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In one of the first examples of howmechanics can inform axonemal mechanism,Machin’s

study in the 1950s highlighted that observations of sperm motility cannot be explained

by molecular motors in the cell membrane, but would instead require motors distributed

along the flagellum. Ever since, mechanics and hydrodynamics have been recognised

as important in explaining the dynamics, regulation, and guidance of sperm. More

recently, the digitisation of sperm videomicroscopy, coupled with numerous modelling

and methodological advances, has been bringing forth a new era of scientific discovery

in this field. In this review, we survey these advances before highlighting the opportunities

that have been generated for both recent research and the development of further open

questions, in terms of the detailed characterisation of the sperm flagellum beat and its

mechanics, together with the associated impact on cell behaviour. In particular, diverse

examples are explored within this theme, ranging from how collective behaviours emerge

from individual cell responses, including how these responses are impacted by the local

microenvironment, to the integration of separate advances in the fields of flagellar analysis

and flagellar mechanics.
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1. OBSERVATION AND THEORY OF SPERM MOTILITY: AN
INTRODUCTION

The fundamental function of a spermatozoon is the fertilisation of an egg in spite of tremendous
challenges, whether that be the hostile environments and barriers of the female reproductive
tract for internal fertilisers, or harsh osmotic conditions and background fluid flows for external
fertilisers. Sufficient motility is thus a core functional necessity of the sperm cell and the attention of
extensive study. However, although sperm motility due to a beating flagellum was first observed by
van Leeuwenhoek in the 1670s (Lonergan, 2018), the internal structure of the sperm flagellum was
only revealed with the advent of electron microscopy, with studies beginning in the 1950s (Fawcett
and Porter, 1954; Afzelius, 1959). Even with this methodological step change, it was not at all clear
at the time how the complex flagellar structure underlay the mechanism that drives spermmotility.
Indeed, this significantly preceded the elucidation of the underlying mechanism of motility, via
sliding microtubule filaments driven by dynein molecular motors along the flagellum, which
was conclusively demonstrated by Summers and Gibbons (1971). Nonetheless, Machin (1958)’s
theoretical study demonstrated that the active processes driving the flagellum could not solely be
due to forcing in the cell membrane, reasoning that the wave amplitude of the elastic flagellum
would be too damped by drag, even in a low-viscosity fluid such as a water-based physiological
electrolyte. As such, Machin’s theoretical study was among the first to highlight the importance of
mechanics, and its quantification, in understanding how sperm swim.
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More generally, the need for a mechanical perspective on the
swimming of spermatozoa was recognised in the 1950s, with
initial application to sea urchin sperm based on microscopic
imaging (Gray and Hancock, 1955). These pioneer studies have
been extended and generalised in numerous directions over the
past six to seven decades, with recent refinement in particular
driven by improvements in the digital microscopy of the
flagellum beat and increased computational power, overcoming
many of the technological limitations of previous studies. In
particular, after briefly summarising classical computational
techniques and whole-cell microscopy, this review will survey
current advances in the methodologies that underpin flagellar
data analysis and theoretical flagellar mechanics, highlighting
the diverse opportunities for future research that are emerging
as a result.

1.1. Flagellar Mechanics
1.1.1. Classical Fluid Dynamics
The swimming of sperm is characterised by physical scales where
viscosity dominates inertia, the complete opposite to human
swimming (Taylor, 1951). Hence, whilst everyday intuition
does not apply to the microscale world of sperm swimming,
the underlying fluid mechanics is in fact much simpler in
this case. Indeed, at each instant in time, the fluid dynamics
can be determined solely from the instantaneous velocity of
the flagellum, independent of the history of the flagellar beat
pattern. It is also linear, which in this context means that,
ceteris paribus, doubling the frequency of flagellar beating will
also double the swimming speed. The existence of such simple
relations has enabled numerous rapid developments of Gray and
Hancock (1955)’s seminal method, known as resistive force theory
(Figure 1C), establishing quantitative links between the flagellar
beat pattern and both the sperm’s swimming speed and behaviour
(for example, Rikmenspoel, 1965; Brokaw, 1972b; Suarez et al.,
1991; Elgeti et al., 2010; Ishijima, 2011; Curtis et al., 2012). A
key component of this theory is the notion of anisotropic drag,
with approximately twice as much force being required to push
the flagellum in its normal direction compared to its tangential
direction (Gray and Hancock, 1955). This ultimately gives rise
to the propulsion of a swimming spermatozoon (Figure 1)
and can be observed by performing the simple experiment of
moving a thin stick through syrup parallel and perpendicular to
its length.

In particular, Gray and Hancock’s resistive force theory
framework assumes complete knowledge of the flagellar beat
pattern, which is then used to predict the cell behaviour,
rather than considering the fundamental question of how the
beat pattern forms. Nonetheless, it provides a fundamental
understanding of how beat patterns govern cell behaviour
and also the energetics of motility, the latter by enabling the
calculation of the mechanical energy and power required for
sperm swimming (Ishimoto et al., 2018; Gallagher et al., 2019).
It has a major advantage over other approaches due to its
remarkable simplicity, though it accordingly makes numerous
important assumptions. One pertinent example is that the
surrounding medium is Newtonian in nature, such as water or
a water-based physiological electrolyte, a common assumption

more generally that we will later discuss in detail. A second and
perhaps defining assumption, giving rise to the alternative name
local drag theory, is that of locality, in that the viscous forces
experienced at one point of the flagellum are taken to depend only
on the velocity of the flagellum relative to the background fluid at
that point. This, however, knowingly neglects the presence of, and
any interactions with, not only the other parts of the flagellum but
also the head of the sperm.

Hence, the level of accuracy in this resistive force theory is
highly contingent on context, in that it should not be expected
to retain accuracy for large cell bodies, highly curved flagella,
nor multiple flagella, for example. Further, one should not expect
much accuracy in its predictions of viscous drag close to the distal
flagellum nor when the cell is swimming close to surfaces, since
neither a finite length flagellum nor surface effects are included
in the basic framework. The latter caveat is particularly of note
for sperm microscopy, with imaging typically performed close to
a coverslip owing to the fact that sperm are less likely to swim
out of the focal plane in this setting, resultant of their well-
known surface accumulation behaviours near flat boundaries.
Despite this, high-accuracy resistive force theory for swimming
bull sperm next to a plane has been reported (Friedrich et al.,
2010), though with the notable caveat that a parameter within the
theory was fitted to obtain the accuracy, whereas all parameters
are theoretically fixed by physical principles in terms of the fluid
viscosity and flagellum shape.

Whilst resistive force theory can, and has been, generalised to
rigorously include surface effects (Brenner, 1962; Katz et al., 1975;
Walker et al., 2019a), the resulting theory can be cumbersome to
apply, losing the fundamental advantage of resistive force theory’s
simplicity that has allowed it to persist even to the present day.
In particular, when relating flagellar beating to cell behaviour,
there is a spectrum of classical methodologies to choose from
that improve upon the limited accuracy and flexibility of resistive
force theory, at least for Newtonian fluids (Gaffney et al.,
2011). Furthermore, in contrast to resistive force theory, these
improvements can also be used to determine the fluid flow
induced by the sperm flagellum beating (Figure 2A). The most
accurate and flexible is computational fluid dynamics, which is
limited in accuracy only by computational resource, machine
precision constraints, and the accuracy of the underlying physics,
such as the common and broadly appropriate assumption of
neglecting inertia on the grounds that it is subordinate to viscous
effects and induces only tiny errors. The most common of such
approaches for sperm motility are the boundary element methods
(Pozrikidis, 2002), which have been extensively exploited to study
sperm dynamics (for example Phanthien et al., 1987; Ramia
et al., 1993; Ishimoto and Gaffney, 2014; Ishimoto et al., 2016;
Walker et al., 2019b). However, such methodologies suffer from
a relatively complex formulation, in terms of both the underlying
mathematics and scientific computation.

An intermediate on the spectrum of accuracy, flexibility,
and simplicity for methodologies is slender-body theory, which
represents the flagellum via a curve of negligible cross-sectional
radius, as developed by Keller and Rubinow (1976), Johnson
(1980), and Tornberg and Shelley (2004), with numerous
applications to sperm (Higdon, 1979; Johnson and Brokaw, 1979;
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FIGURE 1 | (A) An example of a phase contrast image of a swimming bull sperm (upper), with the digital capture of its flagellum (lower). (B) The internal structure of

the flagellum, showing the dynein molecular motors. Their contraction induces a couple that acts to slide the microtubule doublets relative to each other, which,

combined with the fact the microtubule doublets are constrained at the flagellum-cell body junction, induces flagellar bending (Summers and Gibbons, 1971; Brokaw,

1972a). (C) Resistive force theory, which simply relates local flagellum velocity, in the tangential and normal directions, to the forces exerted on the surrounding fluid.

The thin upward blue arrow is the flagellum velocity, with the tangential and normal components represented by green and purple thin arrows, respectively. Noting that

twice as much force per unit length is required to move the flagellum through the fluid perpendicular to itself compared to tangentially, the upwards-moving flagellum

thus exerts a net force on the fluid in the horizontal direction to the right (large blue arrow); similarly for the thin downward blue arrow for the downwards flagellum

velocity. Hence, an equal and opposite drag force acts leftwards on the flagellum (leftward red arrow). If the sperm was stationary this would violate Newton’s second

law, since the inertial term (mass × acceleration) is negligible, entailing that the total force on the cell must be zero. Thus, the sperm must move to the left at a speed

that ensures that the additional drag from this motion (rightward red arrow) balances out the leftward force on the flagellum. Analogous reasoning can be used to find

the sperm’s vertical and angular velocities in terms of the flagellar beat pattern and, thus, the sperm trajectory can be constructed from knowledge of its beat pattern.

(D) An example CASA system and cell tracking. (A) is republished from Walker et al. (2020b) with permission, under the terms of the Creative Commons Attribution

License https://creativecommons.org/licenses/by/4.0/. (B) is republished with the permission of The Company of Biologists Ltd from Lindemann and Lesich (2010),

permission conveyed through the Copyright Clearance Center, Inc. (D) is reprinted from Amann and Waberski (2014), with permission from Elsevier.

FIGURE 2 | Fluid flow around a virtual spermatozoon, computed via (A) the boundary element method and (B) a coarse-grained model. (C) Flow induced by a point

dipole model. The red arrows show the directions of force applied to the fluid, whilst color corresponds to flow velocity. (D) Pairwise swimming of bull spermatozoa.

(A,B) reprinted from Walker et al. (2019b), Copyright (2019) by the American Physical Society. (D) republished with permission of the Company of Biologists Ltd from

Woolley et al. (2009); permission conveyed through the Copyright Clearance Centre.

Dresdner et al., 1980). Especially when coupled with the use
of boundary element methods for the cell body (Smith et al.,
2009a), this incurs only very small errors in predictions of the

viscous drag, except at the distal end of the flagellum, and can
readily accommodate a single flat surface. However, slender-body
theory does not readily generalise to multiple swimmers, more
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complex confining geometries, or a non-trivial rheology of the
surrounding fluid.

An interesting and useful generalisation of the boundary
element method that has emerged in the past 20 years is the
regularised boundary integral method (Cortez, 2001; Cortez et al.,
2005), which differs from the original approach in a subtle way.
In the original theory, in its most simple “single-layer” form, one
can interpret the solution as the flows and forces induced by a
collection of point forces in the fluid (Pozrikidis, 1992). True
point forces present numerous challenges for computational
algorithms, so the regularised boundary element method instead
considers a collection of regularised forces, where the force is
spread out in space, rather than acting at a single point, though
this spread is highly localised. This leads to substantially simpler
algorithms, generally at the cost of a limited but uncertain loss of
accuracy, which depends on the fine details of how the force is
spread out.

More generally, this framework has been extended to a
regularised boundary integral method with singularities other
than Stokeslets, with early examples developed by Ainley et al.
(2008) and Smith (2009). There is also a further generalisation for
sperm that we refer to as regularised slender-body theory, where
the singularities are placed on the flagellum centreline. Compared
to standard slender-body theory, this generalisation inherits ease
of implementation at the expense of an uncertain loss of accuracy,
and has also found substantial application in the modelling of
spermmotility (Gillies et al., 2009; Smith et al., 2009a; Cortez and
Nicholas, 2012).

1.1.2. Elastohydrodynamics and Emergent Beat

Patterns
As exemplified by Machin’s study, there is more to the theory
of sperm motility than simply how the flagellar beat pattern
dictates the cell movement and the flow of fluid around the
cell; there is the key question of how the flagellum beat pattern
is generated. This is not independent of the surrounding fluid,
with the viscous drag playing a fundamental role, as can be seen
from differences in beat pattern between sperm surrounded by
media of distinct viscosities (Suarez et al., 1991; Smith et al.,
2009b). This dependence is further emphasised by the change in
mechanical power output, which, for human sperm, increases by
a factor of four on comparing swimming in a watery medium
and a methylcellulose mucus analogue (Ishimoto et al., 2018),
with the regulation of the dynein forces thereby also being
modified by viscosity and, more generally, the resistance of
the surrounding fluid. This is additionally supported by the
observation that sperm flagella can synchronise when they are
sufficiently close within media that present a high viscous and
elastic resistance (Tung et al., 2017), demonstrating that the
forces induced by the medium can effect the timing of the
flagella beating.

Hence, the formation of the sperm beat pattern is
multifacted, with its study requiring detailed consideration
of the spermatazoan mechanical response to drag from the
surrounding fluid, its own passive flagellar restoring forces, and
the active forces and couples generated by its internal molecular
motors. In turn, this entails that such a programme of research

may be readily broken down into two distinct parts. The first
is the fluid-flagellum interaction problem: given known active
forces and torques, how does a flagellum beat and move in
a viscous fluid environment where, as usual, fluid inertia is
negligible? The second looks to query how to model the dynein
molecular motors (Figure 1B), the forces and torques they exert,
and their regulation, each of which may be coupled to the shape
of the flagellum.

The first aspect of this programme concerns modelling
the coupling of an elastic deforming filament to the flow of
a viscous fluid. This is known as the elastohydrodynamical
problem, predominantly considered in the inertia-free context
appropriate for spermatozoa, which, here, is an excellent
approximation. Most commonly, and up until relatively recently,
the elastohydrodynamical problem has been pursued using the
resistive force theory approximation (Rikmenspoel, 1971, 1978a;
Brokaw, 1972b; Lindemann, 1994a; Fu et al., 2008, 2009; Gadêlha
et al., 2010). Accordingly, this inherits all the inaccuracies,
limitations, and lack of broad applicability described for resistive
force theories, whilst moving beyond such local hydrodynamic
theory has been, and broadly remains, a methodological
challenge. One non-local approach has been the use of immersed
boundary methods (Dillon et al., 2007), though these are very
computationally demanding for elastic filaments, as opposed to
two-dimensional sheets, whilst a further approach has been to
use particle-based models with rod-and-spring representations
of the flagellum (Elgeti et al., 2010). Tornberg and Shelley
(2004) also demonstrated how slender-body techniques could
be utilised for the elastohydrodynamic problem for filaments,
though this has not been widely adopted in studying sperm
motility. In contrast, a technique that has been adopted in
this context takes advantage of regularised slender-body theory
(Olson et al., 2013; Simons et al., 2014, 2015). However, once
coupled with a sperm head and a confining surface, the inclusion
of elastohydrodynamics within this methodology is observed to
be very demanding in terms of computational resource (Ishimoto
and Gaffney, 2018a). Seeking to overcome this computational
hurdle, more-recent work has focussed on the development of
algorithms that can solve elastohydrodynamical problems with
much greater computational efficiency, as we shall touch upon
later in Section 2.

The second component of the above programme—modelling
molecular motor activity and its regulation—is a complex,
multiphysics, multiscale problem that is subject to multiple
competing theories and significant numbers of parameters that
are not independently measured, as well as substantial inter-
cell variation. There have been diverse studies by many authors
that focus on how to represent the dynein dynamics, with
examples including curvature control (Brokaw, 1975; Hines and
Blum, 1978), multistate molecular motor models (Murase et al.,
1989; Camalet and Jülicher, 2000; Dillon et al., 2007; Riedel-
Kruse and Hilfinger, 2007), and Lindemann’s geometric clutch
hypothesis (Lindemann, 1994a,b, 2002), together with the latter’s
mathematical reincarnation by Bayly and Wilson (2014, 2015).

All such dynein models have been limited by the use resistive
force theory, or the constraints of a 2D immersed boundary
method in the case of Dillon et al. (2007). However, whilst
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such models are unquestionably hindered by the difficulties
of the elastohydrodynamical problem, reviewing their scientific
development is beyond the scope of this current review, but is
lucidly detailed by Lindemann and Lesich (2010).

1.2. Computer-Assisted Sperm Analysis
Sperm microscopy presents difficulties in the high frequency of
the flagellar beat pattern relative to the sensitivity of the human
eye and the small diameter of the flagellum, which approaches
the conventional resolution of light optics (Gray, 1955). To
circumvent these challenges, early imaging modalities typically
relied on darkfield microscopy and, before the emergence of
sufficiently high frame rate cameras, stroboscopic illumination
(Gray, 1955; Rikmenspoel et al., 1960; Sleigh, 1962). This
technique was refined by Rikmenspoel to achieve cinemicroscopy
with flagella imaged at 200 frames per second by the mid
1960s (Rikmenspoel, 1965), progressing to 400 frames per
second Rikmenspoel (1978b) as well as being adopted by Sleigh,
amongst others, for studies of both cilia and flagella (Sleigh,
1974; Sanderson and Sleigh, 1981). Another popular approach
emerged with the Nobel prize winning revolution of phase-
contrast microscopy, which was developed in the 1930 and 1940s
(Zernike, 1955). It enables remarkable spatial resolution at the
cellular and sub-cellular scale and has been widely exploited for
the imaging of the slender flagella of sperm cells (for example
Katz et al., 1978; Overstreet et al., 1979; Figure 1A, upper).

However, the conversion between imaging capability on the
one hand and meaningful summary statistics of sperm motility
on the other required labour-intensive manual analysis of time
exposure photomicrographs (Overstreet et al., 1979) or frame-
by-frame by-hand analysis of cine films (Rikmenspoel, 1965,
1978b; Katz et al., 1978), as reviewed by Amann and Katz (2004).
The laborious nature of studying sperm with such methods
was alleviated with the emergence of Computer-Assisted Sperm
Analysis (CASA) and Computer-Assisted Sperm Motility Analysis
(CASA-Mot), Figure 1D, in the 1980s, as summarised by Davis
and Katz (1989). The technology finds extensive application in
theriogenology and andrology, as well as reproductive toxicology
and semen marketing for livestock breeding (Mortimer, 1997;
Mortimer et al., 1998; Amann and Waberski, 2014), though its
use in clinical diagnostics is far from fully accepted (Gallagher
et al., 2018).

Whilst CASA-Mot generates numerous and standardised
measures of sperm swimming, such as speeds, yaw, and
trajectory curvature (WHO, 2010), it almost exclusively focuses
on the spermatozoon head and its trajectory. However, with
the flagellum and its waveform being fundamental for sperm
motility, the beat pattern has been the subject of extensive
scientific enquiry since its discovery, though the details of
even the shapes formed during its complex and varied beating
patterns remain elusive. Indeed, since the advent of appropriate
microscopy techniques, the standard approach to quantifying
the shapes of beating flagella has been simple: trace out, by
hand, the visible flagellum in each captured frame of microscopy
data (Ishijima et al., 2002; Vernon and Woolley, 2002, 2004).
Understandably, the significant time and human investment
required to gain even moderate quantities of digitised beating
data in this way limited the scope and power of kinematic

analysis. Recent developments, which we later summarise, have
naturally striven to overcome this, with a sample automated
digitisation shown in Figure 1A.

Such modern methods promise to greatly increase the
quantity and fidelity of flagellar data available to the community.
Realising the full potential of this data, however, will itself
necessitate significant complimentary developments in the
mathematical modelling of motility and related theories. This
need spans many aspects of sperm motility analysis, from
the removal of the restriction to Newtonian fluid media to
overcoming the drawbacks of standard elastohydrodynamical
algorithms. Hence, in what follows, we will survey both a number
of recent efforts to address some of these challenges and the
opportunities for further and future development that these
methodological advances unveil.

2. THE EVOLVING METHODOLOGICAL
LANDSCAPE

2.1. Population-Level Modelling
2.1.1. Interacting Swimmers
It has long been known that sperm cells swim together,
as exemplified by the microscopy of Woolley et al. (2009),
reproduced in Figure 2D. In the middle of the last century,
the importance of hydrodynamic interactions between cells
was suggested by the now classical theoretical analysis of
Taylor (1951). Since then, innumerable studies have sought to
explore the role of hydrodynamics in the collective swimming
of spermatozoa, but the fine details of these interactions
remain uncovered. Indeed, the pairwise swimming of even
two individuals is not fully elucidated, a necessary precursor
to the accurate population-level modelling of swimming
sperm. Nevertheless, multiple approaches have been utilised to
investigate, with associated levels of approximation, the motion
of collections of spermatozoa.

The coarsest model of a single swimmer is the so-called
point-dipole model (Lauga, 2020), which, in essence, simplifies
the cell down to a single point, with the surrounding flow
being modelled by two opposing forces, as shown in Figure 2C.
This representation effectively averages the more complex time-
varying flow around a spermatozoon, shown in Figure 2A,
in doing so almost entirely neglecting the morphology of
the swimming cell. These models inherently afford great
simplicity and scalability, whilst providing an accurate picture
of the hydrodynamics of a swimmer when viewed from the
far field, the combination of which has resulted in their
widespread use. Despite their apparent crudeness, their utility
has been repeatedly highlighted, not least by the ability of these
simple representations to explain the attractive hydrodynamic
interactions between cells that swim in parallel to one another
(Lauga and Powers, 2009), though this does not guarantee the
emergence of experimentally noted pairwise swimming.

Arguably representing the opposite end of the modelling
spectrum, the computationally intensive boundary element
methods enable the complex spermatozoan shape to be
represented numerically (Pozrikidis, 2002), giving rise to
accurate quantifications of the fluid flow around spermatozoa
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and the accompanying hydrodynamic interactions. For example,
this methodology was used to produce the intricate instantaneous
flow field displayed in Figure 2A, significantly distinct in
character from the time-averaged flow field of Figure 2C. This
accurate approach was recently used to simulate the motion
of two identical model sperm with planar flagellar waveforms
(Walker et al., 2019b), which concluded that two cells swimming
side-by-side are attracted towards eventual collision, whilst those
that are above and below one another (with respect to the plane
of the flagellar beat) can swim stably at a certain distance apart.
This simulation study highlights the subtle and intricate details
of the hydrodynamic interactions between swimming sperm,
though such a high fidelity simulation cannot be reasonably
extended to population-level analyses due to the overwhelming
numerical cost.

An intermediate approach, seeking to balance accuracy
and efficiency, involves coarse graining the flow around a
spermatozoon, representing the dynamics of the fluid by a small
number of simple flow constituents (Ishimoto et al., 2017). The
details of this method are somewhat involved, though their
success in improving accuracy over the minimal point-dipole is
easily evidenced, as can be seen by comparing the flow fields of
the point-dipole (Figure 2C) and the coarse-grained approach
(Figure 2B). This methodology can be applied to sperm in
multiplicity (Ishimoto et al., 2018), enabling theoretical studies
of small populations of spermatozoa with heightened accuracy
and efficiency when compared with point-dipole and boundary
element methods, respectively.

A subtlety in the common use of each these methods,
however, is that they often rely on knowledge of the flagellar
beat. The extension of swimmer-swimmer interactions to an
elastohydrodynamic setting, where the shape of the flagellum
is influenced by its elastic properties as well as interactions
with the surrounding fluid, remains challenging. However,
the exploration of this coupling, has, and continues to be,
the subject of much active research, from early models
of swimming sheets (Fauci and McDonald, 1995) to more
recent theoretical analyses (Elfring and Lauga, 2009, 2011),
the latter works highlighting the enhancement of flagellar
synchronisation by elasticity. Elastohydrodynamic modelling
has since been extended to consider planar motions of flagella
(Llopis et al., 2013; Goldstein et al., 2016; Taketoshi et al.,
2020), with Taketoshi et al. (2020) extending the boundary
element method to include flagellar elasticity. This latter work
again explored pairwise dynamics, numerically concluding
that spermatozoa enjoy increased swimming speed when
beating in synchrony, in contrast to the similar but conditional
results of the prescribed-beat study of Walker et al. (2019b).
Further, three-dimensional studies have also been initiated
(Simons et al., 2015), though there remains significant scope
for the investigation of the effects of rheology, confinement,
multiplicity, and the details of the driving force behind the
spermatozoan beat.

2.1.2. Collective Behaviours
With spermatozoa often present in vast numbers (Zinaman
et al., 2000), it is unsurprising that a wide variety of

collective behaviours have been observed. Shown in Figure 3A,
a particularly remarkable example is the phenomenon of sperm
trains, collections of up to around ten cells that adhere to one
another at the head, which occur in some species of rodent
(Moore and Taggart, 1995; Moore et al., 2002). These are thought
to form due to the hook-like morphology of the spermatozoon
head in these organisms, whilst pairwise adhered swimming
has been reported to confer increased swimming speed over
lone cells in Monodelphis domestica, upwards of 20%. This is
in agreement with the elastohydrodynamic simulations of Cripe
et al. (2016), which considered the motion of two flagella adhered
at the base, though these results are significantly dependent on
parameters such as interflagellar distance and the angle between
the adhered flagella.

Further, in some monotreme, ants, and other species, it has
been observed that spermatozoa can form a large bundle-like
structure, as showcased in Figure 3B, containing more than
100 cells (Djakiew and Jones, 1983; Burnett and Heinze, 2014;
Pearcy et al., 2014). These sperm bundles, as well as sperm
trains, have also been studied from the point of view of
elastohydrodynamics (Yang et al., 2008, 2010; Schoeller et al.,
2020), with head-head adhesive interactions also having been
modelled by Fisher et al. (2014), the latter being noted to be
of significance for the competitive viability of such entrained
collections of spermatozoa. An additional modelling study
suggests the importance of spermatozoan head geometry in
the stability and motility of these aggregates (Pearce et al.,
2018), with hydrodynamic interactions more generally being
highly dependent on cellular morphology. It is important to
note, however, that the adhesion that gives rise to these clusters
does not appear necessary for their formation in general,
with Tung et al. (2017) having reported the aggregation of
spermatozoa in the absence of clear adhesion; rather, the
observed groupings were transient, with sperm transitioning
between clusters over time.

Other collective phenomenon include sperm vortices, swirling
structures that can arise due to asymmetric flagellar beating
of certain species near a substrate (Riedel et al., 2005; Yang
et al., 2014b), and sperm turbulence, which can be found in
dense suspensions both experimentally and theoretically (Creppy
et al., 2015, 2016; Schoeller and Keaveny, 2018). This structured
turbulence, pictured in Figure 3C, appears reminiscent of well
known bacterial turbulence (Wensink et al., 2012) and the
collective dynamics of active rods (Saintillan and Shelley, 2007),
though the statistical features of these phenomena differ slightly.

2.2. The Sperm Microenvironment
Further to the presence of nearby swimmers, more-fundamental
aspects of the spermatozoan microenvironment can impact
significantly on the motion and behaviours of the swimming cell.
For instance, the chemical components of the surrounding
environment also can affect the motility of sperm, in
particular inducing turning and chemotactic guidance, as
first demonstrated by Miller (1966) in hydroids. Studies of the
associated flagellar kinematics followed relatively shortly, with
the demonstration that chemotactic turning is concomitant with
asymmetric flagellar beat patterns (Miller and Brokaw, 1970),
again in hydroids. The functional significance of chemotaxis in
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FIGURE 3 | Varieties of sperm collective behaviors. (A) A multiswimmer sperm train and the hook-like morphology of some murine spermatozoa. (B) Crowded sperm

bundles of potentially hundreds of individual swimmers. (C) The emergence of sperm turbulence, found in dense suspensions. (A) is republished from Fisher et al.

(2014), with permission under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/. (B) is republished with the

permission of The Royal Society (U.K.) from Pearcy et al. (2014); permission conveyed through the Copyright Clearance Center, Inc. (C) is reprinted from Creppy et al.

(2015), Copyright (2019) by the American Physical Society.

terms of animal sperm guidance to the egg was first reported
in Ward et al. (1985)’s study of sea urchin, whilst the first
direct support of the underlying mechanism, in terms of the
modulation of intra-cellular calcium, was presented by Cook
et al. (1994). The time taken to begin to directly evidence the
underlying mechanism of sperm chemotaxis via its impact on
intracellular calcium emphasises the challenge in elucidating
the systems biology of sperm guidance (Kaupp et al., 2003), as
does the observation that this is still not fully resolved to date
(Priego-Espinosa et al., 2020).

Nonetheless, it is fully recognised that chemotaxis is a key

mechanism of sperm guidance (Eisenbach and Giojalas, 2006;
Friedrich and Jülicher, 2007; Cosson, 2015; Jikeli et al., 2015;
Hussain et al., 2016; Kaupp andAlvarez, 2016) that is of particular

relevance for external fertilisers, where chemoattractants are

released from the ovum, in turn inducing a modulation of the

sperm flagellar waveform that promotes guidance towards an

egg (Shiba et al., 2008). These chemoattractants can be advected

by the flow induced by the flagellum and the background
fluid, with the latter inducing a spread over a wide region,
potentially enabling long range signalling (Riffell and Zimmer,
2007; Zimmer and Riffell, 2011). For instance, fluid shear in
marine environments can induce a filamentous region with
a strong concentration of molecules extending from the egg
(Bell and Crimaldi, 2015). In turn, this can promote sperm cell
chemotaxis at larger distances from the egg, with theoretical
modelling showing that the moderate shear rate of coastal waters
is optimal for sperm-egg encounter rate (Lange and Friedrich,
2021). Nonetheless, the study of the impact of chemoattractants
and their transport on sperm behaviour presents numerous
significant challenges that are yet to be wholly addressed,
including even the measurement of chemoattractants in vivo.

Perhaps more fundamentally, the microenvironment can
impose mechanical constraints on swimming. In the remainder

of this section, we will consider two such factors: the geometrical
confinement experienced by the swimmer, such as in a
microdevice or the female reproductive tract, and the properties
of the fluid media in which it swims, with different media giving
rise to greatly distinct beating gaits.

2.2.1. Confinement
A typical, but not ubiquitous, limitation of optical microscopy is
that data is acquired in a single focal plane. As free-swimming
spermatozoa need not move in this same plane, the acquisition of
swimming data can be challenging. This has led to sperm being
imaged in confined environments, such as near a substrate or
coverslip, which serves to limit the swimmer motion out of the
focal plane, enabling swimmer behaviour to be captured in high
fidelity. This arises due to the tendency of sperm to swim near a
boundary, well-known to occur for glass substrates for over half a
century (Rothschild, 1963). Simple theoretical arguments, using
the aforementioned point-particle models, predict this behaviour,
with hydrodynamic interactions drawing the swimmer close to
the boundary Lauga (2020). However, thesemodels fail to capture
the fine but significant details of the hydrodynamic interactions
between the boundary and a spermatozoon, with the details of
the flagellar waveform known to have a crucial impact on the
realisation of accumulation behaviours via hydrodynamics alone
(Smith et al., 2009a; Ishimoto and Gaffney, 2014).

In addition to the potentially subtle effects of hydrodynamics,
there are further mechanical interactions between boundaries
and swimmers. Example such mechanisms are contact and
adhesive forces, which, much like in the case of swimmer-
swimmer interactions, have not been well explored in theoretical
studies, though numerical works have documented the interplay
between adhesion and hyperactivated beating patterns in
realising detachment from a surface (Curtis et al., 2012; Simons
et al., 2014; Ishimoto and Gaffney, 2016).
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A further, often experimentally undesirable impact of
boundary proximity is modification of the flagellar beat. A
drastic change in beating was reported by Woolley (2003),
with a three-dimensional helical motion of the flagellum being
suppressed to a two-dimensional planar gait due to interactions
of the spermatozoon with the boundary. This tendency of
boundaries serving to reduce non-planar components of beating
has also be affirmed by more recent observations (Su et al.,
2012; Bukatin et al., 2015; Nosrati et al., 2015). From a
theoretical perspective, elastohydrodynamic studies have sought
to investigate this phenomenon (Fauci and McDonald, 1995;
Elgeti et al., 2010; Huang et al., 2018; Ishimoto and Gaffney,
2018a), concluding that the flagellar waveform can be modified
by hydrodynamic interactions with boundaries, though further
experimental investigation is required in order to clarify the
effects of boundaries on the flagellar gait.

In applications, and certainly in vivo, the geometry of
confinement need not be as simple as a plane wall. In
microdevices, sperm often experience interactions with sharp
corners, which give rise to both scattering and accumulation
behaviours (Kantsler et al., 2013; Nosrati et al., 2016; Bukatin
et al., 2020). Elastohydrodynamic simulations of swimmers
near such corners have recently been conducted (Montenegro-
Johnson et al., 2015; Rode et al., 2019), though with assumed
two-dimensional flagellar waveforms. Experimentally, more
complex geometry has been examined, for example in sperm
sorters (Denissenko et al., 2012; Tung et al., 2014; Kamal
and Keaveny, 2018), though this complexity has inhibited
numerical exploration of the same intricate environments. For
instance, unexplored theoretically to the best of our knowledge,
remarkable in vivo experiments of Yang and Lu (2011) exemplify
the drastic effects that severe confinement can have on sperm
motility in Drosophila, whose long sperm are able to move
rapidly in the contorted female reproductive tract whilst being
practically immobile in free artificial media (Pitnick et al., 1995;
Lu, 2013).

2.2.2. Rheology
A key influence on the waveform exhibited by a spermatozoon
is the viscosity of the surrounding fluid, as the balance between
elastic and viscous forces changes. A prominent effect is on the
amplitude of the flagellar waveform, with high viscosity leading
to flagella that appear to bend more readily, which has also been
seen in theoretical studies (Fu et al., 2007; Gadêlha et al., 2010). A
similar effect occurs as the result of reduced stiffness towards the
distal end of the flagellum (Gadêlha and Gaffney, 2019).

Additionally, swimmer dynamics may also be drastically
altered by more complex fluid rheology (Smith et al., 2009b;
Hyakutake et al., 2019), such as the potentially elastic nature of
a fluid due to solvent molecules, broadly termed viscoelasticity,
in contrast to usual watery medium, termed a Newtonian fluid,
as discussed in the previous sections. A complex fluid that
cannot be described simply by the Newtonian model is called
a non-Newtonian fluid. One of the simplest models for a non-
Newtonian medium is a linear Maxwell fluid, which contains
a single parameter that encodes a relaxation time due to the
elastic property of the medium. In the linear Maxwell fluid

model, the rheology of the fluid does not directly influence the
hydrodynamic interactions (Fulford et al., 1998; Ishimoto et al.,
2017), though does impact on the forces felt by a swimming
cell (Ishimoto and Gaffney, 2016). More generally, swimming in
non-Newtonian media can result in non-trivial changes to the
speed of progression and the emergent waveforms, exemplified
in Figure 4. In turn, these potentially result in large departures
from normal Newtonian behaviour, both in individual and
collective dynamics (Li and Ardekani, 2016; Thomases and
Guy, 2017; Ishimoto and Gaffney, 2018b; Ishimoto et al., 2018),
with a particular example being the enhancement of coherent
multiswimmer structures in a non-Newtonian fluid (Tung et al.,
2017).

Ultimately, the investigation of swimming in complex
fluids requires significant advances in modelling methods and
numerical schemes, with non-Newtonian fluids being generally
more difficult to study. This affects not only simulation at scale,
necessary for investigating collective behaviours, but also the
study of individual swimmers, which remains challenging.

2.3. Computer-Assisted Beat-Pattern
Analysis
2.3.1. Digitising the Flagellar Beat
As summarised in section 1, the task of studying the flagellar
beat has classically been laborious, requiring vast amounts of
researcher time to trace flagellar shapes from microscopy. To
overcome this barrier to large-scale quantitative analysis, a host
of computer-assisted methods have been developed, reducing
or removing the need for researcher interaction with the raw
dataset. One early approach utilised a television camera and
video digitiser for the processing of rephotographed microscopy
images, with manual intervention for dust spots and film
scratches (Rikmenspoel and Isles, 1985). A further early approach
was that of Baba and Mogami (1985), which used pixel intensity
measurements to trace out a flagellum from an initially selected
basal point. Both approaches were a significant improvement
on previous manual techniques and allowed sufficient accuracy
for the quantification of flagellar curvature. In particular, the
associated software developed from Baba and Mogami (1985)’s
study, BohBohsoft, has persisted and enabled numerous studies
requiring flagellar digitisation, such as Wood et al. (2005) and
Shiba et al. (2008).

More recently, a wide range of refined semi-automatic
schemes, requiring further-reduced user input, and even fully
automatic unsupervised methods, have become available for
tracing out a slender flagellum-like object from videomicroscopy.
A selection of these approaches are tailored to the morphology
and characteristics of spermatozoa (Smith et al., 2009a; Yang
et al., 2014a; Hansen et al., 2018; Gallagher et al., 2019), whilst
others are somewhat more general (Hongsheng et al., 2009;
Goldstein et al., 2010; Xu et al., 2014; Xiao et al., 2016; Walker
et al., 2019c); an example output of one of the latter techniques
is reproduced in Figure 1A. The development of these software
tools and approaches, in combination with improvements in the
fidelity of videomicroscopy, has newly enabled studies at scale of
the details of flagellar beating in a variety of organisms, including
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FIGURE 4 | Different waveforms in different environments. (A) (a,b) Bull sperm cluster in a viscoelastic medium (Tung et al., 2017) and the flow of (c) low and (d) high

viscous medium around human sperm cells (Ishimoto and Gaffney, 2018b). (B) Different waveforms seen in bull sperm cells in different rheological media (Hyakutake

et al., 2019) (A) (a,b) republished from the works of Tung et al. (2017) and (A) (c,d) republished from the works of Ishimoto and Gaffney (2018b), all with permission

under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/. (B) reprinted from Hyakutake et al. (2019) with permission

from Elsevier.

bovine and human spermatozoa (Gallagher et al., 2019; Walker
et al., 2019d, 2020b), each analysing hundreds of individual
swimmers, with the potential for significant future application
and extension.

2.3.2. Summary Statistics
This marked increase in the availability of flagellar beating data,
which does not form part of a traditional CASA or CASA-Mot
frameworks, motivates the development of a new generation
of semen analysis techniques, as noted in the thorough review
of Gallagher et al. (2018). Recent methods have sought to
incorporate simple summary measures of the flagellar beat,
augmenting traditional CASA and CASA-Mot statistics with
quantities such as wavelength and beat frequency (Gallagher
et al., 2019; Walker et al., 2019d). However, whilst the simplicity
of these descriptors is attractive and they can be readily
computed, they each implicitly assume particular characteristics
of the flagellar beat, which, as we will see, need not hold
in practice.

The first and perhaps most subtle assumption is well
illustrated by the notion of wavelength, and concerns the problem
of definition. To illustrate this, consider the waving motion of a
simple travelling sine wave, familiarly written as y = sin(kx − t)
for position x and time t. This has a characteristic and well
defined wavelength, here given via the quantity k. Whilst similar
such sinusoidal patterns have been classically used to caricature
the flagellar beat, the true beating motion of a sperm cell is

readily observed to not be quite so simple, as can be seen in
Figure 4B. Further focussing on the upper panel of Figure 4B,
it is clear that the concept of wavelength lacks unambiguous
meaning in this context, with there being no familiar repeating
shape as we move along the flagellum, as would be the case
for a simple sine wave. As such, measurements, interpretation,
and related discussions of wavelength should be treated with
great care, with one study’s notion of wavelength not necessarily
synonymous with that defined in another analysis. Analogously,
this carries over to similarly derived flagellum-wide quantities,
such as beat amplitude.

The second commonplace assumption is somewhat more
intuitive, and highlights a relatively unexplored aspect of flagellar
beating: the evolution of beating over time. For example, though
we might report the frequency of the flagellar beat as a single
value, the actual frequency may be evolving with time. Of
particular note, the recent study of Achikanu et al. (2019) tracked
sperm motion over a considerable time period, identifying
sustained behavioural switching that is more significant than
we have hinted at here, highlighting the significance of
careful temporal considerations of the spermatozoan beat and
its descriptors.

2.3.3. Whole-Flagellum Analysis
Whilst even refined and well defined summary statistics provide
a readily digestible characterisation of a flagellar waveform,
they necessarily omit much of the detailed beat pattern data
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available. Common techniques such as principal component
analysis (PCA) can encode such complex waveform information
in a number of coefficients and so-called modes, though at
the expense of easy interpretation and simple methods of
comparison between swimmers.

Two recent works, however, have sought to address the
second of these two drawbacks, applying PCA not just to
individual swimmers, but to whole cohorts of swimming cells
in order to capture population-level beating information. One,
that of Walker et al. (2020b), computed time-dependent PCA
coefficients and applied standard hypothesis testing techniques
to these quantitative measures, enabling statistical comparison
between samples of bovine spermatozoa via the details of
their beating, coining the term computer-assisted beat-pattern
analysis (CABA).

Complementary to this, Guasto et al. (2020) utilised the
PCA modes derived for the sperm of different species, from
marine invertebrates to human, to compare the shape of
the spermatozoan beat, which led to the suggestion of the
importance of selective environmental pressure on shaping
spermatozoanmotility.With thesemethodological developments
being so recent, there remains significant scope for the
broader application of data-rich quantitative approaches to
spermatozoan motility, from the statistical comparison of
samples to querying flagellar form and function via computer-
assisted beat-pattern analysis.

2.4. Elastohydrodynamic Advances
The computational simulation of flagellar elasticity and
hydrodynamics is well-known to be a prohibitively difficult task
(du Roure et al., 2019), requiring hours on large computing
resources to perform even a single simulation (Ishimoto
and Gaffney, 2018a). Recently, in an attempt to remove this
obstacle to elastohydrodynamics, a new coarse-grained approach
was proposed by Moreau et al. (2018). Indeed, this method
successfully reduced computation times in 2D simulations
down to seconds on laptop computers, improving efficiency by
multiple orders of magnitude. The key advance of this framework
was to computationally represent the elastic flagellum as a series
of connected straight segments and then sum up the drag forces
and elastic moments on each straight piece. This led to a simple
and flexible set-up that could be rapidly simulated and readily
extended to a variety of contexts.

Such was the increase in simulation speed and utility of
the approach, this methodology has already been extended by
multiple groups to include improved hydrodynamics (Hall-
McNair et al., 2019; Walker et al., 2019a) and utilised for
exploratory study (Neal et al., 2020). In the latter, tailored to
spermatozoa, Neal et al. (2020) leveraged the computational
efficiency afforded by this methodological advance to explore
the effects of multiple parameters on the swimming efficiency of
spermatozoa, concluding in particular that an inactive flagellar
endpiece can increase the efficiency of swimming. Recent work
has also lifted this approach into 3D (Walker et al., 2020a),
which again realised orders of magnitude improvements in
computational speed over contemporary 3D methodologies
(Olson et al., 2013; Ishimoto and Gaffney, 2018a; Carichino
and Olson, 2019). The full extent of these advances is yet to

be realised, with the potential to greatly expand the scope of
both theoretical and data-driven research into the dynamics
of the flagellum.

3. NEXT-GENERATION INVESTIGATION

3.1. Refining Mathematical Models
3.1.1. Subcellular Investigation
Advances in capability have naturally afforded advances in
scope. For instance, the vast majority of existing theoretical
research into spermatozoan motility incorporates known
flagellar waveforms into computational models, deducing
quantities such a swimming speed or efficiency. However, with
elastohydrodynamic methods becoming more popular and, as
noted, significantly more efficient, there is novel opportunity to
move past kinematics, considering instead the molecular motor
dynamics internal to the flagellum. In particular, the prospect
now exists for much more extensive exploratory computational
studies of this subcellular process, for which many hypotheses
exists but none have been universally validated or agreed upon
(Hines and Blum, 1978; Lindemann, 1994a; Riedel-Kruse and
Hilfinger, 2007). There is also broad scope for the further
investigation of the impacts of calcium dynamics on flagellar
waveforms, having been recently considered theoretically (Olson,
2013; Carichino and Olson, 2019) and suggested to significantly
modulate, or even disable, the flagellar beat (Corkidi et al., 2017;
Sanchez-Cardenas et al., 2018).

However, of particular pertinence to regulatory models
but pervasive more generally, the biologically realistic
parameterisation of flagellar models represents an ongoing
challenge for the community, with key measurements lacking
for many of the relevant mechanical parameters. Indeed, whilst
efforts have identified some material properties of flagella,
such as bending and shearing resistance in some organisms
(Minoura et al., 1999; Pelle et al., 2009), measurements of many
quantities, such as torsional resistance, lateral compressibility,
and lateral extensibility, are absent. Due to this lack of
appropriate data, theoretical studies are commonly limited to
simply estimating material parameters, such as is the case in
the aforementioned work of Bayly and Wilson (2014), to Table
4 of which we direct the reader in order to illustrate the scale
and scope of the absence of known material quantities, even
in the context of Bayly and Wilson’s idealised flagellar model.
Hence, the detailed measurement of material properties of
flagella, guided by and addressing the pressing needs of the
theoretical community, represents a pertinent goal for future
experimental investigation. Complimentary to this, and likely
best realised via the strengthening of collaborative links between
experimental and theoretical disciplines, additional efforts are
warranted to make appropriate use of available measurements
in mathematical models, with studies having often neglected
realistic parameterisation, and therefore biologically relevant
enquiry, in favour of more abstract exploration.

3.1.2. External Influences
In addition to the detailed consideration of internal factors,
future theoretical studies may realise high-fidelity coupling of
external influences to the flagellar beat, such as fluid flows, which
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are the root of rheotaxis in spermatozoa, and chemoattractant-
induced taxis (Miki and Clapham, 2013; Kantsler et al.,
2014; Ishimoto and Gaffney, 2015; Hussain et al., 2016).
For example, such investigations provide the opportunity to
couple the aforementioned improvements in computational
elastohydrodynamics and our understanding of molecular motor
regulation to study the emergence of asymmetric beat patterns
and sperm turning due to guidance cues (Alvarez et al., 2014;
Bukatin et al., 2015), including the potential role of flagellar
buckling (Gadêlha et al., 2010; Bukatin et al., 2015; Ishimoto and
Gaffney, 2018a; Kumar et al., 2019).

Other aspects of the spermatozoan microenvironment also
present notable challenges to the mathematical modelling
community. For instance, theoretical study that accurately
reflects the complex rheology of the female reproductive
tract, which is potentially non-Newtonian and displays
elastic properties, remains a particularly significant and
unresolved challenge for the modelling community, with much
contemporary research instead being of more direct relevance
to tightly controlled in vitro systems. Any advances in this area
would also be of much wider pertinence, with rheology being
a major confounding factor in the study of cilia and flagella in
many contexts, such as those involved in mucociliary clearance
and development.

A further complicating factor of in vivo systems is
their geometry and form, which present a theoretical and
computational barrier to mathematical analysis. Whilst exact
methodologies are available for studying the fluid flow in the
simplest geometries, such as half-spaces or basic channels,
similar such tools do not exist for the intricate morphologies
found in biology. Whilst recent methods for numerical
simulation seek to overcome this problem, such as the mesh-free
approach of Gallagher and Smith (2018), accurate and detailed
consideration of the shape of pertinent fluid environments
remains lacking, requiring marked advances in the field of fluid
mechanics as well as coupling to high-resolution imaging and
rheological measurements.

3.2. Flagellar Analysis in 3D
Much of the flagellar analysis from videomicroscopy that we
have described has been relevant to the most common output of
such videomicroscopy: two-dimensional images. However, with
the beating of spermatozoa not always being planar, a natural
extension of these approaches is to three-dimensional flagellar
motion. Indeed, three-dimensional beating data of high quality
is becoming increasingly available in general (Su et al., 2013;
Wilson et al., 2013; Silva-Villalobos et al., 2014; Hernandez-
Herrera et al., 2018; Walker and Wheeler, 2019; Hansen et al.,
2020), with holographic imaging having recently been used to
study spermatozoa (Daloglu and Ozcan, 2017; Daloglu et al.,
2018; Muschol et al., 2018). We showcase sample 3D imaging
from Gadêlha et al. (2020) in Figure 5, though we note that the
work of Gadêlha et al. (2020) has recently been retracted for
reasons unrelated to the imaging reproduced here (Shilatifard
and Yeagle, 2020; Gadêlha et al., 2021). With this increase in the
availability of high-fidelity data, which we only expect to further
develop in the coming years, the complimentary approaches of

FIGURE 5 | Captured data of the 3D beating of human spermatozoa near a

coverslip, with different timepoints shown in different colours. Axes have units

of micrometres and a projection of the mid-flagellar point is shown in red.

Figure reproduced from the work of Gadêlha and Gaffney (2019), Gadêlha

et al. (2020); Shilatifard and Yeagle (2020), with permission under the terms of

the Creative Commons Attribution License http://creativecommons.org/

licenses/by/4.0/.

CASA and CABA can be readily extended to motion in three
dimensions, broadening the scope of quantitative sperm analysis.
This promises to enable new insights via kinematic evaluation
of the flagellar beat in unrivalled detail, along with providing a
means for further intersample and interspecies comparison that
is applicable to general, non-planar motion. That being said,
whilst the extension to three dimensions may represent the next
generation of spermatozoan investigation, there also remains
significant and rich scope for a host of statistical evaluation
and analysis of even two-dimensional beating data, only recently
available in appropriate quantities.

3.3. Towards Denser Populations
To date, the detailed study of flagellar kinematics has largely been
restricted to lone individuals, with confounding factors present in
both the imaging and analysis of multiple flagellated swimmers.
This even carries over to theoretical study, where few works have
considered multiswimmer settings in high fidelity (Walker et al.,
2019b; Taketoshi et al., 2020). Indeed, only small numbers of
swimmers, as few as two, are able to be considered without severe
simplification. With crowded microenvironments being the
norm formany spermatozoa, the next generation of experimental
and theoretical analyses should seek to extend our multiswimmer
understanding, from interrogating the details of polyswimmer
synchrony, as observed by Woolley et al. (2009), to complex
population-level interactions. The significant noted advances in
both imaging techniques and digital processing will facilitate
such developments, with the potential to generate unmatched
quantities of data to drive investigative and exploratory study.

Another avenue for promising development is that of coarse-
grained dynamics. Whilst the details of cellular geometry and
flagellar beating can lead to distinct behaviours at the level of
the individual swimmer, it is unclear how such effects scale up
to populations. The approach of coarse graining, exemplified in
Figure 2B for fluid flow but potentially applicable to other aspects
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of the problem, such as cell-cell interactions, may represent
a viable method for capturing individual effects and thereby
scaling up recent computational works, translating microscale
mechanisms to complex multiswimmer environments.

3.4. Integrated Approaches
When considered in isolation, recent advances in imaging
techniques and mathematical methods have each opened up
new directions for exploring the world of a spermatozoon.
Perhaps their most promising contribution, however, lies in
their potential for synergy. In particular, the combination of
high fidelity 3D imaging with modern hydrodynamic methods
that afford efficiency, accuracy, and practical simplicity promises
to lead to data-driven computational mechanical analyses in
three dimensions, with similar explorations so far limited to two
dimensions (Friedrich et al., 2010). In turn, this will enable the
accurate and ready quantification of the forces and moments
exerted on a beating flagellum, with the potential to further our
understanding of the nature of active beating in spermatozoa.

Further, the advent of fast methods for the simulation
of flagellar elastohydrodynamics brings with it the newfound
possibility of realising parameter estimation in the context
of swimming spermatozoa. In essence, parameter estimation
techniques typically perform numerous simulations of a
mathematical model, the results of which are then compared
against data to provide refined estimates of model parameters
and enable sophisticated model selection. Such methods can
be impractical when the costs of simulation are high, much
as they have previously been for flagellar elastohydrodynamics.
Hence, with individual flagellar simulations having been sped
up from many hours to only a few seconds (Moreau et al.,
2018; Hall-McNair et al., 2019; Walker et al., 2019a, 2020a)
or being performed in parallel (Larson et al., 2021), parameter
estimation methods may now be readily applied in combination
with datasets of spermatozoan beating, enabling the systematic
calibration and assessment of computational models of the
flagellum. In turn, this has the potential to be a rich new
direction for quantitative analysis, informing biological enquiry
and further refining the successful model-experiment cycle of
spermatozoon study.

4. SUMMARY

Our understanding of sperm motility mechanics has evolved
dramatically since the inaugural studies of the 1950s, with
extensive developments in the microscopy and data analysis of
sperm swimming, together with advances in the theory and
associated computational tools for flagellar beating in Newtonian
fluids, as well as an elucidation of the underlying molecular
motor mechanisms.

In the first part of this review, we introduced the mechanical
interaction between the flagellum and the fluid, in particular
the difference in the magnitude of the drag force perpendicular
and parallel to the movement of the flagellum, which ultimately
drives sperm swimming. More generally, we reviewed the
spectrum of theories for flagellar-fluid mechanical interactions
in Newtonian fluids, ranging from the simplest resistive force
theory to the highly accurate but computationally expensive
boundary element methods. We also surveyed the recent
extensive gains in incorporating flagellar elastic responses
within this framework, generating elastohydrodynamic models.
In turn, these developments raise numerous opportunities
for analysing the formation of the flagellar beat pattern and
how it can be modulated by diverse features of the sperm
microenvironment, such as background flows, chemoattractants,
and confining geometries. The restriction to Newtonian media
throughout the above also serves to emphasise the extensive
need for developing the mechanics of sperm swimming in
rheological fluids.

Concomitant to such theoretical developments, we have
also highlighted the extensive progress that has been made
in the digital imaging, video processing, and data analysis of
the flagellar waveform. These advances have begun to allow
population level data about the flagellum to be extracted
from videomicroscopy, as well as high-resolution temporal and
3D spatial information. We have detailed how this presents
many opportunities, for instance in using flagellar data for
hypothesis testing at population levels, as well as raising a
fundamental challenge for the field in parameter estimation
and in integrating the many recent and diverse advances, both
theoretical and observational, to further our understanding of
the sperm flagellum. In summary, our survey has highlighted
that the past 70 years of astonishing progress in the mechanics
of sperm motility still leaves an immature field, with numerous
opportunities and challenges remaining at the interfaces of
appliedmathematics, physics, and sperm cell and systems biology
for the next 70 years.
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