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Primary cilia are evolutionarily conserved and highly specialized organelles that protrude
from cell membranes. Mutations in genes encoding ciliary proteins can cause structural
and functional ciliary defects and consequently multiple diseases, collectively termed
ciliopathies. The mammalian auditory system is responsible for perceiving external
sound stimuli that are ultimately processed in the brain through a series of physical
and biochemical reactions. Here we review the structure and function of the specialized
primary cilia of hair cells, termed kinocilia, found in the mammalian auditory system.
We also discuss areas that might prove amenable for therapeutic management of
auditory ciliopathies.

Keywords: primary cilia, ciliopathy, auditory system, hair cell, kinocilia

INTRODUCTION

Primary cilia are non-motile, highly specialized, and evolutionarily well-conserved organelles
that project from the cell surface, which are essential throughout biological development and
maturation. As analytical technologies have developed over the last few decades, our understanding
of primary cilia has gradually changed from regarding them neglected “degenerate organelles” to
well-appreciated “cellular antennas” (Singla and Reiter, 2006). There is only one primary cilium
per cell (Satir and Christensen, 2007). The ciliary membrane of primary cilia harbors a variety
of receptors and ion channels, including components of the Notch, Hedgehog, Wnt, G protein-
coupled receptor, receptor tyrosine kinase, transforming growth factor β/bone morphogenetic
protein signaling pathways, and Ca2+ channel-associated proteins such as polycystin 1 and 2
(Delling et al., 2013; Christensen et al., 2017; Anvarian et al., 2019; Ta et al., 2020). Through
these cilium-dependent signaling pathways, primary cilia play key roles in the regulation of cell
division, proliferation, and signal transduction and are thus crucial in tissue and organ development
and normal mammalian physiology (Lancaster and Gleeson, 2009; Goetz and Anderson, 2010;
Joukov and De Nicolo, 2019; Nachury and Mick, 2019). Moreover, primary cilia can act as a portal
connecting the organism to the environment (Falk et al., 2015; Bujakowska et al., 2017; Uytingco
et al., 2019; Ran and Zhou, 2020).

Some primary cilia with specialized structures and functions have been characterized in sensory
cells, which can transduce external physical or chemical signals, such as smell and visual signals,
to electrical signals in mammalian olfactory and vision systems (Falk et al., 2015). Kinocilia are
specialized primary cilia present in auditory hair cells (HCs) in the inner ear. These cilia do
not directly mediate auditory mechano-electrical transduction (MET), but partially retain the
characteristics of motility responsible for the response of HCs to sound stimuli. Although showing
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a traditional 9 + 2 axoneme pattern of “motile cilia,” they lack
the inner dynein arms and only directionally “move” after the
cells sense sound, i.e., passive motion (Kikuchi et al., 1989).
Besides, kinocilia are essential for HCs morphogenesis and planar
cell polarity (PCP), and further auditory integrity (Sipe and
Lu, 2011; Kazmierczak and Muller, 2012; Elliott et al., 2018).
Genetic mutations affecting ciliary proteins can lead to diseases
in multiple organs, collectively known as ciliopathies. Therefore,
maintaining stable morphology and structure of kinocilia is
essential to normal physiology and their dysfunction results in
corresponding sensory ciliopathies. In this review, we describe
the structure, function, and degeneration of kinocilia present in
the mammalian auditory system and discuss if they are promising
therapeutic targets for hearing deficits.

COCHLEAR HAIR CELLS

The mammalian ear consists of the outer, middle, and inner ears,
the latter consisting of the vestibular system and the cochlea.
The former is sensitive to position signals mainly caused by
linear acceleration and head rotation, and the latter mediates
the conversion of vibrations into nerve impulses in response
to sound (Liu et al., 2016). Both of these two systems have
their own sensory epithelium, on which exist a large number
of HCs that underpin both balance sensation and hearing. In
the vestibular system, the sensory epithelium organizes as a
repeating mosaic which consists of supporting cells and type
I and type II HCs that differ in morphology and physiology
(Warchol et al., 2019). However, the cochlea, a structure unique
to mammals, has a more delicate sensory epithelium, also known
as the organ of Corti.

In the organ of Corti, HCs are categorized as inner hair
cells (IHCs) and outer hair cells (OHCs) (Figure 1; Atkinson
et al., 2015). Every HC is supported by several highly specialized
cells, such as Deiters’ cells, pillar cells, inner border cells, and
Hensen’s cells. All of the HCs are highly differentiated and
polarized, and each acts as a mechano-electrical transducer that
turns physical signals into electrical signals. External sensory
stimuli physically open MET channels leading to an influx of K+

ions that depolarizes the HC. HC depolarization activates Ca2+

channels at the plasma membrane resulting in neurotransmission
onto spiral ganglion neurons via the cochlear nerve. Finally,
physical signals turn into electrical signals, which then pass
through spiral ganglion neurons via the cochlear nerve, and
the sensory signal ultimately reaches the cortex via the auditory
pathway (Fettiplace, 2017; Ashmore, 2020). The apical surface of
HCs are arranged as a unique subset by a single row of IHCs and
a triple row of OHCs, each of which is surrounded by a variety
of non-sensory support cells based on their location relative to
the spiral ganglion (Elliott et al., 2018; Tarchini and Lu, 2019).
The OHCs are located on the lateral (non-neural) side and are
mainly responsible for amplifying acoustic vibrations through
periodic contraction and elongation of the cell body driven by
changes in membrane potential. The IHCs are located on the
medial (neural) side, where they integrate and transmit sound
signals to neurons. Synergy between these two types of cells

FIGURE 1 | Schematic representation of the cochlear hair cells and hair
bundles. Two types of hair cells responsible for mechano-electrical
transduction and auditory sensing are present in the cochlea. The stair-like W
or V-shaped hair bundle appears on the apical plasma membrane of each
inner hair cell and outer hair cell, collectively. Each hair bundle contains plenty
of stereocilia and a kinocilium near the corner of them, and the kinocilium
degenerates after maturation of hair cells, indicating the acquisition of hearing.

greatly improves the resolution and sensitivity of sound signal
processing (Fettiplace, 2017).

THE KINOCILIA OF COCHLEAR HAIR
CELLS

In newborn mice, the top of each HC possesses dozens to
hundreds of actin filament-based stereocilia of increasing height
arranged in a stepped V or W shape (Figure 1). A true
microtubule-based cilium that is about the same height as the
tallest row of stereocilia, called the kinocilium, is found near the
corner of this arrangement, i.e., on the non-neural side (Flock
and Duvall, 1965; Sobkowicz et al., 1995). The stereocilia and
kinocilium of each HC are collectively termed the hair bundle
(Figure 1). Adjacent stereocilia are connected by several types of
connecting protein including tip links, horizontal top connectors,
shaft connectors, and ankle links (Goodyear et al., 2005).
Similarly, the kinocilium and adjacent stereocilia are connected
by kinocilial links, while in some HCs, the kinocilia are physically
separated from stereocilia (Avan et al., 2019). This cilium seems
to exhibit a traditional 9 + 2 axoneme pattern in most cases,
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FIGURE 2 | Model of the kinocilium and its cross section. The kinocilium
shows a 9 + 2 axoneme pattern with typical motile cilium structures such as
outer dynein arms and radial spokes. However, a lack of inner dynein arms
renders the lack of motor function. After the kinocilium degenerates,
stereocilia mediate the entire mechano-electrical transduction (MET) process.
When sound waves are transmitted to the cochlea, the shearing motion
caused by lymph flow drives the passive swing of the hair bundle and sound
signal processing.

hence its name (Sobkowicz et al., 1995). However, although
it has outer dynein arms and radial spokes, it does not have
inner dynein arms (Figure 2; Kikuchi et al., 1989). Therefore,
the outer dynein arms allow the kinocilia retaining some motor
function to passively swing with the rhythmic vibration rather
than through autonomous movement that requires inner dynein
arms (Spoon and Grant, 2013).

Mammalian kinocilia mediate HC morphogenesis and PCP,
and the latter dictates the proper arrangement of stereocilia
that is required for hearing. In mouse cochlear HCs, kinocilium
development is complete around embryonic day 15 (E15), after
which time they move to the non-neural side of the cell with
the basal body. Meanwhile, nearby stereocilia gradually grow
to form the three rows of stair-like and V-shaped stereocilia of
different heights around E17, together forming the hair bundle
(Williams et al., 2017). Kinocilium develops before stereocilia,
finally leading the hair bundle facing toward the non-neural side.
Accordingly, the HCs also acquire PCP in readiness for hearing
and receiving external stimuli. In this way, the kinocilia play vital
roles in the maturation of HCs.

The MET apparatuses are located at the top of stereocilia.
The hair bundle tilts toward the longer stereocilia when receiving
the sound stimulus, and the tip links are stretched, leading to
the opening of MET channels and the subsequent depolarization
of HCs. Therefore, the stereocilia completely determine the
MET activity of mature HCs, so the kinocilium, which dictates
the proper arrangement of stereocilia that is required for
hearing, must form correctly during the initial stages of HC
differentiation. Some typical ciliopathies including Bardet-Biedl
syndrome (BBS), Alstrom syndrome (ALMS), Usher syndrome

(US) are characterized by hearing dysfunction (Cosgrove and
Zallocchi, 2014; Tsang et al., 2018; Hearn, 2019). Mutations in
some ciliary genes encoding important intraflagellar transport
(IFT) proteins such as Ift88 can also cause hearing defects. Ift88
conditional knockout mice exhibit shortened cochlear ducts with
multiple extra rows of HCs at the apex, severe hair bundle polarity
defects, and premature differentiation of HCs (Moon et al., 2020).
Other studies have shown that the phenotypes of these knockout
mice all include kinocilium loss, disorderly arrangement of
stereocilia of different lengths, short and collapsed structural
defects, and mislocation of centrosomes (Tarchini and Lu, 2019).
Furthermore, some genes such as Alms1 encoding proteins
associated with centrosomes and ciliogenesis also show abnormal
phenotypes in knockout mice, especially the mass loss of OHCs
(Jagger et al., 2011). These data indicate that kinocilia play key
roles in the correct orientation of stereocilia and consequently the
normal function of HCs. Moreover, some ciliopathy related genes
encoding connecting proteins can cause hearing dysfunction.
Mutation of Dcdc2a, which is related to the autosomal recessive
deafness-66 and encodes a protein located in the kinocilium,
shows deficiency in the regulation of kinocilial ciliogenesis and
length, and abnormal cohesion of the kinocilial microtubule
core (Grati et al., 2015). Depletion of Usher syndrome 1 (Ush1)
proteins, such as CDH23 and PCDH15, which are responsible
for tip links and kinocilial links, significantly shortens stereocilia
(Cosgrove and Zallocchi, 2014; Richardson and Petit, 2019).

DEGENERATION OF THE KINOCILIA

Although kinocilia can be observed in newborn mouse cochlea
HCs, they gradually degenerate in HCs from the bottom to the
top of the cochlea after mice gain hearing at about postnatal day
8 (P8) and completely disappear at about P12, but the basal body
still remains in mature HCs (Leibovici et al., 2005). In contrast,
the kinocilia of HCs in the vestibular system persist throughout
an animal’s life (Guinan, 2012). The physiological significance of
this cochlear degeneration is still not fully understood, but we can
gain insights through comparison of cochlear kinocilia with those
in the vestibular system.

Kinocilia on the surfaces of the two types of HCs in
the vestibular system are anchored in “otolith,” a kind of
biomineralized aggregate of calcium and protein (Day and
Fitzpatrick, 2005; Ramosdemiguel et al., 2020). When the head
inclines or the body accelerates, the otolith shifts due to
the effects of gravity, thereby moving kinocilia to one side
through kinociliary links (Day and Fitzpatrick, 2005). Coupled
with various connections between different parts of stereocilia,
the whole hair bundle then leans toward the kinocilium’s
bending direction. At that time, as MET channels open, a
large amount of K+ flows into the hair cells, depolarizing
the cell membrane and finally processing the signal of the
head position. When the vestibular stimulus disappears, the
stereocilia pull the kinocilium in the opposite direction,
restoring the cell membrane to its resting potential (Jacobo
and Hudspeth, 2014). Surprisingly, although kinocilia are not
present in the HCs of the mature cochlea, the stereocilia
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bundle, after being mechanically stimulated, still oscillates toward
the original position of the kinocilium, consistent with the
behavior of HCs in the vestibular system (Fettiplace, 2017).
Similar to the kinocilium and otolith, the tip of the longest
stereocilium in the cochlear HC is anchored to the tectorial
membrane above. Structurally, it appears that these stereocilia
are substitutes for the vestibular kinocilium. So, do the longest
stereocilium and tectorial membrane also have a similar pull-in
pattern?

The role of the tectorial membrane in the cochlea helps us
to understand this pattern. This membrane links the longest
stereocilium of each OHC via otogelin, otogelin-like, and
stereocilin proteins (Avan et al., 2019). When sound waves
transmit from the perilymph to endolymph, they pass through
the basilar membrane as traveling waves, converting vibration
to the tectorial membrane via periodic compression at the
top of the HC protein network. The relative displacement of
both leads to radial fluid flow in a narrow space, a shearing
motion, which results in stereocilia movement in the horizontal
direction and finally causing stereocilia to tilt (Guinan, 2012).
The tectorial membrane acts as a calcium reservoir storing a
large amount of Ca2+, and HCs can rapidly process signals by
directly utilizing the Ca2+ released by it instead of relying on
endolymph when MET channels open, which may also be the
reason why the endolymphatic fluid and the intracellular Ca2+

ionic environment are almost the same (Strimbu et al., 2019).
Presumably, kinocilia are not needed for auditory signal

processing in the cochlea, since the longest stereocilia play
a very similar role. As mentioned above, the cochlea is
unique to mammals, and its internal mechanical receptors have
correspondingly evolved in structure and function. Primitive
vertebrates such as fish only have an inner ear, which is mainly
used for balance. Moreover, although they have a complete
vestibular system, auditory functions must be taken into account
(Whitfield, 2020). Amphibians such as frogs have evolved a
middle ear with an eardrum (Mason et al., 2015). In most
reptiles, the ear develops further with an internal eardrum,
giving rise to a prototypic external auditory canal (Schwab et al.,
2020). While the ears of birds and mammals differ greatly, they
still have highly developed outer, middle, and inner ears. The
cochlea of mammals provides a single organ responsible for
hearing that can cooperate with the other sensory functions
of the ear. The longest stereocilia and related structures have
a very close interrelationship, so the complete degradation of
cochlear HC kinocilia will not have a profound physiological
effect. This process therefore is probably best regarded a
result of evolution.

CONCLUDING REMARKS

Mammalian sensory systems are vital for the interactions between
organisms and their environment. Among them, the auditory
system is mediated through ion channels and receptors present
on the actin filament-based microvilli called stereocilia, in line
with the tactile and taste systems. However, unlike the specialized
primary cilia present in visual and olfactory systems, the kinocilia

are not involved in signal transduction, but play vital roles in
mediating precise directional arrangement of stereocilia and the
unique distribution of HCs in the cochlea, both of which are
crucial for auditory integrity.

Kinocilia have their own unique characteristics that defy their
classification into simply “motile” or “primary,” which represents
one of the higher evolutionary characteristics of mammals.
Unfortunately, evolution can be a double-edged sword. Unlike
in some species (such as birds and amphibians) with the capacity
for spontaneous regeneration, mammalian cochlear HCs lack the
ability to actively regenerate in adults. The irreversible reduction
in the number of these sensory cells in some congenital or
hereditary genetic diseases or acquired through aging or disease
define neurodegenerative pathology. Although perhaps a product
of higher evolution of mammals, the physiological significance
of kinocilia degeneration is still incompletely understood and
further research is necessary to understand the relationship–
if any–between kinocilium degeneration and neurodegenerative
diseases such as congenital sensorineural hearing loss.

Transplanting sensory cells artificially induced in vitro might
be one way to restore sensation, and attempts are now underway
to generate and then transplant these “simulated cells” to save
the loss of HCs. There has been promising progress in using
embryonic stem cells and hiPSCs to produce 3D organoids (Liu
et al., 2016; Koehler et al., 2017; Jeong et al., 2018). Besides,
although various types of cells can be obtained in vitro using
these tools, their structure, function, and physiological indicators
still do not completely replicate in vivo conditions. Therefore,
artificially generating sensory cells with mature structures and
physiological functions for translational use remains an ongoing
area of research. With respect to other sensory cells like olfactory
sensory neurons, AAV adenoviral -meditated ciliary restoration
have shown promise in proof-of-principle preclinical studies
(Green et al., 2018; Uytingco et al., 2019). Thus, together with
gene editing, in vitro gene therapy and stem cell transplantation
could become promising therapeutic approaches for overcoming
sensorineural loss in the long term, provided that common
barriers such as efficacy, safety, and immunorejection are
overcome. However, it is still unclear whether kinocilia are
present in these organoids. It is also interesting to explore
whether mammalian HC regeneration is related to or even
regulated by kinocilia. Thus, although kinocilia are promising
therapeutic targets for genetic and acquired diseases, further
studies are warranted to develop the treatment strategies.
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