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Mesenchymal stromal cells (MSCs) are a heterogenous cell population found in a wide
range of tissues in the body, known for their nutrient-producing and immunomodulatory
functions. In the bone marrow (BM), these MSCs are critical for the regulation of
hematopoietic stem cells (HSC) that are responsible for daily blood production and
functional immunity throughout an entire organism’s lifespan. Alongside other stromal
cells, MSCs form a specialized microenvironment BM tissue called “niche” that tightly
controls HSC self-renewal and differentiation. In addition, MSCs are crucial players
in maintaining bone integrity and supply of hormonal nutrients due to their capacity
to differentiate into osteoblasts and adipocytes which also contribute to cellular
composition of the BM niche. However, MSCs are known to encompass a large
heterogenous cell population that remains elusive and poorly defined. In this review,
we focus on deciphering the BM-MSC biology through recent advances in single-
cell identification of hierarchical subsets with distinct functionalities and transcriptional
profiles. We also discuss the contribution of MSCs and their osteo-adipo progeny
in modulating the complex direct cell-to-cell or indirect soluble factors-mediated
interactions of the BM HSC niche during homeostasis, aging and myeloid malignancies.
Lastly, we examine the therapeutic potential of MSCs for rejuvenation and anti-tumor
remedy in clinical settings.
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Abbreviations: AML, Acute Myeloid Leukemia; B-ALL, B-cell Acute Lymphoblastic Leukemia; BM, Bone Marrow; CAR-
cells, CXCL12-Abundant Reticular Cells; CML, Chronic Myeloid Leukemia; CMML, Chronic Myelomonocytic Leukemia;
ECM, Extracellular Matrix; HSC, Hematopoietic Stem Cell; IHH, Indian Hedgehog; LEPR, Leptin Receptor; MDS,
Myelodysplastic Syndrome; MF, Myelofibrosis; MIF, Macrophage Migration Inhibitory Factor; MNC, Mononuclear Cells;
MPN, Myeloproliferative Neoplasm; MSC, Mesenchymal Stromal Cell; mTOR, mechanistic Target Of Rapamycin; NG2,
Neural/glial antigen 2; PDGF-R, Platelet-Derived Growth Factor-Receptor; PGC-1α, Peroxisome proliferator-activated
receptor gamma coactivator 1-alpha; PTH, Parathyroid Hormone; PαS, PDGF-R-a+/Sca-1+; SASP, Senescence-Associated
Secretory Phenotype; SCF, Stem Cell Factor; TPO, Thrombopoietin; YAP, Yes-Associated Protein.
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INTRODUCTION

Located within specific anatomical zones of the skeleton, the
bone marrow (BM) is a specialized microenvironment or “niche”
that lodges cells of hematopoietic and mesenchymal origins
in various hierarchical committed states. The main role of
the BM niche is the tight control of cell-fate decisions of
the hematopoietic stem cells (HSCs) and their progeny to
sustain the daily supply in functional blood and immune cells
throughout life. These environmental cues are produced by a
variety of stromal cells that constitute the BM niche which
mainly include neurons, endothelial cells and mesenchymal
stromal cells (MSCs) (Pinho and Frenette, 2019). The latter are
considered a versatile stem cell population due to their capacity
to differentiate into bone (osteoblasts), cartilage (chondrocytes)
and fat cells (adipocytes), thus playing a central role in HSCs
maintenance, BM niche composition and life-long turnover and
bone growth (Bianco and Robey, 2015). Due to their fibroblastic
nature and heterogenous origin, MSCs have been referred to
in the literature under different names which were accounted
for in this review. In addition, prominent gene reporter-mouse
models that helped investigate the role of stromal populations
in the BM led to synonymous use of the reporter strains
themselves as putative markers for MSC populations, which are
different from their human counterparts (see Table 1). However,
current consensus divided MSCs into subgroups based on their
anatomical location which influence both their functional and
phenotypic potentialities. Therefore, within the scope of this
review, we refer to the nomenclature proposed by Matsuzaki
et al. (2014) and revised by Ambrosi et al. (2019); according to
which MSCs are defined as bone marrow stromal cells bearing
trilineage potential and expressing both Leptin receptor (LEPR)
and PDGF-receptor α (PDGFR-α) in human and mouse (see
Figure 1). Acknowledging the presence of further heterogeneity
within the MSCs compartment, we will review major niche
factors contributed by the MSCs and their osteo-adipo progeny
in sustaining hematopoiesis. We will also present the most
recent advances in identifying MSCs subset heterogeneity and
cellular hierarchy by single cell technologies and their impact
on remodeling the BM during aging and myeloid leukemias.
Consequently, we will highlight possible therapeutic options in
targeting MSCs in clinical settings.

FUNCTIONAL MSC HETEROGENEITY:
LOCATION AND PROGENY MATTERS

The BM niche can be divided into two distinct regions based on
the location of the cells, vascular flow and oxygen conditions they
are exposed to which consequently define functional differences
between MSCs within these distinct niche sites (see Figure 2):

The endosteal bone marrow niche represents 10% of total BM
volume and comprises the MSCs with high osteolineage capacity
including osteoprogenitors, osteoblasts, and osteocytes, which
populate the inner surface of the bone along small arterioles and
capillary vessels (Méndez-Ferrer et al., 2020). NG2+ pericytes and
MSCs along with their osteo-progeny were shown to promote

HSC quiescence through secretion of pro-survival and homing
factors such as C-X-C Motif Chemokine Ligand 12 (CXCL12)
(Wei and Frenette, 2018), Angiopoietin-1 (Ang-1) (Arai et al.,
2004), thrombopoietin (TPO) (Yoshihara et al., 2007), and Notch
ligands (Calvi et al., 2003; Guezguez et al., 2013); thereby
reinforcing their tight contact with osteoblasts and maintaining
the HSCs in a long-term non-cycling status (Qian et al., 2007;
Loeffler and Schroeder, 2021). In accordance, the osteocalcin+
osteoblasts have been identified as a supportive “layer” niche due
to their organization in follicle-like structures which surround
HSCs and bind to them via N-cadherin- and Notch/Jagged1
mediated cell-cell interactions (Calvi et al., 2003; Zhang et al.,
2003; Lawal et al., 2017). More recent reports indicate that the
regulation of hematopoiesis by the osteolineage may also depend
on it differentiation state (Sacchetti et al., 2007; Méndez-Ferrer
et al., 2010; Calvi et al., 2012; He et al., 2017), as well as the
close spatial localization of HSCs with the bone-lining cells of the
endosteal niche (Lo Celso et al., 2009; Xie et al., 2009; Guezguez
et al., 2013; Kim et al., 2017). These physical osteoblastic niche
interactions controlling HSC fate are extensively influenced by a
profusion of autocrine, paracrine, and endocrine factors such as
bone morphogenetic proteins (Jung et al., 2008; Goldman et al.,
2009; Khurana et al., 2014; Guo et al., 2018), growth factors (Yoon
et al., 2012, 2017; Caselli et al., 2013), prostaglandins (Frisch et al.,
2009; Hoggatt et al., 2009, 2013), shared cytokines/chemokines
(Sugiyama et al., 2006; Ding and Morrison, 2013; Brylka and
Schinke, 2019) and hormones such as the parathyroid hormone
(PTH) (Calvi et al., 2001, 2003; Kuznetsov et al., 2004; Li et al.,
2012). Although all of these molecules appear to be essential
cornerstones for the preservation of bone microarchitecture and
stem/progenitor cell homeostatic features within the BM, PTH
has been identified as a key osteo-niche element linking MSCs
and HSCs activities functionally and spatially (Adams et al.,
2007; Li et al., 2012; Yu et al., 2012; Yao et al., 2014; Wein and
Kronenberg, 2018). Additionally, osteoprogenitors were shown
to be indispensable for B-cell differentiation by the release of
Interleukin-7 (IL-7) and Insulin Growth Factor (IGF-1) which
are critical for the maturation steps of B-cell progenitors (Wu
et al., 2008; Yu et al., 2016). On the other hand, osteocytes
were shown to restrict myelopoiesis by secreting granulocyte
colony-stimulating factor (G-CSF) an important factor in HSC
mobilization (Fulzele et al., 2013). The interdependence of
endosteal BM niche inhabitants and the multifaceted signaling
of MSCs and their osteo-lineage progeny in controlling HSC
functions continue to be the object of intense investigation.

The central/perivascular bone marrow niche delineates 90%
of total BM volume and englobes most of the vasculature that
is enveloped with a variety of cells, including MSCs, pericytes,
neurons along with adipocytes, which populate the central
region of the bone shaft (Méndez-Ferrer et al., 2020). The BM
vasculature in this region is enriched with arterioles that branch
with thin-walled and fenestrated blood vessels called sinusoids.
This endothelial architecture allows for the tight balance in the
retention and activation of HSCs as well as the trafficking of
their progenitors and mature immune cells back and forth the
BM (Itkin et al., 2016). Along secretion of CXCL12, the LEPR+-
MSCs enveloping the sinusoids are shown to produce stem cell
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TABLE 1 | Nomenclature of stromal populations based on genetic/putative markers.

Name Used in Refers to Additional info Organism

CAR-cell Sugiyama et al., 2006 Endosteal niche, near HSC,
CXCL12-expressing cells

Not the same as PDGFR-α
+/Sca1+ cells, but both
have trilineage potential
(Helbling et al., 2019)

Mouse, Human (Aoki et al.,
2021)

LEPR-MSC Ding et al., 2012 Scf-GFP expressing
perivascular stromal cells

Express PDGF-R, CXCL12,
not Nestin, perivascular
niche

Mouse, Human

Mesenchymal stem cell Jessop et al., 1994 Stem cell with multilineage
potential

Mouse, Rat, Rabbit, Lamb,
Human

Multipotent Mesenchymal
stromal cell

Dominici et al., 2006 CD105+, CD73+, CD90+,
CD45−, CD34−, CD11b−,
CD79a−, CD19−, HLA-DR−

ISCT criteria Human

Nestin+ MSC Méndez-Ferrer et al., 2010 Mesenchymal stem cells Mouse model for MSC Mouse, Human (Pinho
et al., 2013)

NG2+ pericyte Kunisaki et al., 2013 Pericytes that control HSC
quiescence, different from
LEPR+ (sinusoidal) cells

Mouse model for MSC, also
show trilineage potential

Mouse, Human (Kozanoglu
et al., 2009)

PDGFR-α+-Sca1+ MSC (PαS) Morikawa et al., 2009 Perivascular mesenchymal
stromal cells

Mouse

Skeletal stem cell Abdallah et al., 2004; Bianco
and Robey, 2015

Mesenchymal stem cells Human

FIGURE 1 | Nomenclature overview of different stromal populations including putative and gene markers and how they relate to MSCs. For the scope of this review,
MSCs are defined as all colony forming cells that express both PDGFR-α and LEPR (Matsuzaki et al., 2014). PαS stand for PDGFR-α+/Sca-1+. Figure was
generated using Biorender.com.

factor (SCF, also known as KITL) that is required for long-term
preservation of HSCs in the BM (Ding et al., 2012). Adipocytes,
known to be a rich source in nutrients for the BM, also produce a
variety of cytokines and factors involved in HSCs maintenance
(SCF, IL-3, IL-6, CXCL12) (Kumar and Geiger, 2017) as well
as inhibitors of hematopoiesis such as TGF-β1, a mediator of
cell-cycle arrest (Scandura et al., 2004; Brenet et al., 2013)
and lipocalin 2 (LCN2) that inhibits erythroid differentiation
(Miharada et al., 2008). More intriguingly, accumulation of

adipocytes as marrow adipose tissue (MAT) was also shown
to reduce blood flow and suppress hematopoiesis through
reduction of sinusoid caliber and microvasculature pruning
(Scheller et al., 2016).

Overall, accumulating evidence has demonstrated a balance
of MSCs differentiation commitment between osteoblastic and
adipocytic lineages; as well as mutual dependency to ensure
homeostasis that can be derailed during aging, chronic stress
or cancer (Rendina-Ruedy and Rosen, 2017). However, possible
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FIGURE 2 | A closer look at the MSC progeny, their constituting roles via secreted factors and differentiation cues toward adipo- and osteogenesis in the respective
niches. Figure was generated using Biorender.com.

feedback signals between osteo-adipo lineage and their parental
MSCs as well as their impact on BM niche biology remains
to be elucidated.

SINGLE-CELL MSC HETEROGENEITY:
LESSON FROM SINGLE CELL RNA
SEQUENCING

MSC Heterogeneity in the Murine Bone
Marrow
With the advance of single-cell RNA sequencing technologies
(scRNA-seq), traditionally homogenous cell populations reveal
functionally different subclasses. The same is true for MSCs;
recent well-designed scRNA-seq studies from different stromal
gene-reporter mice shed some light on the murine bone marrow
and help us to identify subclasses of MSCs. However, results from
these studies varied greatly in number of identified MSC subsets
due to different methods of BM extraction, cell sorting and
sequencing depth (see Table 2). In summary, both “adipogenic”
and “osteogenic” clusters can be identified regardless of the gene-
reporter or surface MSC marker (LEPR+, CD51-/Sca1+, PDGFR-
α+, Col2+) (Tikhonova et al., 2019; Wolock et al., 2019; Baccin
et al., 2020; Zhong et al., 2020). Depending on gene set signatures,
MSC can be subdivided into subsets with less differentiated
and more stem-like features that are defined as mesenchymal

progenitors or mesenchymal stem cells (Tikhonova et al.,
2019; Zhong et al., 2020). Additionally, some of these studies
also discerned “intermediate” MSC populations, suggesting that
adipogenic and osteogenic differentiation is a continuous process
with little definite cell states in-between (Tikhonova et al., 2019;
Wolock et al., 2019; Leimkühler et al., 2021), as shown recently
for the HSC compartment (Liggett and Sankaran, 2020).

MSC Heterogeneity in the Human Bone
Marrow
There are few comparable scRNA-seq studies of the MSC
heterogeneity in human. This is in parts due to the scarcity of
material and the difficulties in getting consistent cell content
from BM aspirates. Compared to full mouse bones, human BM
aspirates contain very few MSCs within the range of 0.001–
0.01% of total cellularity (Pittenger et al., 1999; Qin et al.,
2021). In addition, the donors’ age and sex also influences
MSCs phenotype and content (Siegel et al., 2013), adding
another layer of heterogeneity to the analyzed samples. Further
approaches to increase MSCs content from human material
require enrichment applications by cell sorting strategies and in-
vitro expansion, inevitably leading to a loss of subpopulations
and altered gene expression while affecting resolution capacity
of scRNA-seq (Ghazanfari et al., 2017; Liu et al., 2019). The
current high cost of single cell-sequencing and the low MSCs
content typically result in scRNA-seq experiments with fewer
than 100 MSCs, resulting in difficulty for sub-clustering analysis.
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In consequence, these experiments translate BM-derived MSCs
as a single “homogenous” population that is compared to other
MSC sources (Barrett et al., 2019; Zhou et al., 2019). In a recent
scRNA-seq mapping experiment of large BM hematopoietic

cell populations, a small amount of heterogeneous MSCs were
captured, with one subset expressing high levels of the key bone
marrow-homing cytokine CXCL12. This MSC subclass was later
validated by high enrichment of CXCL12 and other key MSC

TABLE 2 | Comparison of recent sc-RNA seq experiments on murine bone marrow stroma.

Tissue
obtained

Sorted on Single cell
method

Stromal
population

Subclasses Signature genes Number of
cells

References

BM flushed,
bones crushed
and digested
with
STEMxyme1,
Dispase II, ACK
lysis

CD71−/CD45−/
CD3−/B220−/
CD19−/Gr-
1−/CD11b−

Chromium
single cell 3′

Reagent V2
(10x genomics),
Chromium
Controller (10x
Genomics)

LEPR+ N/A LEPRhi , CXCL12me, KitLhi ,
Grem1hi , Angpt1me

20.896 Baryawno
et al., 2019

N/A LEPRhi , CXCL12hi , KitLhi ,
Grem1l o, Angpt1me

N/A LEPRhi , CXCL12hi , KitLhi ,
Grem1me, Angpt1hi

osteolineage LEPRme, CXCL12me,
KitLme, Grem1me,
Angpt1me

BM flushed,
bones digested
with LiberaseTM

and DNAseI

Lepr-tdT+ Chromium
single cell 3′

Reagent V2
(10x genomics),
Chromium
Controller (10x
Genomics)

LEPR+ Adipogenic
(Mgphi )

Mgp, Gpx3, Serping1, Lepr,
Tmem176b, Igfbp5,
Malat1, C1ra, C4b, Epas1

17.374 Tikhonova
et al., 2019

Adipogenic
(LPLhi )

Lpl, Scp2, Fstl1, Rgcc,
Mrps6, Pdzrn4, Mmd,
Npc2, Slc5a3, Angpt1

Osteo-primed
(Wif1hi )

Col8a1, Kcnk2, Ndnf,
150015O10Rik, Palld,
Tnfrsf19, Cldn10, Slc20a2,
Limch1, Fhl2

Osteo-primed
(Spp1hi )

Col1a1, Spp1, Col13a1,
Mmp13, Ifitm5, Serpine2,
Mef2c, Ibsp, Itgb5, Aqp1

Bones crushed
and flushed,
fragments
digested with
collagenase/dispase

CD45−/Ter119
−/CD31−

inDrops (Weitz
et al., 2015)

CD51− Sca1+ (Pre)-Adipocyte
/Adipocyte
progenitor

Nr4a1, CXCL1, Ifrd1, Fosb,
Ccl2, LEPR, Kitl, Adipoq

2.847 Wolock et al.,
2019

MSC Cbln1, Clec2d, Pdzrn4,
Cybb, Rspo2, LEPR,
CXCL12, Kitl, Adipoq

Osteoblast/
chondrocyte
progenitor

Postn, Wif1, Mmp9, Kcnk2,
Limch1, LEPR, CXCL12,
Kitl, Adipoq, Alpl, Col1a1,
MMP13, Spp1

Pre-osteoblast/
chondrocyte

Postn, Wif1, Mmp9, Kcnk2,
Limch1, Alpl, Sp7, Col1a1,
Mmp13, Spp1

Pro-osteoblast Col1a1, Bglap, Col11a2,
Col11a1, Bglap2, Alpl, Sp7,
Col1a1

Pro-
chondrocyte

Dmp1, Ackr3, Spp1, Ank,
CD44, Col1a1, Mmp13,
Mepe, Spp1

(Continued)
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TABLE 2 | Continued

Tissue
obtained

Sorted on Single cell
method

Stromal
population

Subclasses Signature genes Number of
cells

References

Bones crushed,
cells filtered,
MACS
separation
(CD5−,
CD45R−,
CD11b−,
Ly-6G/C−,
7-4−, Ter-119−

CD41−, CD3−,
CD11b−,
Gr1−, Ter119−,
CD45R−,
CD45.1−,
CD45.2−,
Sca1−,
CD31−,
CD51−

Chromium
single cell 3′

Reagent V2
(10x genomics),

LEPR+,
PDGF-R-α+,
Vcam1+,
CXCL12+,
Kitl+, Angpt1+

Adipogenic Mgp, Adipoq,
CXCL12, Kitl

2.294 Leimkühler
et al., 2021

Osteogenic Spp1, WIf1, Ibsp,
Sp7, Bglap

Transitioning Chromatin
remodeling, RNA
processing (Top
GO-terms, no gene
list stated)

Interferon-
responsive

Chromatin
remodeling, RNA
processing (Top
GO-terms, no gene
list stated)

Bones crushed,
bone chips
digested with
Collagenase
II/Dispase,
filtered, ACK
lysis, lineage
depletion
(Dynabeads)

Ter119−,
CD41−,
CD45−,
CD51−,
CD71−,
VCAM1+,
CD200−,
CD61−

Chromium
single cell 3′

Reagent V2
(10x genomics)

PDGF-R-α+ Adipo-CAR Cxcl12,
Tmem176b, Hp,
Lpl, Tmem176a,
H2-D1, Apoe,
Gas6, Adipoq,
Esm1

7.497 Baccin et al.,
2020

Osteo-CAR Tnc, Igfbp4, Wif1,
Cd63, Cxcl12,
Olfml3, H2-D1,
Kcnk2, Gas6,
Serpine2

NG2+ Cd63, Spp1,
Serpine2, Tnc,
Mmp13, Ibsp, Cfh,
Timp1, Cd200,
Serpinh1

Bones scraped
to remove
periosteum,
bones flushed,
bone chips
digested with
proteases

Col2-Td+ Chromium
Controller V3
(10x genomics)

Col2 Early
mesenchymal
progenitors

Ly6a, CD34, Thy1,
Mfap5, Gsn,
Clec3b

7.585 Zhong et al.,
2020

Late
mesenchymal
progenitors

Aspn, Edil3, Tnn,
Postn, Ostn, Dkk3

Osteoblasts/
Osteocytes

Sp7, Runx2,
Col1a1, Ibsp,
Bglap2, DMP1

Adipocytes Cebpa, Cebpb,
PParg, Lpl, Adipoq,
Apoe

Chondrocytes Sox9, Col2a1,
Col10a1, Pth1r,
Acan, Ihh
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signature genes from FACS-based isolation of CD13+CD11a−
cells (Triana et al., 2021). Another notable exception is a study
done by Wang et al. (2020), where a total of 14.494 CD271+
BM-MNCs were analyzed. This study led to similar findings
compared to the murine experiments, revealing adipo-, osteo-,
and chondrogenic clusters as well as two terminal clusters that
could represent senescent cells (see Table 3).

Recent advances in species transfer learning methods allowed
the harmonization of single cell-sequencing data from mouse
to human, finding equivalent clusters of cells in BM of both
species (Stumpf et al., 2020). While this approach is useful to
generalize findings across species, it is also limited in several
ways, e.g., only orthologous genes are transferred. Even within
the same cluster of cells of each respective species, there are
significant transcriptional profile differences, for instance in GO
terms (Wang et al., 2020), posing the question whether these
cells truly play the same role in mouse and man. With all these
factors in mind, we propose the following hierarchy of the MSCs
and their progeny in the BM that is validated in both mouse
and human (see Figure 3), with the outlook that future studies
will reconcile the missing phylogenic gaps for a unified cellular
portrait of MSCs.

MSC CHANGES IN AGING BONE
MARROW

During aging, the BM undergoes drastic changes with loss in
osteoblasts and increase in adipocytes content leading to a change
in overall cellularity, bone density and a shift in anatomical
distribution from “red” to “yellow” marrow (reviewed in detail by
Goltzman, 2019). In recent years, focus has been set on MSCs as
the main source of these changes with the hope of ameliorating
age-related alterations such as osteoporosis. In accordance with
age-shift toward an adipogenic phenotype, recent scRNA-seq
studies in old mice found that MSC subsets with adipogenic
potential (AdipoCAR) increase excessively alongside with a
depletion of mature osteoblasts (Zhong et al., 2020; Dolgalev
and Tikhonova, 2021). However, there are conflicting reports
about the overall number of MSCs during BM aging, with
some studies indicating no changes (Aguilar-Navarro et al., 2020;
Meza-León et al., 2021) while a majority of reports indicates an
increase in some subsets of MSCs (Maryanovich et al., 2018;
Frisch et al., 2019; Singh et al., 2019). These discrepancies can
be explained due to different methodological approaches and is
further underlined by pathological observations demonstrating
divergent cellular BM changes between mouse and human during
aging (Meza-León et al., 2021). However, common mammalian
features of functional deregulation have been described in
deciphering the age-related changes of MSCs:

Direct Deregulation
The observed hypocellularity in aged individuals can be
attributed to altered MSCs differentiation capacity toward
expansion of adipocytes and increased risk of osteoporosis.
Indeed, MSC show an age-dependent lineage switch between
the osteogenic and adipogenic fate. Under normal conditions,

MSCs homeostasis is regulated by transcription factors PPARγ

and C/EBPs toward the adipogenic lineage and Runx2 and
Osterix for the osteogenic lineage. These in turn are controlled
by cell adhesion toward extracellular matrix (ECM)-Integrins
and molecular signaling from Wnt, Notch, BMP, Hedgehog
and FGF pathways (Figure 2 and reviewed in detail by Chen
et al., 2016). In consequence, these pathways are of special
interest to identify aging effects. Clinical data demonstrated that
patients with osteoporosis or age-dependent bone loss display
low activity of Wnt/β-Catenin signaling in MSC while RhoA-
Rock activity is inversely correlated with β-Catenin signaling in
BM-MSCs from elderly human subjects (Stevens et al., 2010; Shi
et al., 2021). The decrease of Wnt-signaling can be attributed
in parts to a decrease in Yes-associated protein (YAP) in
MSCs during aging, a co-transcription factor that was identified
recently as an interaction partner of the β-Catenin complex (Pan
et al., 2018). Recent studies revealed additional transcriptional
regulatory mechanisms of the Wnt pathway by different classes
of non-coding RNAs, such as microRNA miR-146a, whose levels
increased in patients suffering from bone fragility (Saferding
et al., 2020). Other circular (Ji et al., 2021) and long (Li et al.,
2018) non-coding RNA were also found to play a role in lineage
commitment by inhibiting the Runx2 transcriptional complex
needed for osteoblastic differentiation. The delicate balance
between osteo- and adipogenesis via the different transcriptional
programs can also be influenced by Bmi1, a polycomb group
protein that restricts adipogenic differentiation (Kato et al., 2019)
and is downregulated in aged mice (Zheng et al., 2021). Similar to
Wnt pathway, Indian Hedgehog-(IHH) signaling, which induces
chondrogenesis in human MSCs (Steinert et al., 2012), was
shown to be decreased in peroxide-induced senescent MSCs and
MSCs from older donors (Al-Azab et al., 2020). Furthermore,
adipogenesis and osteoclastogenesis is promoted indirectly by
Sirtuin 3 (Sirt-3), a metabolic regulator of cellular senescence
driven by the mTOR-pathway, that is found to be elevated in aged
male mice and resulting in cortical bone loss (Ho et al., 2017).

Senescence
Beside an apparent increase in MSCs content during aging, there
is also a substantial increase in their senescence contributing to
a decrease in the osteoblastic lineage and accelerated bone loss.
A possible reason for this might be the development of aging-
dependent inflammatory niche signaling, leading to noticeably
increased IL-1α levels (which induces senescence via Bmi-1
downregulation) as well as IL-6 and TGF-β (Valletta et al.,
2020; Zheng et al., 2021). A wide range of non-coding RNA
have also been shown to regulate senescence both in mice and
human (reviewed in Cai et al., 2021). In addition, aged MSCs
produce high amounts of CXCL2 and CXCL5 chemokines, which
contribute to the senescence-associated secretory phenotype
(SASP) (Helbling et al., 2019). RANKL, an osteoclastogenic
cytokine, has been shown to be increasingly secreted by MSCs
in aged mice (Lin et al., 2017), leading to bone loss (Kim et al.,
2020). Cellular senescence also leads to a decrease in Optineurin
(OPTN), an autophagy receptor therefore contributing to
osteoporosis alongside with accumulation of the OPTN substrate
fatty acid binding protein 3 (FABP3) (Liu et al., 2020).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 August 2021 | Volume 9 | Article 714716

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-714716 August 4, 2021 Time: 13:51 # 8

Woods and Guezguez Mesenchymal Plasticity in the Bone Marrow Niche

TABLE 3 | Human MSCs subsets based on sc-RNA sequencing of human BM tissue.

Tissue obtained Sorted on Single cell
method

Stromal
population

Subclasses Signature
genes

References

Bone marrow aspirate, density
gradient (Ficoll 1.077), lysis,
CD271+ MACS separation
(Miltenyi)

No sorting Chromium
single cell 3′

Reagent V2
(10x genomics)

LEPR+ Osteogenic XIST, COL6A3,
COL1A1,
VCAN, C7,
THY1, ADM,
ANGPTL4,
PGF, COL6A2

Wang et al.,
2020

Adipogenic HP, IGHG3,
IGKC, FBLN1,
RETREG1,
APOD, CTGF,
ADIPOQ, MGP,
RPS26

Terminal 1 FTL, RPS12,
RPL30,
RPS3A,
RPL10, RPL34,
TPT1, RPL12,
RPS4X, RPS24

Terminal 2 XIST, MALAT1,
CSAD, NKTR,
KCNQ1OT1,
FUS, GOLGB1,
WSB1, CCNL2,
CCNL1

Chondrogenic S100A8,
S100A9,
S100A12,
CAMP, LTF,
MNDA,
S100A4,
MMP9, LCN2,
LYZ

Indirect Deregulation
A possible mechanism for the observed increase in MSCs
might be driven by sensory adrenergic denervation that occurs
in the aging microenvironment (Neuropathy), which in turn
leads to reduced negative regulation of MSCs pool size and to
the expansion of certain subsets holding adipogenic potential
(Maryanovich et al., 2018; Ho et al., 2019). These shifts in BM
content are further exacerbated by an increase in endothelial
cell numbers and a regression of arteriolar structures (Kusumbe
et al., 2014). Such BM stromal transformations increases the
risk toward a myeloid-skewing differentiation of HSCs and
can potentially lead to clonal hematopoiesis and subsequent
hematological neoplasia (Steensma and Ebert, 2020).

The aforementioned changes in the MSC niche are
summarized in Figure 4.

Addressing Age-Related Changes in the
Niche
In recent years, focus on reverting cellular senescence became
of major interest in addressing the aging-associated changes
of MSCs. These approaches involve targeting the metabolic
regulators Sirtuins 1 and 3 (Ma et al., 2017, 2020), pro-longevity
growth factors such as fibroblast growth factor 21 (FGF-21)

(Li et al., 2019) and downstream targets of HIF1α such as
macrophage migration inhibitory factor (MIF) (Xia et al., 2015).
A recent promising target is the hormone Lipocalin-2 (LCN2)
that was previously shown to have a beneficial role in the
regulation of various aspects of energy metabolism, especially
in promoting fatty acid oxidation (Guo et al., 2010; Paton
et al., 2013; Zhang et al., 2014). Further studies demonstrated
that overexpression of LCN2 protect MSCs against stress-
induced senescence and improve their paracrine and regenerative
potentialities (Halabian et al., 2013; Bahmani et al., 2014).
Furthermore, an LCN2 transgenic mouse model driven by
bone-specific type 1 collagen, an osteolineage-specific promoter,
showed expansion of long-term HSCs with higher clonogenic
capacity due to elevated levels of CXCL12, SCF and matrix
metalloproteinase inhibitors released by the BM niche (Costa
et al., 2017). It has also been shown that osteoblasts, which
decrease during aging, are the major source for blood circulating
LCN2 in the body (Mosialou et al., 2020). Taken together, these
findings suggest a beneficial effect of LCN2 supplementation
on promoting hematopoieisis and stabilizing the aging BM
microenvironment that would require further investigation for
potential therapeutic applications.

In parallel, rewiring the MSC differentiation balance,
originally explored as a rejuvenation strategy for treating
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FIGURE 3 | Proposed MSC lineage tree derived from recent sc-RNA sequencing experiments from murine stroma. Mesenchymal progenitor cells give rise to either
adipo-primed MSC or an osteochondro-progenitor, which in turn gives rise to osteo-primed or chondro-primed MSC. Noted beside each entity are the most defining
upregulated genes. Figure was generated using Biorender.com.

osteoporosis, is currently under investigation as potential
regenerative therapy to restore healthy hematopoiesis. One
major example is the intermittent treatment with PTH or PTH-
related peptide (PTHrP), shown to exert a well-known anabolic
effect on the skeleton (Osagie-Clouard et al., 2017) and induction
of HSC expansion (Calvi et al., 2003; Adams et al., 2007). Further
studies demonstrated that Nestin+ MSCs isolated from PTH-
treated mice displays enhanced proliferation and differentiation
into osteoblasts in culture (Méndez-Ferrer et al., 2010; Ding
et al., 2012); as well as increased osteogenic differentiation
capacity in vivo (Fan et al., 2017). Other studies based on drug
screening of natural senolytic substances such as Celastrol
and Quercetin 3-O-β-D-galactopyranoside was also shown to
promote osteogenesis and inhibit adipogenesis in vitro through

PGC-1α signaling (Li et al., 2020; Oh et al., 2020). On a similar
note, inhibition of the mTOR-pathway was shown to extensively
prolong life-span in mice (Papadopoli et al., 2019), including
revitalized pluripotency of human MSCs in vitro (Antonioli
et al., 2019). Epigenetic modifiers were also recently proposed to
revert the fat-bone-imbalance in skeletal aging, especially Lysine
Demethylase 4B, which was shown to regulate β-catenin/Smad1
signaling toward MSC rejuvenation (Deng et al., 2021). Lastly,
rejuvenated MSCs could also be interesting for ex vivo HSCs
expansion in the context of stem cell transplantation therapies. As
such, a recent and elegant co-culture study of HSCs with MSCs
allowed to identify a set of “rejuvenating” transcription factors
(Klf7, Ostf1, Xbp1, Irf3, and Irf7), that when over-expressed in
MSC induces expansion of HSCs with enhanced regenerative

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 August 2021 | Volume 9 | Article 714716

https://www.Biorender.com
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-714716 August 4, 2021 Time: 13:51 # 10

Woods and Guezguez Mesenchymal Plasticity in the Bone Marrow Niche

FIGURE 4 | Changes in HSPC, MSC, and MSC progeny frequencies in aging and leukemia. Figure was generated using Biorender.com.

and engraftment capacity while preventing accumulation of
DNA damage (Nakahara et al., 2019).

In summary, most of these anti-aging approaches will require
further validation prior possible translation toward clinical
applications and other stromal targets not cited in this review
are also currently under investigation (reviewed in more detail
by Meng et al., 2020).

MSC HETEROGENEITY IN MYELOID
MALIGNANCIES

Myeloid malignancies are clonal blood diseases arising from
HSCs or subsequent progenitor cells that acquired oncogenic
mutations and/or chromosomal translocations over a period
of several years. Depending on the etiology of the disease,
myeloid malignancies comprise chronic stages (including
myelodysplastic syndromes: MDS, myeloproliferative neoplasms:
MPN and chronic myelomonocytic leukemia: CMML) and acute
stages encompassing different subtypes of Acute Myeloid
Leukemia (AML) (Arber et al., 2016; Sperling et al., 2017;
Vetrie et al., 2020; Witkowski et al., 2020). A large body
of work demonstrated direct and indirect involvement of
the BM niche in supporting neoplastic and leukemic cells
during the development of myeloid malignancies. These
tumorigenic features include advantageous release of pro-
survival factors, competition in niche space with healthy HSCs,
stromal reprogramming and physical protection against therapy
(Méndez-Ferrer et al., 2020; Witkowski et al., 2020).

Msc Niche-Driven Hematological
Malignancies
Genetic mutation in mouse models affecting MSCs or their
osteolineage progeny can induce different types of myeloid
malignancies. For instance, activating-mutations in Nestin+
MSCs of the protein tyrosine phosphatase SHP2 (a positive
regulator of the RAS signaling pathway) can lead to the

development of childhood-like MPN by hyperactivating HSCs
via overproduction of the CC-chemokine CCL3 and IL-1β

(Dong et al., 2016). By contrast, deletion of the microRNA
regulator DICER-1 in the Osterix+ osteolineage cells, prompt
a pre-leukemia disease that mirrors human MDS and can
evolve into secondary AML (Raaijmakers et al., 2010). Similarly,
induction of Shwachman-Diamond syndrome mutation in
Osterix+ stromal cells was shown to drive MDS evolution
through the S100A8/9-TLR inflammatory signaling axis as a
common driving mechanism of genotoxic stress that predicts
AML progression in human patients (Zambetti et al., 2016). More
recently, osteoblasts have also emerged as critical drivers of MDS
via activating mutations in β-catenin signaling that can lead to
progression to overt AML in mice (Kode et al., 2014; Stoddart
et al., 2017). This aberrant activation of β-catenin signaling is
also found in stromal cells of MDS patients along with DICER-
1 dysregulation (Santamaría et al., 2012; Ozdogan et al., 2017)
correlating with adverse prognosis (Bhagat et al., 2017).

MSC Niche Reprogramming by
Leukemia
Neoplastic and malignant cells can further remodel the
MSC niche by specifically targeting the osteoblastic progeny
during the stepwise disease progression from pre-leukemia
stage (MDS/MPN) to overt AML (Yamaguchi et al., 2021).
Specifically, it was shown that both MDS and MPN cells secrete
inflammatory mediators such as CCL3 and TPO, thereby driving
transformation of the MSC niche toward a highly supportive
milieu for leukemic cell expansion at the expense of normal
hematopoiesis (Schepers et al., 2013; Medyouf et al., 2014). This
is consistent with xenograft studies suggesting that the MSC
niche also provides a chemo-resistant niche for leukemic blasts
(Ishikawa et al., 2007; Duan et al., 2014; Bertoli et al., 2018; Boutin
et al., 2020).

Healthy Nestin+ MSCs and osteoblasts can also be indirect
targets of sympathetic neuropathy (through β2-adrenergic
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signaling) in models of myeloid malignancies, leading either to
aberrant expansion or loss of Nestin+ MSCs while restricting the
numbers of mature osteoblasts in both MLL-AF9-AML (Hanoun
et al., 2014) and JAK2V617F-MPN mouse models (Arranz et al.,
2014). As a result, the impaired MSC niche promotes expansion
of mutant HSCs and facilitates disease progression by loss of
expression of HSC-retention factors, including CXCL12, SCF,
ANG1, and VCAM1 (Arranz et al., 2014; Hanoun et al., 2014).
Collectively, this is in agreement with clinical observations of
stromal cells from MDS/AML patients, where expression of cell-
surface molecules involved in interaction with HSCs is decreased
(Geyh et al., 2013), whereas the population of human MSCs is
increased, favoring blast expansion (Kim et al., 2015). In addition,
osteogenic differentiation is significantly impaired by remodeling
of the vasculature leading to reduced osteocalcin serum levels and
deficiency in bone growth (Geyh et al., 2016; Duarte et al., 2018;
Kumar et al., 2018), which is in line with reports of osteopenia or
osteoporosis observed in newly diagnosed children or adults with
acute Leukemia (Datzmann et al., 2018; Ruchlemer et al., 2018;
Ahn and Suh, 2020).

Mapping MSC Niche Heterogeneity in
Leukemia
Despite the multiple functional studies investigating the role of
the BM niche, little is known on the extent of transcriptional
reshape of the MSC populations in myeloid malignancies,
but recent scRNA-seq studies led to a better understanding
of lineage shift and disease specificity. In AML context,
single cell data revealed a concomitant decrease in committed
osteolineage LepR+-MSCs in an MLL-AF9 mouse model along
with an increase in pre-osteoblasts, suggesting a block in
osteolineage maturation (Baryawno et al., 2019). This osteogenic
differentiation blockade was further accompanied by a loss
of transcriptional expression of multiple HSC niche factors
(Vcam-1, CXCL-12, SCF, Angpt, Il-7, CSF1) and gene expression
changes were also observed in endothelial cells and adipocytic
populations (Baryawno et al., 2019). In a similar manner,
RNA-seq studies on BM stroma from both mouse and human
MPN shed light on the functional contributions of individual
cellular components of the MSC population to myelofibrosis
(Leimkühler et al., 2021). ScRNA-seq analysis demonstrated
a fate switch between distinct precursor cells and MSC
populations during stress-injury induced by malignant MPN
clones. Two distinct MSC populations were shown to be the
main drivers of BM fibrosis in mouse and human MPN.
These two MSC populations are of LepR+ origin and are
either adipogenic or osteogenic-biased progenitor populations.
During MPN disease evolution, these MSC populations were
demonstrated to be functionally reprogrammed into Collagen-
producing myofibroblasts, reminiscent of Gli-1+ fibrosis-driving
cells (Schneider et al., 2017) and leading to the excess deposition
of ECM in BM which is considered one of the hallmarks of overt
myelofibrosis (Barbui et al., 2018). Interestingly, all other MSC
subsets were also shown to be reprogrammed into the production
of non-collagenous ECM with scaffolding function for collagen
fibrosis. This aberrant lineage shift was due to increased stromal

expression of chronic inflammatory signals, especially TGF-β and
S100A8/S100A9, leading toward a loss of hematopoiesis support
(Vogl et al., 2018; Ribezzo et al., 2019).

Although more effort is necessary to unravel the MSC changes
in different myeloid malignancies stages, all functional and
genetic data indicate a shift toward an accumulation of MSC
with adipogenic potential (Figure 4) that might be instrumental
in disease evolution and should be explored further to specify
therapeutic targeting.

Development of MSC Therapies for
Myeloid Malignancies
Given the central role of MSCs in the maintenance of both
HSC and leukemic blasts, numerous studies investigated their
potential direct therapeutic use in hematopoietic malignancies
such as MDS and AML (reviewed in Fathi et al., 2019; Lee
et al., 2019). Early co-culture studies of MSC and leukemia cells
displayed contradictory results: either increased blast survival
(Garrido et al., 2001) or anti-leukemic effects through the
induction of apoptosis and cell cycle arrest (Liang et al., 2008;
Tian et al., 2010). More broadly, a direct use of MSCs as a cellular
anti-cancer therapy also proved to be difficult since the cells do
not survive long enough to exhibit any beneficial effects (Levy
et al., 2020) and were even shown to promote tumor growth in
mouse models of MLL-AF9 AML and metastasic solid cancers
(Okumura et al., 2009; Spaeth et al., 2009; Xu et al., 2009; Hanoun
et al., 2014).

Acknowledging this functional duality of MSCs in leukemia
growth, further research was directed in developing antibodies or
compounds that target specifically the supportive malignant cues,
more prominently toward the inhibition of the CXCL12-CXCR4
axis (Zhang et al., 2012; Kuhne et al., 2013) and IL6 signaling
(Stevens et al., 2017). These promising compounds are currently
being tested in combination with standard chemotherapy or
allogenic transplantation settings in clinical trials of high-risk
MDS and refractory AML patients (Martínez-Cuadrón et al.,
2018; Roboz et al., 2018; Michelis et al., 2019; Bose et al.,
2020). On the other hand, the anti-tumoral effects displayed
by MSCs were attributed to small secreted factors (Maguire,
2013; Moll et al., 2020; Wu et al., 2020) and led to increased
interest in the use of MSC secretome for anti-leukemic therapy
as well as for a wide array of other diseases, such as ischemic,
neuroinflammatory and pulmonary malignancies (reviewed in
Harman et al., 2021). Collective proteomic studies demonstrated
that the MSC secretome consists of trophic factors (e.g., FGF,
HGF, VEGF), cytokines (e.g., IL-6, TGFβ-1. . .), hormones, small
peptides (e.g., SCF, PTG, Leptin) and extracellular vesicles (EVs)
containing miRNA, mRNA and biologically active proteins
(Chulpanova et al., 2018). In consequence, cell-free therapy
options are considered more promising for clinical applications
(Hmadcha et al., 2020). However, it was shown that EVs from
MSC can also contribute to tumor cell migration and growth
by activation of Wnt, Erk or Akt pathways (Lin et al., 2013;
Gu et al., 2016; Shi et al., 2016). EV content is dependent on
many factors, such as MSC source (adipose tissue, umbilical cord,
bone marrow), donor age, individual donor-specific influences,
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sampling method and other factors (Costa et al., 2021). This high
variance in EV content hinders consistent therapeutic results,
pushing the focus toward developing well-defined, standardized
EVs (Lener et al., 2015); as well as engineering MSC-derived
EVs that are loaded with anti-tumoral drugs or siRNA (Current
clinical trials NCT03608631 and NCT01294072). Therefore,
future studies are crucial to decipher the real potential of MSC-
derived secretome and EVs for anti-leukemic therapies.

Using a holistic view, recent bioengineering advances were
made in recreating in situ BM stroma through organ-on-a-
chip devices that would allow to investigate MSC-mediated
chemo-resistance mechanisms and assess therapy efficacy of
new anti-tumor compounds (reviewed in Santos Rosalem et al.,
2020). Similar approaches using biomimetic scaffolds capable
of mimicking bone extracellular-matrix were also used to study
MSC transcriptional and immunomodulatory alterations by
MDS/AML blast cells (Abarrategi et al., 2017; Mian et al.,
2021) and allowed recently for the discovery of a novel AML-
MSCs selective CaV1.2 channel blocker drug, Lercanidipine,
that is able to impair leukemia progression when administered
in vivo (Borella et al., 2021). Collectively, although promising
targets and drugs are currently further characterized toward
translational applications, a careful development of MSC-based
cell therapies will be primordial to boost ant-cancer properties
while eliminating tumor-promoting effects.

CONCLUDING REMARKS

MSCs represent a key component of the BM microenvironment,
exerting multiple functions that are fundamental for tissue
homeostasis, the support of the hematopoietic niche and the
modulation of the immune system response during injury
or infection. These activities are carried out through the
secretion of a wide variety of factors, such as growth factors,
cytokines and EVs. The aging process imposes profound
modifications of both the morphology and functions of MSCs,
leading to the development of a proinflammatory environment.
Increasing evidence demonstrate that this reshape of the MSC
niche is exacerbated during disease progression in hematologic
malignancies by protecting cancer cells from apoptosis and
inducing chemoresistance. Although our understanding of
MSC niche contributions to aging and Leukemia has hugely
increased over the last decades, more knowledge is required

to harness the depth of complex MSC interactions with
the highly polyclonal nature of aberrant HSCs or leukemic
cells driving disease heterogeneity in MDS/AML. Moreover,
many questions remain unresolved; in particular, whether
the phenotypes and molecular mechanisms identified in vitro
or in mouse models are maintained and therapeutically
relevant in the human disease. In addition, the use of
human leukemia samples in understanding aberrant MSC niche
biology is currently hindered as clinical standard diagnoses
are made on BM aspirates that disrupt BM architecture.
Recent developments in single-cell sequencing and imaging
technologies have made it possible to assess the heterogenous
composition and diverse cellular and biochemical interactions
present throughout complex tissue. Future integrative single-cell
studies aimed at identifying the diverse network of cellular and
biochemical interactions underlying the MSC niche may uncover
unappreciated regulators or pathways controlling the BM aging
process and cancer reprogramming and could lead to the
development of novel therapeutic strategies aimed at improving
health of the aging population or tackle chemoresistance in
hematological malignancies.
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