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Gastric cancer (GC) is one of the most common causes of cancer-related deaths in the
world. This cancer has been regarded as a biological and genetically heterogeneous
disease with a poorly understood carcinogenesis at the molecular level. Thousands of
biomarkers and susceptible loci have been explored via experimental and computational
methods, but their effects on disease outcome are still unknown. Genome-wide
association studies (GWAS) have identified multiple susceptible loci for GC, but due
to the linkage disequilibrium (LD), single-nucleotide polymorphisms (SNPs) may fall
within the non-coding region and exert their biological function by modulating the gene
expression level. In this study, we collected 1,091 cases and 410,350 controls from
the GWAS catalog database. Integrating with gene expression level data obtained
from stomach tissue, we conducted a machine learning-based method to predict GC-
susceptible genes. As a result, we identified 787 novel susceptible genes related to GC,
which will provide new insight into the genetic and biological basis for the mechanism
and pathology of GC development.
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INTRODUCTION

Gastric cancer (GC) is one of the most common malignant dangerous neoplasms and fatal diseases
in the world. It has been reported that there were approximately one million newly diagnosed
gastric carcinoma cases, which caused 780,000 deaths in 2018 (Bray et al.,, 2018). It is notable
that nearly half of the GC incidences occurred in the Asian region, which partly resulted from the
diverse hereditary background, behavioral factors, and the spread of and infection by Helicobacter
pylori (Chen et al., 2016; Zheng et al., 2017). A lot of work has been done to improve the diagnosis
and therapy of GC. However, the survival rate of GC patients remains poor at approximately 30%
in the recent 5 years (DeSantis et al., 2014). Therefore, many efforts have been made to discover
new biomarkers to help in staging and in prognosis of the tumor diagnosis, which could help in
improving early diagnosis and prognostic prediction of GC (Ludwig and Weinstein, 2005).
Disease gene prediction is a task of identifying the significant susceptible genes related
to diseases. There have been a variety of approaches proposed, such as annotation-based
approaches, network-based approaches, and machine learning-based approaches. Annotation-
based approaches, such as prioritization of candidate genes using statistics (POCUS) (Turner et al.,
2003), SUSPECTS (Adie et al., 2006), Endeavor (Aerts et al., 2006), and Transcriptome Ontology
Pathway PubMed based prioritization of Genes (ToppGene) (Chen et al., 2007), are proposed based
on annotating the genes with respect to biological structures or functions then comparing the
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annotations with known disease causal genes. However, these
methods have a limitation of failing to capture the indirect
relationships between the genes that may have common features
or functions but are still not annotated. Network-based methods
are proposed to overcome this by utilizing the large scale of
interactome data between cellular molecules covering most of the
genome and proteome (Wang et al., 2011).

Machine learning techniques have been applied to solve
various biomedical problems (Lu and Zhao, 2019; Zhao et al,,
2020a,b), such as pattern recognition (Barral et al., 2012; Cui
et al., 2020), classification (Basford et al., 2013; Zhao et al,
2021a), prediction of drug target (Ding et al., 2014; Tianyi et al,,
2020), and genome annotation (Yip et al., 2013). Thus, there is
no doubt that machine learning methods have been applied in
disease-associated genes prediction (Calvo et al., 2006; Xu and
Li, 2006). In recent years, emerging evidences have illustrated the
essential role of single-nucleotide polymorphisms (SNPs) in GC
development and progression. Since genome-wide association
studies (GWAS) are a widely known powerful approach to
explore complex susceptible variants of diseases, many studies
have reported a number of susceptibility loci associated with GC
through GWAS analysis; however, they can only explain a small
fraction of GC heritability (Wang et al., 2017; Park et al., 2019).
Moreover, most disease-related SNPs identified by GWAS fall
into intergenic or non-coding regions, which may influence the
process of pathogenesis by modulating the expression level of
target genes (Maurano et al., 2012). However, genetic variants
are still powerful and high-quality biomarkers for screening GC
susceptibility (Mocellin et al., 2015).

In addition, it has been proven that gene expression is
significantly related to diseases (Zhao et al., 2021b). Expression
quantitative trait locus (eQTL) analysis has been regarded as a
powerful approach to provide prior weights for the statistical
analysis of new causal SNP identification and prioritize SNPs or
genes for further validation (Li et al., 2013b). Due to the theory
of linkage disequilibrium (LD), which is reflected by the non-
random association of alleles of different loci, it can be inferred
that SNPs can regulate the pathologies of diseases by modulating
the expression level of target genes. However, most studies select
the representative SNPs by their closest located gene, which may
inevitably obscure the genetic effect between that candidate gene
and the trait. Thus, integrating GWAS data and eQTL data can
help us to detect the genetic mechanism of complex disease.
The Genotype-Tissue Expression (GTEx) project has provided
the largest comprehensive public database of whole-genome and
transcriptome sequencing data to help better understand the
effects and molecular mechanism of function variations.

Considering the fact that regulatory causal SNPs may exert
their function by affecting their target gene expression, we
collected 1,091 GC cases and 410,350 controls from GWAS
catalog database and eQTL summary data from stomach tissues
in the GTEx database (Rashkin et al., 2020). We then extracted
gene features from both GWAS summary data and eQTL data
and integrated them as a 10D vector to represent gene feature,
then we performed several machine learning methods to assess
the classification performance of the models and selected random
forest (RF) classifier based on its excellent performance. We

identified 787 novel susceptible genes related to GC which may
help provide new insights into the mechanism of GC.

MATERIALS AND METHODS

GC GWAS Datasets

In this study, we obtained a GC GWAS dataset consisting of
1,091 cases and 410,350 controls from the UK Biobank (Rashkin
et al., 2020). All the subjects were genotyped with Affymetrix
Genome-Wide Human SNP Array. Eleven significant susceptible
SNPs were identified related to GC and esophageal carcinoma
with p-value < 1 x 107°. However, they identified 9,986,610
susceptible loci associated with stomach and esophageal cancer
in total, which is utilized in our study to be further identified.

Tissue eQTL Dataset

Expression level-associated SNPs in stomach tissues were
obtained from the GTEx v8 database. Genotyping was performed
utilizing INlumina HumanOmni 5 and 2.5 M. And transcriptome
dataset was generated by using Affymetrix Expression Array or
Mumina TruSeq RNA sequencing. As a result, 24,291 susceptible
loci were identified based on gene expression level.

GC-Related Genes and Candidate Genes

After obtaining both omics summary data, we obtained 5,632
gastric-related genes from DisGeNET database, which are
considered as positive genes for machine learning methods
(Bauer-Mehren et al., 2010). Then we downloaded the human
gene networks from HumanNet v2.0, which was a database
of human gene networks illustrating gene-gene interactions
(Hwang et al., 2018). After filtering the genes related to the GC
causal genes obtained from DisGeNET, we obtained 3,227 genes
whose correlation scores were <1, which indicate that they are
negative genes, and the rest of the genes are regarded candidate
genes which may have association with GC.

Feature Extraction

We first obtained GWAS dataset and eQTL dataset associated
with GC from the GWAS catalog database and the GTEx
database, which represent the gene feature from the aspect
of phenotype and transcription, respectively. Since the LD
correction structure means that the majority of the identified
variants associated with the traits frequently point to the regions
where many genes are located, it is extremely difficult to
prioritize among these susceptible genes to identify the most
functionally relevant causal genes merely based on GWAS data.
It is widely known that SNPs can exert their regulation function
by modulating the expression level of target genes, which may
further have a significant influence on the phenotype. Many
studies have applied analytical approaches to integrate eQTL
and GWAS data to detect the causal genes associations with
complex traits (Giambartolomei et al., 2014; Gusev et al., 2016).
However, to our knowledge, there is no method utilizing machine
learning classifiers to prioritize susceptible genes of GC based on
integrated GWAS and eQTL summary data.
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After obtaining both omics summary data, we obtained
gastric-related genes from DisGeNET database (Pifiero et al.,
2016). We first performed a data preprocessing process to
transform the names of genes downloaded from different
databases. We used an R package to obtain the detailed
information of the genes, such as chromosome, start position,
and end position information of these genes. After mapping
these genes to the GWAS and eQTL data based on the location
information, we finally got 5,633 genes regarded as a training
set. According to the mapping information, we kept the genes
with at least one susceptible loci identified by GWAS analysis.
After prioritizing the SNPs by their p-value obtained by GWAS
analysis, we used the p-value of the top five SNPs related to
each gene as a 5D phenotype-based feature vector. For those
genes with less than five associated SNPs, the feature vector is
filtered with 1, which means the gene has no correlation with GC.
Thus, the phenotype-based feature vector of G; can be denoted as
follows:

G = [P;, P2, P3, PA P ] 1)
After obtaining the top five SNPs associated with these genes,
these SNPs can be mapped to the stomach tissue eQTL data.
Based on the same method, we use the p-value of those
SNPs successfully mapped in eQTL data to represent a 5D
transcriptome-based feature vector of each gene. For those SNPs
not mapped, we all use 1 to fill up the feature vector. Thus, the
transcriptome-based feature vector can be denoted as follows:

Gl = [P, P2, P}, P P} | @)
Thus, each gene feature can be represented as a 10D feature vector
based on the integrated omics data.

Gene Prediction Using Random Forest

Classifier
To date, the binary classification methods have been widely
applied in disease causal gene prediction problems, such as naive

Bayesian classifier (NB), support vector machine (SVM), RE
and some deep learning methods such as convolutional neural
network (CNN), graph neural network (GCN), and deep neural
network (DNN). In this work, we used a RF classifier to predict
GC causal genes. In order to evaluate the RF classifier, we
performed a 10-fold cross-validation on the training set. The
main workflow is shown in Figure 1. First, the 5,633 genes are
randomly divided into 10 groups; 9 of them were chosen to
be training samples, and the last one is the testing set for a
total of 10 training iterations. Grid searches were performed to
obtain the best performance of the parameters of the RF classifier.
The final statistical results are averaged after 10 iterations. The
receiver operating characteristic (ROC) curve and the area under
the curve (AUC) are utilized to assess the performance of
the classifier. The ROC curve is created by plotting the true
positive rate (TPR) against the false positive rate (FPR) at various
threshold settings to illustrate the diagnostic ability of a binary
classifier system. This measure is related to the evaluation criteria
TPR, which can be denoted as follows:

3)

where TP means true positive conditions, and FN means the false
negative conditions. TPR is also known as sensitivity or recall.
Another measurement is true negative rate (TNR), which is also
known as specificity or selectivity; TNR can be denoted as follows:

TN

TNR = —+——
TN + FP

(4)
Another measurement is FPR, which can be denoted as follows:

FPR = = 1-TNR (5)

P
FP+ TN
where FP indicates the false positive results and TN indicates the
true negative results. AUC means the AUC. The AUC of each
iteration is shown in Table 1. After the model is trained, we use
the model to predict the candidate genes.
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FIGURE 1 | Workflow of gastric cancer-related genes prediction.
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TABLE 1 | Area under the curve of 10-fold cross-validation.

TABLE 2 | Predicted susceptible genes by random forest.

AUC  Symbol Ensembl ID Symbol Ensembl ID

1 0.881  ANLN ENSG00000011426 CD38 ENSG00000004468
2 0.91 TYROBP ENSG00000011600 PDK4 ENSG00000004799
3 0.894 MATR3 ENSG00000015479 RARB ENSG00000077092
4 0.886  NCDN ENSG00000020129 ITGA2B ENSG00000005961
5 0.878 TYMP ENSG00000025708 CRLFA1 ENSG00000006016
6 0.872  ALG1 ENSG0000003301 1 NRAS ENSG00000213281
7 0.896  KRAS ENSG00000133703 GTF2IRD1 ENSG00000006704
8 0.892  CDH1 ENSG00000039068 CACNA2D2 ENSG00000007402
9 0.902  BEST2 ENSG00000039987 DNAJC11 ENSG00000007923
10 0.909  TNFRSF17 ENSG00000048462 RPS20 ENSG00000008988
Average 0.892  ADAMTS6 ENSG00000049192 GIPR ENSG00000010310

PLAUR ENSG00000011422 SLCBA7 ENSG00000011083
RESULTS

Case Study

Performance Comparison Over All

Known Disease Genes

In this study, we use all known GC-related genes obtained
from DisGeNET as positive training samples, and genes with
correlation scores under 1 were obtained from HumanNet
v2.0 as negative training samples. We compared the predictive
performance of RF, SVM, NB, and DNN. After 10-fold cross-
validation of each method, the ROC curve and average AUC value
is shown in Figure 2. The AUC of RF is 0.892, followed by the
AUC of 0.811 of DNN, an AUC of 0.753 of SVM, and an AUC of
0.593 of NB, which means RF did the best performance in disease
gene classification. For details, the AUC value of each iteration in
RF classifier is shown in Table 1.

Random Forest DNN
w @
== o ] == o N
R R
2 < | AUC: 0.892 || - G| AUC: 0.811 |,
o O o O
w w
i o
e T & & k3 el B P S P
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o _| o
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2 o | AUC: 0.753 || @ o | AUC: 0.593 |
@ O L =
w w
o o |
S %% a k & 4 @5 1w kB & & 9
0.0 04 08 0.0 04 0.8
1 - Specificity 1 - Specificity
FIGURE 2 | Comparison of prediction performance.

We obtained 7,406 candidate genes from HumanNet v2.0, and
then extracted the feature representation of each gene. Then we
used the trained RF classifier to predict the prioritizing genes
associated with GC. The top 24 susceptible genes are shown in
Table 2. From Table 2, 11 of the 24 predicted genes are reported
to have direct or indirect association with GC. For example, CD38
has been determined to be expressed at higher levels in the IL-10-
producing Breg cells of GC patients (Wang et al., 2015). The study
of Cheng et al. found that compared to control tissues, RARB
messenger RNAs were significantly reduced in human gastric
tumor samples (Cheng et al., 2013). As an indirect evidence, Wen
et al. found that NRAS can be a target gene of miR-26a to improve
the sensitivity of GC cells to cisplatin-based chemotherapies,
which can be an evidence for the potential function of NRAS in
chemotherapy for GC (Wen et al., 2015). GIPR, short for gastric
inhibitory polypeptide receptor, has been regarded as a promising
target for imaging and therapy in gastric and neuroendocrine
tumors, and it has also been reported that GIPR is significantly
overexpressed in stomach tissue compared with normal tissue
(Sherman et al,, 2013, 2014). In recent years, many studies have
shown that PLAUR can be an effective prognostic biomarker
and potential therapeutic target for GC due to the fact that
the suppression of PLAUR could sensitize cancer cell death by
inducing DNA damages (Li et al.,, 2013a; Ai et al., 2020). ANLN
is a conserved actin-binding protein that exerts its functions in
cytoskeletal dynamics during cell division and may affect cancer
progression through Wnt/B-catenin pathway in GC.

CONCLUSION

Gastric cancer is one of the most malignant neoplasms in
human health around the world causing approximately 10% of
all cancer deaths. The main therapeutic strategies of GC include
two ways: surgery and chemotherapeutic regimens. Thus, it is
important to identify the susceptible genes in order to better
understand the pathologies of the disease, which can further
help in drug designing. Machine learning methods have been
used in predicting the functions of unclassified or unannotated
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genes by utilizing genomic features (Schlipfer et al., 2017).
In this study, we combined machine learning methods with
genetic association data (GWAS analysis) and gene expression
data (eQTL) to advance our understanding of GC etiology and
pathology. Considering the LD, genes located close to susceptible
loci identified by GWAS analysis may not be the causal genes of
the disease. Since SNPs may also influence the expression level
of the gene, the genes with different genotypes of the genetic
variant will show differences in phenotype, which means that
SNPs can also show effects on the diseases or traits. Therefore,
we performed a RF classier on the collected 1,091 cases and
410,350 controls from GWAS dataset, integrated with stomach
tissue eQTL data, to identify genes whose expression levels were
associated with GC due to its causality. Compared to three
other widely used binary classifiers, SVM, NB, and DNN, RF
has the best performance in classifying GC-related genes. Since
the overall importance score from the RF classifier is a sum
of multiple individual importance scores, and each individual
importance score is obtained from an average over multiple trees
and cross-validations, the gene importance score can be regarded
as not being affected by LD.

It is widely known that the accuracy of the prediction of
genetic risk of complex diseases varies greatly between different
diseases due to the heritability, phenotype, and the power and the
amount of reported variants. Though GC is the most common
cancer and causes a high mortality rate around the world, most
studies only focused on the prognosis and treatment of GC. In
this study, we identified 787 novel susceptible genes related to
GC and focused on the top 24 of the susceptible genes. We found
that CD38, RARB, NRAS, GIPR, PLAUR, ANLN, etc. have strong
association with GC and have been reported to be related with GC
indirectly; for example, they impact other pathways or exert their
function by cooperating with other genes. However, we identified
787 novel susceptible genes related to GC, which is helpful in
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