thus, Vasa is
critical for the translational activation of both components of the
pole plasm that help to specify PGCs within developing embryos
and for proteins needed for the continued development of germ
cells. Beyond regulating translation, Vasa also has additional
functions including interacting with components of small RNA
surveillance pathways (Xiol et al., 2014).

The Regulation of Drosophila Germ Cell
Differentiation by mRNA Translation
Based Mechanisms
In addition to germ cell formation, translation regulators are
necessary for Drosophila germline stem cell (GSC) maintenance
and differentiation [reviewed in Slaidina and Lehmann (2014)]
(Figure 4). For example, in GSCs, Nanos and Pumilio repress
the translation of transcripts that promote differentiation. Nanos
belongs to a super family of proteins defined by tandem CCHC
zinc fingers (Irish et al., 1989; Wang and Lehmann, 1991; Curtis
et al., 1995; Kugler and Lasko, 2009). These zinc fingers interact
with RNA. Pumilio is another highly conserved RNA binding
protein and is a founding member of the PUF protein family,
named for Drosophila Pumilio and C. elegans fem-3 binding
factor (FBF) (Barker et al., 1992; Zamore et al., 1997; Forbes
and Lehmann, 1998). Pumilio proteins act to repress mRNA
translation and promote the degradation of transcripts. Nanos
and Pumilio work together to repress transcripts necessary for
differentiation, including mei-P26 and brat (Harris et al., 2011;
Joly et al., 2013). It is interesting that while Nanos and Pumilio
repress brat translation in GSCs, Brat aids Nanos and Pumilio in
repressing hunchback mRNA in the Drosophila embryo (Loedige
et al., 2014). These translation repression networks are complex
and likely involve many different cofactors. While mei-P26 and
brat are known targets, many targets of Nanos and Pumilio
have yet to be identified. Target mRNAs of Nanos typically
contain Nanos response elements (NREs), which represent the
minimal sequence necessary for Nanos mediated repression.
Each NRE contains a Pumilio response element (PRE) and
is necessary for Nanos and Pumilio to interact (Sonoda and
Wharton, 1999). Nanos binds to the three bases upstream of
the PRE and acts a clamp, stabilizing the interaction of Pumilio
with less favorable PREs (Weidmann et al., 2016). The Nanos
N terminus recruits and directly interacts with the CCR4-
NOT complex to promote the deadenylation of mRNAs. Target
mRNAs are decapped in a deadenylation dependent manner.
Nanos can also repress the translation of mRNAs independent of
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FIGURE 4 | Schematic illustrating some of the translation regulatory pathways that control specific events during the early stages of Drosophila female germ cell
development.

deadenylation, decapping and degradation (Raisch et al., 2016),
but the molecular mechanisms that underlie this activity remain
uncharacterized.

When GSCs divide, they produce GSCs and cystoblast
daughter cells. In GSCs, transcription of the differentiation
factor bam is repressed by the BMP signaling pathway

FIGURE 5 | Schematic illustrating some components that regulate C. elegans
germline development, including the Puf family members FBF-1 and FBF-2.
Modeled after Ellenbecker et al. (2019).

(Chen and McKearin, 2003a,b; Song et al., 2004; Chen and
McKearin, 2005). Any GSC daughter displaced out of the niche
no longer receives BMP signals resulting in bam expression.
Bam is both necessary and sufficient for Drosophila germ cell
differentiation (McKearin and Spradling, 1990; Ohlstein and
McKearin, 1997). Bam works together with Bgcn, Mei-P26 and
Sxl to target nanos mRNA for repression through a 3′UTR-
dependent mechanism (Li et al., 2009). Bam, Bgcn, Mei-P26,
and Sxl physically interact, and both Mei-P26 and Sxl interact
with nanos mRNA (Chau et al., 2012; Li et al., 2012, 2013).
Deleting the one Sxl binding site within the 3′UTR of nanos
prevents its repression (Chau et al., 2012). Yet Sxl alone is not
sufficient to repress nanos translation as both Sxl and Nanos are
expressed in GSCs. In other contexts, Sxl represses translation by
interacting with the corepressor Unr, which interacts with PABP
to prevent the recruitment of ribosomal preinitiation complexes
to 5′UTRs [reviewed in Moschall et al. (2017)]. nanos mRNA does
not have a clear Unr binding site, suggesting that an alternative
mechanism may be at play. Along these lines, Bam appears
to recruit the CCR4-NOT complex to promote the decapping
and deadenylation of nanos and other target mRNAs (Sgromo
et al., 2018). Further work will be needed to fully understand the
specific roles of Sxl, Bgcn, and Mei-P26 in regulating the decay of
target messages.

Unlike Nanos, Pumilio exhibits expression in cystoblasts
and two-cell cysts. Pumilio has been shown to form a tertiary
complex with Bam and Bgcn through its N terminal domain
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FIGURE 6 | Stage specific regulation of rRNA transcription, ribosome biogenesis, and global protein translation. (A) Schematic describing the process of ribosome
biogenesis. (B) A wildtype Drosophila germarium pulse-labeled with Br-UTP to mark nascent rRNA (red) and stained for Udd (green), Bam (cyan), and DNA (gray).
The arrow points to a GSC with relatively high rRNA transcription and Udd levels. (C) A graph showing the relative levels of ribosome biogenesis and mRNA
translation based on published work.

(Kim et al., 2010). Pumilio also interacts with Brat to repress
mad, dMyc, and components of the BMP signaling pathway
(Harris et al., 2011). In addition, Brat associates with Mei-P26
and Ago1 through the NHL domain of Mei-P26 (Neumüller et al.,
2008), suggesting these proteins work together to repress factors
required for GSC maintenance.

Starting in 4-cell cysts, pumilio mRNA translation is repressed
by Rbfox1. Loss of Rbfox1 and the continued expression of
Pumilio result in developmental arrest (Tastan et al., 2010;
Carreira-Rosario et al., 2016). Prolonged expression of Pumilio
causes germ cells to dedifferentiate back into a mitotically active
state. Rbfox1 belongs to a family of RNA binding proteins
that regulate alternative splicing and translation (Conboy,
2017). In Drosophila female germ cells, cytoplasmic isoforms

of Rbfox1 bind to (U)CGAUG elements in the 3′UTR of
pumilio transcripts. Interestingly, Rbfox1 does not appear to
promote the deadenylation of pumilio, and pumilio mRNA
levels remain unchanged in Rbfox1 mutants (Carreira-Rosario
et al., 2016). The molecular mechanism by which Rbfox1
represses the translation of pumilio and its other targets in the
germline remains unclear. However, Rbfox1 protein has two
intrinsically disordered regions (IDRs) which typically mediate
low valency interactions that can promote phase separation
(Uversky et al., 2015). Moreover, Rbfox1 colocalizes with several
RNP granules suggesting it may promote the sequestration of
mRNAs away from translation initiation factors and ribosomes
(Kucherenko and Shcherbata, 2018). All together, these various
studies indicate that translational regulation represents the major
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mechanism for regulating gene expression in the Drosophila
adult female germline. Many RNA binding proteins involved
in controlling germ cell differentiation have different binding
partners at different stages, adding to the complexity of the
regulatory networks. Additional work is needed to understand
these networks more fully.

The Function of C. elegans Vasa, Nanos,
and Pumilio Homologs
Like Drosophila, germ cell formation in C. elegans also occurs
through a preformation mechanism [reviewed in Wang and
Seydoux (2013)]. mRNA-protein complexes called P granules,
which are analogous to Drosophila germ granules, are distributed
throughout the cytoplasm of the one cell embryo (P0). The
P-granules segregate into cells of the P lineage during the next
four divisions. The P4 cell then divides to give rise to the germline
founder cells called Z2 and Z3, which give rise to the adult
germline. P granules continue to be protected from degradation
in Z2 and Z3 during subsequent development through to
adulthood. Eventually these cells give rise to the adult germline.

C. elegans adults can exist as either hermaphrodites or males.
The gonad of hermaphrodites has long served as a powerful
model for identifying and characterizing factors needed for
germline maintenance and function. C. elegans adults contain
two symmetric U-shaped gonads, which house the germline
(Figure 1). Most of the germline exists as a syncytium.
Notch signaling from the distal tip cell keeps germline cells
in an undifferentiated and proliferative state. As these cells
move away from the distal tip, they begin to differentiate
and enter meiosis.

Much attention has been given to the characterization
of P granules within the C. elegans embryonic and adult
germline (Wang and Seydoux, 2014). The majority of the
protein components of P granules are RNA binding proteins
including the Vasa homologs GLH-1, GLH-2, GLH-3, and GLH-
4, the P granule assembly factors PGL-1, PGL-2 and PGL-
3, and OMA-1 and OMA-2. GLH-1 and GLH-4 function to
promote the perinuclear localization of P granules. P granules
do not appear to be needed for germ cell specification, but
proteins that localize to these structures are needed for fertility.
Interestingly, compromising multiple P granule nucleation
factors along with GLH-1 and GLH-4 results in the ectopic
expression of somatic-specific genes, including factors normally
associated with neurons and muscle, within the germline (Updike
et al., 2014; Knutson et al., 2017). Recent work has begun to
characterize the biophysical properties of P granules (Forman-
Kay et al., 2018; Seydoux, 2018; Cable et al., 2019; Lee and
Seydoux, 2019; Ouyang et al., 2019; Putnam et al., 2019; Lee
et al., 2020; Putnam and Seydoux, 2021). These structures likely
represent privileged environments in which resident mRNAs
are shielded from engaging with the translation machinery.
For example, protein-RNA tethering assays reveal that the
translation of reporter mRNAs is repressed upon recruitment
to P granules (Aoki et al., 2021). In addition, recent detailed
genetic characterization of GLH-1 suggests that Vasa homologs
likely serve as “solvents,” which play a variety of important roles

within germ cells including promoting the activity of small RNA
surveillance pathways and enabling the trafficking of mRNAs out
of P granules (Marnik and Updike, 2019; Marnik et al., 2019).

The worm genome also encodes 10 Pumilio-like proteins
including FBF-1, FBF-2, PUF-8, and PUF-11 [reviewed in Wang
and Voronina (2020)]. Half of these genes exhibit enriched
expression in germ cells and promote the maintenance of the
germline. Initial characterization of FBF-1 and FBF-2 revealed
these proteins promote mitotic germline stem cell proliferation
(Figure 5). Within this context, both proteins repress the
expression of gld-1, which drives the commitment to the meiotic
cell cycle (Crittenden et al., 2002). Subsequent studies showed
the FBF-1 and FBF-2 also repress the expression of multiple
components of the synaptonemal complex, the formation of
which is a critical step in meiosis and germline differentiation,
through a 3′UTR dependent mechanism (Merritt and Seydoux,
2010). The binding of FBF-1 and FBF-2, along with other family
members, typically regulate gene expression by deadenylating
target mRNAs, resulting in translational repression or RNA
decay. In addition, other studies hint at the possibility that worm
and mammalian PUF proteins can coordinate with Argonaute
miRNA-binding proteins and inhibit translation elongation
(Friend et al., 2012).

While earlier work provides evidence that FBF-1 and FBF-2
exhibit functional redundancy (Crittenden et al., 2002; Lamont
et al., 2004; Bernstein et al., 2005; Merritt and Seydoux, 2010),
significant differences in their mutant phenotypes and subcellular
localization have remained poorly understood. Recent papers
have begun to resolve this conundrum. FBF-1 appears to restrict
the rate at which germline cells enter meiosis, whereas FBF-2
promotes both cell proliferation and entry into meiosis (Wang
et al., 2020). Both proteins directly target a common set of
mRNAs, including the Cyclin B homolog cyb-2.1. Mutating
FBF binding sites within cyb-2.1 mRNA and additional loss-
of-function experiments provide evidence that the germline
coordinates regulation of the cell cycle and meiotic entry through
the differential activity of FBF-1 and FBF-2 on specific sets
of target genes. Moreover, FBF-1 requires the CCR4-NOT
deadenylase complex, while FBF-2 appears to protect messages
from deadenylation. These different activities are mediated by
regions of the protein outside of the RNA-binding domain.

Additional PUF domain proteins may also contribute to the
regulation of the cell cycle and entry into meiosis. Disruption of
signaling between the distal tip cell and the germline results in
a more severe germline stem cell phenotype than the combined
loss of fbf-1 and fbf-2 (Austin and Kimble, 1987; Crittenden et al.,
2002; Merritt and Seydoux, 2010; Kershner et al., 2014; Shin
et al., 2017). Two additional PUF domain proteins, PUF-3 and
PUF-11, which play a role in regulating germline maintenance
and differentiation have been identified. Genetic analysis reveals
that the phenotype of quadruple fbf-1, fbf-2, puf-3, and puf-11
mutants is strikingly similar to glp-1/Notch mutants, revealing
new aspects of the complex regulatory PUF protein networks
that control germline behavior (Haupt et al., 2020). Further
work will be needed to fully delineate how these four C. elegans
RNA binding proteins coordinate with one another to achieve a
balance between germline stem cell divisions and differentiation.
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Caenorhabditis elegans also express three orthologs of nanos,
and two of them, nos-1 and nos-2, function in germline
development (Subramaniam and Seydoux, 1999). Simultaneous
loss of nos-1 and nos-2 causes a premature proliferation
phenotype in PGCs, resulting in their eventual loss during
larval development. Like Drosophila nanos, these worm orthologs
encode cytoplasmic proteins that target mRNAs for translational
silencing or degradation. Nanos-3 physically interacts with the
Pumilio homolog FBF-1, and together help to control sperm-
oocyte cell fate decisions during development by targeting
fem-3 for post-transcriptional silencing (Kraemer et al., 1999).
Subsequent work has focused on defining additional endogenous
targets mRNA targets of these three Nanos proteins. The Seydoux
lab has shown that loss of nos-1 and nos-2 results in both
the upregulation of oocyte transcripts and the inappropriate
upregulation of other transcripts that are normally kept silent in
PGCs (Lee et al., 2017). Interestingly, nos-1 and nos-2 appear to
repress the expression of LIN-15B, a synMuvB class transcription
factor known to antagonize transcriptional silencing. Moreover,
disruption of lin-15b suppresses both the sterility and the
observed changes in the gene expression programs of nos-1
nos-2 double mutants.

Work in C. elegans has also pioneered our understanding of
the relationship between translational repression and P granules.
Recent work has highlighted the importance of a group of genes
called maternal-effect germ-cell defective (MEG) in controlling
P granule formation and activity (Leacock and Reinke, 2008;
Kapelle and Reinke, 2011; Smith et al., 2016; Dodson and
Kennedy, 2019; Ouyang et al., 2019; Putnam et al., 2019; Lee
et al., 2020). For example, proteins that contain intrinsically
disordered regions including MEG-2 and MEG-3, promote phase
separation (Dodson and Kennedy, 2019; Ouyang et al., 2019;
Putnam et al., 2019; Lee et al., 2020). Various mRNAs localize
to these condensates, including nos-2 (Lee et al., 2020). One
challenge in the field has been determining whether mRNAs
are first recruited to P granules for silencing or whether they
accumulate to these granules as a consequence of their repression.
Recent experiments examining the regulation of nos-2 mRNA
provide evidence for the latter (Lee et al., 2020). This study found
that RNA localization tended to trend with translational status
and that accumulation of mRNAs to P granules depended on
the activity of translational repressors. Lastly, subjecting worms
to heat shock, which disrupts translation initiation, results in a
shift of diffusely localized transcripts to P granules (Lee et al.,
2020), providing further evidence of links between translational
state and localization to P granules.

Regulation of mRNA Translation by Vasa,
Pumilio, and Nanos Homologs in
Vertebrate Germ Cells
Multiple studies have identified clear Vasa homologs in zebrafish,
Xenopus, mice, rats, monkeys and humans (Leroy et al., 1989;
Komiya and Tanigawa, 1995; Olsen et al., 1997; Castrillon et al.,
2000; Toyooka et al., 2000; Hermann et al., 2007; Mitchell
et al., 2008; Encinas et al., 2012; Gassei et al., 2017). These
genes have retained their enriched expression in germ cells,

and continue to serve as valuable markers of germ cell fate
in various contexts [reviewed in Lasko (2013)], including the
generation and differentiation of primordial germ cell like cells
(Saitou and Miyauchi, 2016; Tang et al., 2016; Kobayashi et al.,
2017). The temporal and stage specific expression pattern of
Vasa varies from species to species. For example, in mice
the expression of DDX4 (the typically used name for Vasa
in mammals; also known as Mvh) is first observed in germ
cells after they have populated the genital ridge, while in
rats DDX4 expression is detectable much earlier in migrating
PGCs (Fujiwara et al., 1994; Encinas et al., 2012). In both
rodents, DDX4 expression continues in post-meiotic sperm and
oocytes. Interestingly, mutations in rodent DDX4 only appear
to disrupt the fertility of males but not females. DDX4 localizes
to the chromatoid body, a germ cell specific perinuclear RNA
granule, in developing spermatids. Similar to Vasa homologs
in Drosophila and C. elegans, immunoprecipitation experiments
show that DDX4 associates with a large number of potential
target mRNAs. Some of these mRNAs encode for proteins that
play important roles in the translational regulation within the
germline, including DDX25 and eIF4B (Tsai-Morris et al., 2004;
Nagamori et al., 2011; Yamaguchi et al., 2013).

Homologs of Pumilio and Nanos also contribute to formation,
maintenance and development of vertebrate germ cells. Mice and
humans have two clear Pumilio homologs, PUM1 and PUM2,
and two divergent PUM homologs, PUM3/Puf-A and NOP9
(Goldstrohm et al., 2018). Pum2 does not appear needed for male
or female fertility, although a gene trap within the locus results
in morphologically smaller testes (Xu et al., 2007). Deletion
of Pum1 in mice results in reduced male fertility, marked by
increased apoptosis in germ cells (Chen et al., 2012). Loss of
Pum1 also leads to subfertility in female mice (Mak et al., 2016),
and defects in the maternal phase of embryogenesis (Mak et al.,
2018). Subsequent work shows that simultaneous deletion of both
Pum1 and Pum2 results reduced body size and cell proliferation,
partially through mis-regulation of Cdkn1b (Lin et al., 2019).
Loss of both Pum1 and Pum2 also disrupts neurogenesis in mice
(Zhang et al., 2017). Like its fly and worm counterparts, PUM1
and PUM2 bind to thousands of transcripts, with significant
overlap between the two proteins, in both the testis and nervous
system. Similar to other species, these PUM binding sites are
enriched for the UGUA(A/C/U)AUA motif. PUM binding to
mRNAs typically results in transcript destabilization and/or
translational repression. For example, recent work shows that
PUM1 forms highly clustered aggregates around Mad2 and
cyclin B1 RNA granules in mouse oocytes (Takei et al., 2020).
This localization correlates with translational repression of these
two RNAs. In turn, the breakdown of these PUM1 aggregates
correlates with the activation of Mad2 and Cyclin B1 translation.
Importantly, stabilization of PUM1 aggregates blocks oocyte
differentiation, indicating that the dissolution of these aggregates
at a particular point in oocyte differentiation is important for
their continued maturation.

In related findings, mammalian PUM proteins may also
play important roles in the proliferation and differentiation of
embryonic stem cells (Uyhazi et al., 2020). Loss of Pum1 in
ESCs results in increased expression of pluripotency genes. By
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contrast, Pum2 mutant ESCs display decreased pluripotency and
accelerated differentiation. Again, the target mRNAs for both
proteins show significant overlap, but within the context of
ESCs, PUM1, and PUM2 appear to regulate different subsets
of target mRNAs in both a positive and negative manner. In
addition, PUM1 and PUM2 regulate the expression of one
another, forming regulatory feedback loops.

In addition to co-regulation through 3′UTR-dependent
mechanisms, mammals have evolved additional mechanisms for
controlling the availability of PUM1 and PUM2. For example,
recent work shows that the long non-coding RNA NORAD,
which contains a series of PUM binding sites, acts to sequester
PUM protein (Lee et al., 2016). Over-expression and increased
availability of PUM1 and PUM2 leads to genomic instability
in somatic cells, and loss of NORAD in mice results in a
striking premature aging phenotype (Kopp et al., 2019). NORAD
serves to titrate the amount of available PUM protein to a
level that accommodates a cell’s specific needs. New work
provides insights into the ability of NORAD to regulate phase
transitions through multivalent interactions. Importantly, the
formation of NORAD dependent condensates allows for the
super-stoichiometric retention of PUM proteins (Elguindy and
Mendell, 2021). While Norad mutant mice do not appear to have
any overt fertility problems, future work will be needed to more
thoroughly assay how loss of this and other long non-coding
RNAs impact germ cell development and reproductive aging by
interacting with translation regulatory machinery. In addition, it
will be interesting to test whether germ granules also promote
the super-stoichiometric retention of specific mRNAs and their
binding proteins.

Mammalian genomes contain three nanos orthologs: nanos1,
nanos2, and nanos3 (De Keuckelaere et al., 2018). nanos1 is
expressed in the nervous system and does not appear to function
in germ cell development (Haraguchi et al., 2003). By contrast,
NANOS2 and NANOS3 play important roles in germ cell
maintenance and differentiation (Tsuda et al., 2003; Suzuki et al.,
2007). NANOS3 is expressed in primordial germ cells and has
served as an important marker in several studies that describe the
formation and differentiation of iPS cell and embryonic stem cell
derived primordial germ cell-like cells (PGCLCs) (Irie et al., 2015;
Irie and Surani, 2017; Chen et al., 2019). nanos2 is expressed in
a male specific manner in spermatogonial stem cells. NANOS2
interacts with Dead end 1 (DND1), another RNA binding
protein that promotes the survival of PGCs, and the CCR4-
NOT deadenylation complex (Suzuki et al., 2016). Loss of nanos2
results in reduced expression of DNMT3L, a methyltransferase
that functions in establishing male specific DNA methylation
patterns. Interestingly, while NANOS2 expression can rescue
the germ cell defects caused by disruption of NANOS3, the
reverse is not true (Tsuda et al., 2003). A recent study has
shed new light on the roles of NANOS2 and NANOS3 in germ
cell development (Wright et al., 2021). Double nanos2 and
nanos3 mutants exhibit a rapid loss of germ cells. NANOS3
serves to prevent apoptosis in germ cells upon loss of nanos2.
Further analysis shows that while NANOS2 and NANOS3 are
structurally similar, the unique amino acid sequence within a
zinc finger of NANOS2 is required for its specific interaction

with DND1. These biochemical experiments provide a reasonable
explanation for why NANOS3 expression cannot rescue nanos2
mutant phenotypes.

Accumulating evidence shows that orthologs of vasa, nanos,
and pumilio play important roles in the regulation of germ
cell formation and function in humans (Jaruzelska et al., 2003;
Moore et al., 2003; Lasko, 2013). For example, Pumilio-Nanos
complexes function in human germ cells and mutations in
nanos3 have been linked with ovarian insufficiency (Wu et al.,
2013; Santos et al., 2014). Interestingly, despite lack of nanos1
expression in mouse germ cells, mutations in the gene have been
linked with human male infertility, marked by oligo-astheno-
teratozoospermia or complete germ cell loss (Kusz-Zamelczyk
et al., 2013). Human PUM2 protein interacts with two other
RNA binding proteins called Deleted in Azoospermia (DAZ)
and DAZ-Like (DAZL) (Moore et al., 2003). Encoded by a gene
on the Y-chromosome, DAZ has been linked with a number
of different defects in human spermatogenesis. The expression
of DAZL marks commitment to a germ cell fate and helps
to regulate germ cell development and entry into meiosis in
mice. A recent paper from the Conti lab provides evidence
that DAZL functions to both repress and activate translation of
different transcripts within maturing oocytes (Yang et al., 2020).
Global analysis shows that ribosome loading onto maternal
RNAs is disrupted upon depletion of DAZL. This effect is
mediated, in part, through elements found within the 3′UTRs
of these transcripts. DAZL directly interacts with these RNAs
and phenotypes associated with DAZL loss can be rescued by
injection of wildtype DAZL protein. Interestingly, the translation
of several transcripts, including Akap10, Cenpe, Nsf, Ywhaz, and
Nin, appears upregulated in the absence of DAZL. Further work
shows the directionality of DAZL-dependent regulation depends
on other elements found within the 3′UTRs of target mRNAs.
This co-regulation was also hinted at in a previous study by
the same group (Sousa Martins et al., 2016). The theme of
multiple mRNA binding proteins influencing context specific
regulation of translation is important across species. Further
work will be needed to more fully understand how the presence of
multiple factors on individual transcripts is integrated to ensure
the proper regulation of translation in space and time. Whether
allelic variants of DAZL impact human infertility also requires
additional investigation (Rosario et al., 2016).

REGULATION OF TRANSLATION
MACHINERY DURING GERM CELL
DEVELOPMENT

Although previously considered as a house-keeping function,
emerging evidence is now showing that protein synthesis can
be heterogeneous across different cell-types and developmental
stages [reviewed in Buszczak et al. (2014)]. mRNA translation
depends on ribosomes, which are composed of about 80
different ribosomal proteins (RPs) and 4 rRNAs. Ribosomes
are initially assembled as two distinct subunits, a small 40S
subunit and a large 60S subunit within a subdomain of the
nucleus called the nucleolus (Klinge and Woolford, 2019)
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(Figure 6A). Each subunit is independently exported out of the
nucleus and into the cytoplasm. Emerging evidence indicates
that female germ cells may dynamically regulate ribosome
biogenesis during their differentiation as they develop into
fertilizable oocytes. Not only is ribosome biogenesis regulated,
but specific translation initiation and elongation factors are also
enriched and regulated in the germline. Much work still needs
to be done to understand how ribosomes and the translation
machinery work in concert during the development of the oocyte.
Furthermore, oocytes store large numbers of ribosomes for use
upon fertilization. Understanding this storage process and how it
may deteriorate over time can give us insights into reproductive
aging.

rDNA Repeat Amplification in Germ Cells
rDNA has a direct influence on the total number of ribosomes
that can be generated at any point in time. rDNA is commonly
organized as tandem repeats, the number of which can
vary across species. For example, Saccharomyces cerevisiae
has ∼150 copies of rDNA on chromosome XII, Drosophila
has 200–250 repeats on the X and Y chromosomes, and
humans have hundreds of rDNA copies in clusters located
on multiple chromosomes. rDNA copy number can vary
across different mouse strains. In addition, not all repeats are
transcribed at any point in time, and we are just beginning to
understand the regulatory factors that control the activity of any
particular rDNA gene.

Recombination rates within rDNA loci can be relatively high
compared to other regions of the genome due to their repetitive
nature, leading to increases and decreases in rDNA repeat
number (Nelson et al., 2019; Warmerdam and Wolthuis, 2019).
rDNA instability increases with age in a range of organisms
ranging from yeast to Drosophila and rDNA copy number can
vary in cancer cells (Wang and Lemos, 2017). Any changes in
rDNA repeat number within germ cells will be passed to the
next generation and could have a significant impact on the
viability and reproductive success of progeny. A recent study
adds to the evidence that organisms have evolved mechanisms
for maintaining rDNA copy number over multiple generations.
Lu et al. (2018) found that aging Drosophila males experience a
decline in rDNA copy number, which is subsequentially inherited
by their offspring. Strikingly, however, germline stem cells from
young flies, which initially received a reduced number of rDNA
repeats, are able to recover rDNA copy number back to a level
more in line with the rest of the population. Thus, it appears
that germ cells can “sense” and adjust rDNA copy number, so
it is maintained within a species-specific range. What sets this
range across species and the mechanisms that underlie this germ
cell phenomenon remain unknown, but a recent study using
yeast may provide some potential hints (Iida and Kobayashi,
2019). Upstream Activating Factor (UAF) serves to drive Pol
I transcription of rRNA. Reduction of rDNA repeats decreases
the number of UAF binding sites, in turn leading to increased
levels of “free” UAF. UAF, unbound to rDNA, moves to directly
repress the histone deacetylase SIR2. SIR2 negatively regulates
a number of genes which control recombination rates within
the rDNA locus. Reduced expression of these factors results in

rDNA amplification. Thus, the movement of UAF from rDNA to
the SIR2 gene upon reduction in rDNA copy number, and back
to rDNA once copy number has been restored to a level that
matches the availability of UAF, represents a simple but elegant
feedback loop through which cells can control repeat numbers
within this locus. This model predicts that over-expression of
UAF may limit viability through multiple cell divisions, as rDNA
copy number decreases. Indeed, expressing UAF in yeast strains
that already have reduced rDNA copy number results in cell
growth defects. Further experiments will be needed to test
whether similar mechanisms act within germ cells of multiple
cellular organisms to set rDNA copy number within a species-
specific range.

In addition to regulating chromosomal rDNA copy number,
the oocytes of certain amphibians and fish exhibit the remarkable
ability to amplify rDNA by producing extra-chromosomal copies
of these repeats. Cytological studies of amphibian oocytes
provided the first hints that oocytes may have extra copies of
rDNA. Brown and Dawid (1968) extended these earlier studies
and found that Xenopus germinal vesicles contained hundreds
of cresyl violet labeled nucleoli (Brown and Dawid, 1968).
Subsequent experiments using equilibrium density gradient
centrifugation in CsCl and comparative hybridization between
germinal vesicle and somatic cell DNA definitively showed
that the oocytes of Sedum mexicanum and Necturus maculosus
contained extra-chromosomal copies of rDNA. Others went on
to show that extra-chromosomal rDNA can be found in the
oocytes produced by a variety of organisms (Gall, 1968, 1969; Gall
et al., 1969; Macgregor, 1972; Gall and Rochaix, 1974; Davidian
et al., 2021). Despite their occurrence across several vertebrate
species, prevailing evidence indicates that placental mammals do
not amplify rDNA within their oocytes using this mechanism
(Bachvarova, 1985; Tian et al., 2001).

What is the functional significance of this amplification?
Oocytes are often large cells and need a high level of ribosomes
to support ongoing mRNA translation over variable periods
of storage in the absence of transcription (and hence in the
absence of ribosome biogenesis). Many species store massive
numbers of ribosomes. Cellular components stored within the
oocyte need to accumulate at a sufficient level to support early
embryogenesis until the onset of zygotic transcription and the
restarting of the ribosome assembly process. In many species,
zygotic transcription does not start until after many cell divisions.
Thus, changes in gene expression during early differentiation
typically occur at the level of mRNA translation. Increased rDNA
levels may simply be needed to support the enhanced levels of
ribosome biogenesis that occurs in the oocytes of many species.
Of note, zygotic transcription in mice and human starts within
1–2 cell divisions after fertilization, perhaps obviating the need
for large-scale rDNA amplification.

Knowledge regarding the formation of extra-chromosomal
nucleoli comes mostly from the study of amphibian oocytes.
A recent paper by Davidian et al. (2021) provides a thoughtful
description of the current state of the field. Briefly, the extra
synthesis of rDNA begins at the pachytene stage of meiotic
prophase, through a gene amplification process. Later, as these
oocytes enter the diplotene stage, the rDNA dissociates to form
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a large number of extra-chromosomal nucleoli. More recent
work has characterized the liquid-like properties of these extra-
chromosomal nucleoli (Brangwynne et al., 2011; Feric et al.,
2016). These findings have paved the way for the further
characterization of the biophysical properties of nucleoli and
other nuclear bodies from different cell types. Previous studies
using electron microscopy suggested that extrachromosomal
rDNA may form from rolling circle intermediates (Hourcade
et al., 1973, 1974). But what triggers this oocyte-specific gene
amplification process during meiosis and how the overall copy
number is regulated remains largely unknown. In the future,
genetic and biochemical approaches may begin to reveal new
insights into this interesting phenomenon.

Other organisms have evolved oocyte specific rRNA genes.
For example, Xenopus and zebrafish both have oocyte specific
5S rRNAs, the sequence of which differs from their somatic cell
counterparts (Wegnez and Monier, 1972; Ford and Southern,
1973; Wakefield and Gurdon, 1983; Locati et al., 2017a). These
maternal rRNAs are entirely replaced by a somatic 5S during
embryonic development (Wormington and Brown, 1983). This
specificity in germline and somatic rRNAs appears to extend
to 45S rRNA, the pre-cursor to 5.8S, 18S and 28S rRNAs
(Locati et al., 2017b). In silico analysis suggests the expansion
segments in 18S rRNA may preferentially drive the translation
of specific mRNAs in the germline and the soma. More recent
experiments, focused on characterizing DNA methylation within
the zebrafish germline, uncovered oocyte specific amplification
of a 11.5 kb region within the genome that contains 45S rRNA
(Ortega-Recalde et al., 2019). Interestingly, the demethylation
and amplification of this locus correlates with the expansion of
“1B” oocytes. These 1B oocytes contain multiple nucleoli and
provide signals that drive the feminization of the gonad. Thus,
these results suggest modification of rDNA is linked with sex
determination in this species.

Stage-Specific Regulation of Ribosome
Biogenesis During Germ Cell
Development
In Drosophila, well-conserved growth regulators, such as Myc,
modulate female germline growth potential (Maines et al., 2004;
Neumüller et al., 2008; Rhiner et al., 2009; Harris et al., 2011).
Some studies further suggest that the rate of ribosome production
may be different between GSCs and cells within differentiating
cysts (Neumüller et al., 2008). For example, during the mitotic
divisions of GSCs, Wicked, the Drosophila homolog of the
U3 snoRNP protein UTP18, becomes enriched in cytoplasmic
particles, which asymmetrically segregate to GSCs (Fichelson
et al., 2009). snoRNPs contain snoRNAs which serve to guide
modification enzymes to specific sites on rRNA, as ribosomes are
being assembled in the nucleolus. The asymmetric localization of
Wicked suggests that ribosome assembly factors become enriched
in GSCs, which in turn support higher levels of ribosome
biogenesis in stem cells relative to their differentiating daughters.

This model is also supported by observations that Pol I
activity differs between Drosophila GSCs and their differentiating
progeny (Figure 6B). Across eukaryotes, two functionally distinct

Pol I complexes exist: Pol I α and Pol I β. Only Pol I β, which
associates with TIF-IA and represents a relatively small fraction
of the total soluble Pol I pool, is initiation-competent and capable
of productive assembly at the rRNA gene promoter (Miller
et al., 2001). In mammalian cells, the selectivity factor 1 (SL1)
complex, which consists of TATA-box-binding protein (TBP)
and several TBP-associated factors (TAFs), including TAF1B and
TAF1C, binds to the core promoter of rDNA genes (Beckmann
et al., 1995; Russell and Zomerdijk, 2005; Knutson and Hahn,
2011; Naidu et al., 2011). Once bound, the SL1 complex recruits
the TIF-IA-containing Pol I complex to the rDNA promoter
(Russell and Zomerdijk, 2005). Components of the Drosophila
SL1 complex were identified based on the study of a female sterile
mutation in a gene called under-developed (udd). Udd localizes
to the nucleolus and is broadly expressed in both germline and
somatic cells. Co-staining with various markers revealed that Udd
always tightly localizes to a central region within nucleoli of non-
dividing cells. Mass spectrometry and co-immunoprecipitation
showed that Udd associates with Drosophila homologs of
the TAF1B and TAF1C Pol I transcription factors. Further
genetic experiments show that all three proteins are involved
with promoting Pol I transcriptional activity. Pulse-labeling
nascent rRNA reveals GSCs exhibit higher levels of rRNA
transcription relative to their immediate progeny (Zhang et al.,
2014) (Figure 6B). Like Wicked, Udd protein becomes enriched
in GSCs immediately after the completion of GSC mitosis,
again suggesting that GSCs employ mechanisms to ensure high
levels of ribosome production. However, enhanced levels of
ribosome biogenesis do not necessarily correlate with high
levels of mRNA translation within germ cells. OP-Puro pulse
labeling and RNAi knockdown of ribosomal proteins showed
that rRNA transcription and protein synthesis are uncoupled
during early germ cell differentiation (Sanchez et al., 2016)
(Figure 6C). Moreover, ribosome assembly appears to regulate
the final steps of mitosis in GSCs. A RNAi knockdown screen
in the male germline also revealed a requirement for ribosomal
proteins in driving the expression of mitotic factors in GSCs (Liu
et al., 2016). These combined results indicate the regulation of
ribosome biogenesis and global translation likely influence germ
cell development in both males and females.

The developmental potential of vertebrate oocytes may also be
closely linked with ribosome biogenesis. Transcriptome analysis
of rainbow trout embryo viability indicates that the dynamic
regulation of ribosome assembly factors plays a critical role
in ensuring egg quality in this species (Ma et al., 2019). In
mammals, the nucleolus and the dynamic regulation of rDNA
activity plays an essential role in producing fertilizable oocytes
[reviewed in Kresoja-Rakic and Santoro (2019)]. During their
growth phase, mammalian oocytes produce a large number
of ribosomes along with other material needed to support
their rapid growth. Once they reach their full size, oocytes
can progress into meiosis. However, full sized oocytes display
two distinct nuclear morphologies marked by a “surrounded
nucleolus” (SN) or a “non-surrounded nucleolus” (NSN). Both
types of oocytes can undergo meiosis and undergo fertilization,
but NSN type oocytes are transcriptionally active whereas SN type
oocytes are not. The nucleoli of SN oocytes undergo a distinct
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morphological change to form structures known as nucleolus-
like bodies (NLBs). As oocytes undergo meiosis, the nuclear
envelop breaks down resulting in the release of NLB components
into the cytoplasm. More recent work has shown that NSN
and SN oocytes can be easily distinguished from one another
through use of a Fibrillarin (FBL) GFP reporter (Wang and Na,
2021). In addition, NSN oocytes appear to experience more DNA
damage compared to their SN counterparts based on γH2AX
staining (Wang and Na, 2021). Further experiments will be
needed to more fully characterize these differences. Strikingly,
NSN oocyte derived embryos arrest at the two-cell stage of
embryogenesis, whereas SN oocyte derived oocytes maintain
a greater competence to complete embryogenesis. Together,
these findings indicate that the regulation of the nucleolar
morphology and activity are essential for the generation of
competent oocytes.

Ribosomal Protein Heterogeneity in
Germ Cells
Accumulating evidence suggests that ribosomes within a given
cell may be heterogeneous (Xue and Barna, 2012; Barna, 2015;
Shi and Barna, 2015; Shi et al., 2017; Genuth and Barna,
2018; Leppek and Barna, 2019; Leppek et al., 2020). This
heterogeneity can take on many forms including the differential
post-translational modification of ribosome proteins and/or
rRNA and differential ribosome protein composition. Differences
in ribosomes have been hypothesized to promote distinct mRNA
translation programs during development and in times of stress.
However, the functional significance of ribosome heterogeneity
within any one context should be carefully evaluated in light
of findings that changes in overall ribosome levels can have
differential effects on mRNAs that experience high or low rates
in translation initiation (Mills and Green, 2017).

The Drosophila genome encodes several ribosomal protein
paralogs (Marygold et al., 2007), which exhibit different
expression patterns, providing a potential experimental platform
for studying ribosome heterogeneity. Microarray analysis (Kai
et al., 2005) and later RNA-seq experiments (Graveley et al.,
2011), showed that several of ribosomal protein paralogs,
including RpS5b, RpS19b, and RpS10a, display enriched
expression in gonads. Most of the ubiquitously expressed RP
paralogs are on the X chromosome, while the paralogous genes
that exhibit tissue specific expression are on an autosome.
These ribosomal protein paralogs may carry-out tissue specific
functions. For example, mutations in RpS5a result in a minute
phenotype and lethality, while deletion of RpS5b leads to female
sterility (Kong et al., 2019; Jang et al., 2021). Transgenic rescue
experiments suggest that RpS5a and RpS5b may serve partially
redundant functions in the germline (Kong et al., 2019; Jang
et al., 2021), but pulldown experiments suggest that RpS5b
containing ribosomes may show a preference for engaging with
mRNAs encoding factors in mitochondrial electron transport
(Kong et al., 2019).

RpL22-like encodes alternative protein isoforms (L22-like and
L22-like short), both of which are expressed in the gonad
and incorporated into polysomes (Kearse et al., 2010). RpL22,

but not RpL22-like, is SUMOylated, especially in testis and
sumoylated RpL22 does not associate with ribosomes (Kearse
et al., 2013). This suggests that RpL22 protein may function
outside the context of translation, similar to how phosphorylation
of RPL13a controls whether this protein associates with the
ribosome or negatively regulates translation in an extra-
ribosomal manner (Mazumder et al., 2003). The functional role
of SUMOylated RpL22 biological function should be investigated
more thoroughly during germ cell development. Like RpS5a and
RpS5b, RpL22 and RpL22-like appear functionally redundant
within germ cells. Interestingly, expression of RpL22 results
in decreased levels of RpL22-like, and vice versa, suggesting
both proteins regulate the expression of one another to
achieve a specific level of RpL22/RpL22-like within germ cells
(Mageeney et al., 2018).

In contrast to Drosophila and several other model systems,
few ribosome protein paralogs exist in mammals. However, some
of these may carryout germline specific functions. For example,
RpS4 paralogs have been shown to be differentially expressed in
male and females. RpS4X and RpS4Y genes are located on X and Y
chromosomes, respectively, and their dysfunction is linked with
Turner syndrome (Fisher et al., 1990). RpS4X and RpS4Y differ by
19 amino acids, and both proteins appear interchangeable based
on the complementation of temperature sensitive RpS4X mutant
cells (Watanabe et al., 1993). Furthermore, proteomic analysis
of cells from the liver, mammary gland, and testis revealed that
paralogs of RpL10 and RpL39, referred to as RpL10-like and
RpL39-like, exhibit specific expression in the testis (Sugihara
et al., 2010). Future work will be needed to assess the extent to
which these gonad specific ribosome protein paralogs function in
a tissue specific manner.

Germ Cell Specific Translation Initiation
and Elongation Factors
Germ cells also express specific paralogs of broadly used
translation factors. For example, the Drosophila genome contains
eight eIF4E paralogs (Hernández et al., 2005), some of
which exhibit specific enriched expression within gonads. The
expansion of the number of eIF4 complex members and the
germline-specific expression of individual paralogs may provide
a sophisticated network of interactions for controlling mRNA
translation in space and time within developing germ cells.
Along these lines, the Drosophila testis expresses relatively
high levels of eIF4E-3 and eIF-4 gamma and low eIF5B
(Graveley et al., 2011). eIF4E-3 and eIF4G2 are both essential
in male fertility and eIF4G2 is needed to drive the germline
expression of CycB and Cdc25, both of which are important
in meiosis (Hernández et al., 2005; Baker et al., 2015; Ghosh
and Lasko, 2015). In addition, a mutation in eIF4G3 also
results in male infertility in mice, marked by a failure of
spermatocytes to exit meiotic prophase (Sun et al., 2010). Loss
of the CDC2A kinase chaperone HSPA2 leads to strikingly
similar phenotypes. Further experiments showed the eIF4G3
mutants failed to express HSPA2 protein despite the presence
of Hspa2 mRNA within these cells. These observations indicate
that eIF4G3 mediates the translation of specific messages needed
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for meiotic exit. Interestingly, a subsequent study showed
that eIF4G3 and several other components of the translation
machinery localize to the XY body, a chromatin domain
formed by transcriptionally inactive sex chromosomes (Hu
et al., 2018). These observations suggest that spermatocytes may
employ different germ cell-specific mechanisms for regulating
the availability of translation factors needed for progression
through meiosis.

The C. elegans genome also encodes at least five eIF4E-
like genes, the function of which have recently been reviewed
by Huggins and Keiper (2020). A number of these eIF4E
isoforms play important roles in germline maintenance and
development (Huggins et al., 2020). For example, IFE-1 exhibits
enriched expression in germ cells and the protein associates
with P granules. Mutations in IFE-1 result in fertility problems,
including both reduced translation of specific maternally
deposited mRNAs and defects in sperm development. Mutations
in another eIF4E gene, IFE-3, result in defects in growth and
germline sex determination. More specifically, the transition
from spermatogenesis to oogenesis appears disrupted in IFE-
3 mutant hermaphrodites. This defect can be suppressed by
disrupting a key masculinizing gene, fem-3. IFE-3, along with
its binding partner IFET-1, regulates the translation of several
germline sex determination factors. By contrast, IFE-1 associates
with PGL-1 and appears to regulate the expression of an
independent set of mRNAs. The specificity of IFE-1 and IFE-3
function is mediated, at least in part, by association with their
respective binding partners.

In addition to tissue specific initiation factors playing key
roles in germ cell development and function, additional studies
suggest germ cells in specific species may also employ specialized
elongation machinery. Xenopus have three eEF1A genes. eEF-
1S is expressed in the soma but not in germ cells, eEF-1O
is expressed during oogenesis and in some adult tissues, and
42Sp50 is only expressed during oogenesis (Abdallah et al.,
1991). Understanding the significance of this specialization
amongst eEF1A paralogs and whether they drive different
rates of elongation and/or influence overall translation fidelity
will require further genetic interrogation. Interestingly, more
recent work indicates that limiting eEF1A levels is likely an
important control point in regulating the activity of germ
cells. Work from the Wessel lab shows that protein synthesis
rates within sea urchin PGCs is maintained at very low levels
relative to neighboring somatic cells (Oulhen et al., 2017).
This quiescent state in sea urchin PGCs is dependent on
Nanos-2, which excludes eEF1A from PGCs (Oulhen et al.,
2017). In addition, cytoplasmic pH has a marked effect on
translation rates within PGCs. Similarly, Drosophila oocytes
undergo extended periods of metabolic quiescence (Sieber et al.,
2016). While much effort has gone into understanding the
regulation of translation initiation in various contexts, germ cells
may employ multiple modes of modulating mRNA translation,
including cell-specific mechanisms for controlling elongation
rates, to achieve a quiescent state. Further work will be required
to determine whether the dynamic regulation of translation
elongation represents a commonly used mechanism to control
germ cell activity and quiescence.

Communication Between Somatic Cells
and Germ Cells Influences mRNA
Translation
The maintenance and development of germ cells depends on
local communication with their somatic cell neighbors. Long-
range and systemic signals also influence germ cell activity.
Work in Drosophila has illustrated how signals from fat
tissue can modulate mTOR signaling within germline stem
cells (Armstrong et al., 2014). Subsequent studies from the
Drummond-Barbosa lab have continued to characterize how
interorgan communication influences germ cell development
in flies (Matsuoka et al., 2017; Armstrong and Drummond-
Barbosa, 2018; Weaver and Drummond-Barbosa, 2018, 2019,
2020, 2021). Work from the Conti and Eppig labs, among others,
shows that bidirectional communication between developing
oocytes and their somatic cell neighbors also plays an important
role in mammalian germ cell development (Chen et al., 2013;
Wigglesworth et al., 2013). This signaling often converges on
mRNA translation and the translation of maternal messages
is enhanced in the presence of specific somatic cells (Chen
et al., 2013). Additional studies show that FSH regulates mRNA
translation in mouse oocytes, through indirect mechanisms
involving EGF signaling within follicular cells (Franciosi
et al., 2016; Tetkova et al., 2019). Signaling through the
mTOR pathway acts as a key regulator of mouse germ cell
development. For example, the survival of cumulus-oocyte
complexes (COCs) depends on mTOR activation (Guo et al.,
2016). Paracrine signaling from the oocyte suppresses a negative
regulator of mTOR activity within the cumulus cells. In turn,
mTOR activation within these cells controls the survival and
differentiation of COCs. Conditional loss of mTOR in primordial
or growing oocytes also causes infertility (Guo et al., 2018),
marked by reduced translation of various mRNAs including
protein regulator of cytokinesis 1 and disruption of the first
meiotic division. Interestingly, a population of transcripts, many
of which play roles in meiotic progression, remain stored
within the nuclei of oocytes during their early development
(Susor et al., 2015). Upon nuclear envelope breakdown during
the first meiotic division, these transcripts, which remain
closely associated with chromatin, are translated in an mTOR
and eIF4F dependent manner. mTOR activation leads to the
phosphorylation and inactivation of 4E-BP1, a well-characterized
inhibitor of cap-dependent translation. Work from other groups
show that the temporally regulated translation of cell cycle genes,
including Cyclin B2, helps to drive the progression of meiosis in
mouse oocytes (Daldello et al., 2019). Experiments designed to
further characterize how intercellular signaling influences mTOR
activity, and global and transcript-specific translation represent
important work in the coming years. Further insights into this
regulation will likely yield improved methods for promoting
germ cell differentiation and extended oocyte culture in vitro.

Ribosome Accumulation and Storage in
Oocytes
Studies dating back to the 1960’s observed that protein synthesis
in mammalian embryos starts before zygotic transcription is
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initiated, indicating that maternally loaded and stored ribosomes
are essential for early embryonic development. Indeed, work
using C. elegans shows that maternally loaded ribosomes can
support embryonic development from fertilization until the first
larval stage, a time encompassing many cell divisions and tissue
diversification (Cenik et al., 2019). The ability of oocytes to store
vast quantities of active ribosomes may be a common feature
across species. Previous electron microscopy studies revealed
that mammalian oocytes store the majority of their ribosomes
in cytoplasmic lattice-like (CPL) structures (Burkholder et al.,
1971; Bachvarova et al., 1981). Whether similar structures exist
in other species remains unexplored. More recent work indicates
that the CPL also helps to coordinate organelle dynamics
and the microtubule cytoskeleton within oocytes (Kan et al.,
2011). Biochemical experiments suggest that the vast majority
of ribosomes do not engage in translation during ovulation
(Bachvarova and De Leon, 1977), further supporting the model
that ribosome association with the CPL stores them in an inactive
state. Genetic approaches are beginning to provide insights into
the functional significance of CPLs. The ability of ribosomes to
associate with the oocyte CPL is regulated by peptidylarginine
deiminase 6 (PADI6) (Esposito et al., 2007; Yurttas et al., 2008).
Loss of PADI6 results in infertility, marked by defects in protein
synthesis and defective embryonic gene activation at the two-cell
stage. The CPL cannot be visualized in PADI6 mutants. These
results suggest that ribosome association with the CPL is critical
for normal mRNA translation during early embryogenesis.
Further biochemical studies identified components of the
subcortical maternal complex (SCMC) including FLOPED,
MATER, FILIA, and TLE6. FLOPED, MATER, and TLE6 are
maternally deposited and interact with one another, while FILIA
only interacts with MATER (Li et al., 2008). MATER co-localizes
with PADI6 within the CPL of mouse oocytes, and loss of MATER
results in infertility, marked by developmental arrest in two-
cell embryos, similar in many ways to the phenotype caused
by loss of maternal PADI6. Loss of MATER also disrupts the
distribution of the endoplasmic reticulum and Ca2+ homeostasis
(Kim et al., 2014), indicating that the protein has functions
beyond ribosome storage. The similarity in the developmental
arrest phenotypes of NSN oocyte derived embryos with those
derived from PADI6 and MATER mutant oocytes is striking.
While most antral oocytes from wild-type controls exhibit an
SN morphology, 84% of oocytes from a MATER homozygous
hypomorphic mutant display a NSN phenotype, suggesting a
close connection between oocyte nucleoli, CPLs, and ribosome
activity with developmental competence (Monti et al., 2013).
However, more recent work suggests that cytoplasmic lattices are
not linked with the developmental arrest of two-cell embryos
(Longo et al., 2018).

Breakdown of mRNA Translation in
Reproductive Aging
Female mammals are born with a finite complement of oocytes.
Thus, the female reproductive system begins to age before most
other organs. In humans, female reproductive aging is marked by
a decline in egg quality, starting late in the third decade of life, and

progresses to complete loss of fertility by the time of menopause
(Broekmans et al., 2009). Advanced reproductive age is marked
by an increase of miscarriages and birth defects (Jones and Lane,
2013). These problems are most readily attributable to gametes:
the majority of maternal age effects normally observed in older
females are negated when eggs from young healthy donors are
used in IVF procedures (Check et al., 2011).

The quality of eggs depends on maternally produced
components including mRNAs, proteins, and organelles needed
for the completion of early embryogenesis. Human oocytes can
remain quiescent for over 40 years, and emerging evidence
indicates that older eggs experience a decline in their ability to
carry out mRNA translation (Duncan et al., 2017; Duncan and
Gerton, 2018). Similar observations have been made in a broad
range of species, including mice and Drosophila (Duncan et al.,
2017; Greenblatt and Spradling, 2018; Greenblatt et al., 2019).
Despite these observations across the animal kingdom, we still
do not understand the basis for this decline in mRNA translation.
Potential causes include, but are not limited to, reduced levels of
ribosomes, reduced levels of tRNAs, reduced levels of initiation
factors, and/or reduced levels of elongation factors. In addition,
several recent papers using worms and flies have shown protein
aggregation negatively impacts gamete production (Burn et al.,
2015; Bohnert and Kenyon, 2017).

Drosophila has emerged as a useful model for studying the
changes in mRNA translation that occur with age. Recent results
have shown that the quality of Drosophila eggs declines the longer
they remain stored and unfertilized within females (Greenblatt
and Spradling, 2018; Greenblatt et al., 2019), mimicking what
happens in other species such as mammals. Using Ribo-seq,
Greenblatt and Spradling (2018) found that stored Drosophila
eggs experience a decrease in mRNA translation. This decrease
is accompanied by a loss of meiotic spindle components and
a failure to support viable embryos, again consistent with
what has been described in mammals (Duncan et al., 2017;
Duncan and Gerton, 2018).

The underlying basis of the decline in mRNA translation in
stored eggs across species remains poorly characterized. One
possibility is that ribosome levels and function decline with
age. The half-life of a typical ribosome within somatic cells is
on the order of days. By contrast, eggs, which are stored in a
transcriptionally quiescent state and therefore do not produce
new rRNA, must maintain the same pool of ribosomes over
the course of weeks, months, years, or even decades, depending
on the species. Perhaps the ability of “old” ribosomes, which
have potentially participated in multiple rounds of translation,
to efficiently translate mRNAs of genes involved with regulating
the meiotic spindle declines with age. It will also be interesting
to evaluate whether the CPL breaks down over long periods of
storage in mammalian oocytes.

Common Themes and Unanswered
Questions
Germ cells across species rely on a complex network of mRNA
binding proteins to regulate translation in space and time.
These networks extend beyond Vasa, Nanos, and Pumilio, and
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our knowledge regarding how RNA binding proteins regulate
germ cell formation and function remains far from complete.
The comprehensive characterization of these networks and
understanding how they interact with each other and with germ
cell specific translation machinery, at a systems level, remains
critical work for the future. Perhaps more significantly, we are just
beginning to understand how RNA binding proteins that carry
intrinsically disordered regions govern germ granule formation.
Moreover, recent work has revealed spatial organization within
germ granules, adding to the complexity of the system (Trcek
et al., 2015, 2020). Understanding the biophysical properties of
these condensates, what governs their formation and dissolution,
how the movement of different RNAs and proteins in and
out of these structures is controlled, and how these granules
contribute to and depend on both cis- and trans regulation of
mRNA translation all represent important goals for the field in
the coming years. This work will have a broad impact across
multiple fields.

In addition, observations made across multiple species
indicate that germ cells regulate ribosome biogenesis in a stage
specific manner. Typically, robust positive correlations between
ribosome levels and mRNA translation levels exist in somatic
cells. However, this correlation does not always hold true in germ
cells, whether in the context of early germ cell differentiation
in Drosophila ovaries or quiescent vertebrate oocytes that store
an enormous number of ribosomes. Germ cells across species
often express germ cell specific paralogs of key translation
factors, including ribosomal proteins. Whether these paralogs
simply serve to increase overall levels of a general activity or
carry out a highly specialized function largely remains an open
question. For example, do ribosomes that carry germ cell specific
ribosome protein paralogs target specific messages for translation
or exhibit different behaviors such as different rates of translation
elongation or fidelity? Recent work in Drosophila has failed to

detect clear functional differences between RpS5A and RpS5B
paralogs. However, these experiments were carried out in a lab
setting and not out in the wild. Perhaps, functional differences
between general and germ cell enriched translation factors will
only become apparent under the appropriate environmental
conditions. Lastly, the mechanisms that control ribosome activity
and storage within the germline are also just coming into
focus. How are ribosomes stored for long periods of time? Are
there functional differences between maternal and zygotically
produced ribosomes? Can manipulating ribosome levels or
activity prolong reproductive aging? Further insights into these
areas will enhance our understanding of reproductive biology.
Thus, the study of mRNA translation within germ cells promises
to remain an important area of study for the foreseeable future.
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