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Cellular therapy aims to replace damaged resident cells by restoring cellular and molecular
environments suitable for tissue repair and regeneration. Among several candidates,
mesenchymal stem/stromal cells (MSCs) represent a critical component of stromal
niches known to be involved in tissue homeostasis. In vitro, MSCs appear as
fibroblast-like plastic adherent cells regardless of the tissue source. The therapeutic
value of MSCs is being explored in several conditions, including immunological,
inflammatory and degenerative diseases, as well as cancer. An improved
understanding of their origin and function would facilitate their clinical use. The
stemness of MSCs is still debated and requires further study. Several terms have been
used to designate MSCs, although consensual nomenclature has yet to be determined.
The presence of distinct markers may facilitate the identification and isolation of specific
subpopulations of MSCs. Regarding their therapeutic properties, the mechanisms
underlying their immune and trophic effects imply the secretion of various mediators
rather than direct cellular contact. These mediators can be packaged in extracellular
vesicles, thus paving the way to exploit therapeutic cell-free products derived from MSCs.
Of importance, the function of MSCs and their secretome are significantly sensitive to their
environment. Several features, such as culture conditions, delivery method, therapeutic
dose and the immunobiology of MSCs, may influence their clinical outcomes. In this review,
we will summarize recent findings related to MSC properties. We will also discuss the main
preclinical and clinical challenges that may influence the therapeutic value of MSCs and
discuss some optimization strategies.
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1 INTRODUCTION

Mesenchymal stem/stromal cells (MSCs) and their secretome
have been investigated for the treatment of several medical
indications. Establishing a clear definition and characterization
of MSCs (including their origin, terminology and identity),
identifying the major preclinical and clinical challenges linked
to their application and finally proposing suitable therapeutic
optimization strategies may help highlight the value of MSCs and
therefore develop stem cell-based therapy.

1.1 Definition and Origin
MSCs represent a heterologous subset of nonhematopoietic
precursors that are broadly distributed throughout the body.
The ontogenic origin of MSCs is still controversial. In addition
to their most widely accepted mesodermal origin, MSCs may
originate in part from neuroepithelial tissue or perivascular tissue
(Huang et al., 2011). Currently, it has been established that
MSCs can be isolated from all vascularized tissues since MSCs
reside in the walls of blood vessels, forming part of the
endothelium (Caplan, 2009). MSCs can be derived from a
variety of tissues, including the bone marrow, adipose tissue,
peripheral blood, umbilical cords, Wharton’s jelly, dental pulp
and other tissues (Kumar et al., 2019). MSCs have been
investigated in the field of cellular therapy and regenerative
medicine to treat a variety of diseases and disorders (Kabat
et al., 2020). This research interest is due to the relatively easy
and minimally invasive access to MSCs as well as their several
properties. MSCs harbor immunomodulatory, anti-inflammatory,
angiogenic, antioxidative and antiapoptotic capacities (Wei et al.,

2013; Kaukua et al., 2014). As will be discussed, these effects
mainly involve paracrine pathways rather than direct cell
differentiation (Wu et al., 2020; Xunian and Kalluri, 2020).
MSCs present a high self-renewing capacity that enables their
ex vivo expansion to obtain a sufficient number of cells for clinical
purposes (Berebichez-Fridman and Montero-Olvera, 2018).
Because MSCs generate most of the stromal cells present in
the bone marrow (BM), form part of the hematopoietic stem
cell (Klein et al., 2018) niche, and produce various molecules
regulating hematopoiesis, their hematopoiesis-supporting capacity
has been demonstrated (Fajardo-Orduna et al., 2015). These
features allow the use of MSCs for the in vitro expansion
of HSCs before their transplantation (Sensebe et al., 1995;
Yamaguchi et al., 2001).

1.2 Terminology
The terminology of MSCs has considerably evolved over time
(Figure 1). Since their initial characterization, these cells were
referred to as MSCs, an acronym that was used to indicate
“Mesenchymal Stromal Cells,” “Mesenchymal Stem Cells,”
“Multipotent Stromal Cells,” “Mesodermal Stem Cells”
(Caplan, 2017), “skeletal stem/progenitor cells” (Bianco, 2011),
“mesenchymal progenitor cells” and “pericytes mesenchymal
stem cells” (Caplan, 2017). Initially, Friedenstein termed those
cells “mechanocytes” or osteogenic stem cells” and then “marrow
stromal cells”. In subsequent work, those cells were designated
“marrow fibroblasts” (Friedenstein et al., 1970). In the 1980s, the
term “marrow stromal cells” was adopted to distinguish
mesenchymal stromal cells that were able to maintain
hematopoiesis for many weeks in vitro from other adherent
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hematopoietic cells, such as macrophages and marrow fibroblasts
(Keating et al., 1984). In 1991, Caplan proposed the term
“mesenchymal stem cells” due to their multilineage
differentiation potential. Although the term became popular
and was widely used, the mesenchymal stem cell nomenclature
proved to be problematic when it became obvious that not all
plastic adherent stromal cells have comparable self-renewal and
in vivo differentiation ability into multiple lineages. More
recently, Caplan recommended designating these cells
“medicinal signaling cells” to highlight the mechanism
underlying their therapeutic effects after transplantation, which
is believed to be based mainly on the secretion of a plethora of
anti-inflammatory, antiapoptotic, proangiogenic and
immunosuppressive factors facilitating regenerative processes
(Caplan, 2017).

Given that MSCs are now being derived from different tissue
sources and exhibit distinct phenotypes and functions, a
consortium of international MSC investigators held a series of
workshops to address the challenges facing the field, including a
reassessment of MSC nomenclature. The consensus of the
Nomenclature Working Group has recommended the
following terminology for mesenchymal stromal cells: donor
type (autologous or allogeneic), species of origin (e.g., human,
mouse), tissue source (e.g., bone marrow, adipose tissue, cord
blood), and mesenchymal cell type (stem cell, stromal cell or
progenitor cell) (Bourin et al., 2013). As proposed by Bhartiya D
et al., it is better to revisit the definition of MSCs based on their
functional attributes (Bhartiya, 2018).

1.3 Characterization of Mesenchymal Stem/
Stromal Cells
Many research groups have used distinct tissue sources and
developed different protocols for MSC isolation, cultivation
and expansion, which have resulted in heterogeneous
populations of cells and difficulties in comparing experimental
outcomes. This difficulty is, in part, due to the lack of a definitive
marker of MSCs (Viswanathan et al., 2019).

Due to the growing controversy regarding the nomenclature,
degree of stemness and characteristics of MSCs, the
International Society for Cellular Therapy (ISCT) published
two important reports to address these limitations. The first
report clarified the terminology, emphasizing that while most
mesenchymal stem or stromal cells are not stem cells, the bulk
population represents a multipotent mesenchymal stromal cell
population (Horwitz et al., 2005). In the second report, ISCT
recommended the usage of “multipotent mesenchymal stromal
cells” (MSCs) to refer to the plastic-adherent fraction of
stromal tissues regardless of their origin capable of in vitro
differentiation into specific, multiple cell lineages (Dominici
et al., 2006).

To standardize the isolation and characterization of MSCs
in vitro, ISCT has specified the minimum inclusion criteria for
defining MSCs. These criteria include:

1) The ability to adhere to plastic under standard culture
conditions;

2) The phenotypic expression of surface markers such as
CD73, CD105 and CD90. The absence of a series of
surface markers, including CD14, CD19, CD34, and
CD45.

3) The ability to differentiate into osteoblasts, chondrocytes and
adipocytes in vitro under the effect of specific culture media
(Dominici et al., 2006).

Later, ISCT proposed criteria for the immunological
characterization of MSCs. These include 1) MSC response to
interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α); 2)
indoleamine 2,3-dioxygenase (IDO) response in cytokine
licensing assays; 3) assessment of the functionality of the
expanded cell product; 4) usage of purified immune
responders in functional assays; 5) analysis of mechanistic and
efficacy studies of human MSCs in xenotransplantation models;
6) immune reaction to infused MSCs; and 7) analysis of the
lymphocyte populations of patients treated with MSCs
(Krampera et al., 2013).

FIGURE 1 | The nomenclature of MSCs over the time.
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1.4 Therapeutical Potential of Mesenchymal
Stem/Stromal Cells
Over the past decades, a large number of studies have emerged
using MSC-based therapies in preclinical studies to treat many
different pathologies, including cardiovascular diseases, bone and
cartilage diseases and immune-/inflammation-mediated diseases
(Damasceno et al., 2020). However, the therapeutic potential of
MSCs in cancer treatment is still controversial. Depending on
several parameters, MSCs have been shown to either promote or
suppress tumor development (Hmadcha et al., 2020). Because of
this reality, a sustained effort to understand such duality before
planning an MSC-based therapy for cancer is required. Herein,
we provide an overview of some preclinical and clinical studies
that may highlight the value of MSCs.

1.4.1 Preclinical Models
MSCs represent a primary choice for treating immunological
disorders such as acute graft-versus-host disease (GvHD) and
Crohn’s disease (Galipeau and Sensebe, 2018; Carvello et al.,
2019). A meta-analysis of 50 studies involving 1,848 animals
showed that MSCs significantly prevented mortality and
alleviated the clinical manifestations of GvHD (Wang et al.,
2019). MSCs represent optimistic hope in treating rheumatoid
arthritis (RA), as there is currently no effective treatment for this
chronic inflammatory autoimmune disorder (Liu et al., 2020).
Intravenous injections of MSCs derived from the human
umbilical cord in a mouse model of RA showed a promising
therapeutic effect (Yu et al., 2019). A preclinical study using
MSCs derived from human adipose tissue reported that several
mechanisms were involved in the therapeutic benefit of MSCs for
treating RA (Zhou et al., 2011). Using BM-MSCs with induced
colony-stimulating factor-1 in a mouse CCL4 (C-C Motif
Chemokine Ligand 4) model of cirrhosis synergistically
improved reduced liver fibrosis and improved hepatocyte
proliferation (Watanabe et al., 2019).

A study performed on a guinea pig model using human bone
marrow-derived MSCs (BM-MSCs) combined with
hydroxyapatite scaffolds to treat temporal bone defects showed
promising results, as the treatment was safe and effective and
improved the repair of bone defects (Skoloudik et al., 2018).
Another study using human umbilical cord-derived MSCs
showed optimistic results in treating vertebral bone defects in
weaned rabbits (Cui et al., 2019). Mouse BM-MSCs were shown
to attenuate ischemia-reperfusion brain injury and inhibit
microglial apoptosis (Cheng et al., 2021). Human umbilical
cord MSCs (UC-MSCs) effectively improved renal function
and inhibited inflammation and fibrosis in a rat model of
diabetic nephropathy (DN) (Xiang et al., 2020). BM-MSCs
have been shown to be protective in a rat model of renal
ischemia reperfusion injury (Quirici et al., 2002) by inhibiting
cell apoptosis and inflammatory responses (Li et al., 2019).

As MSCs are regulators of tissue homeostasis, they are also a
promising material for the restoration of skeletal muscles after
injury. Although skeletal muscle recovery is mainly provided by
muscle stem cells, namely, satellite cells (MuSCs), MSCs may also
participate in such regeneration. Thus, MSCs appear to be a

promising approach for the restoration of skeletal muscle
structure and function. Different studies have reported the
positive effects of MSCs on the repair and regeneration of
injured skeletal muscle tissue. It was observed that rat BM-
MSCs do not show potency for myogenic differentiation
in vitro under the influence of appropriate inducers and rarely
fuse with myoblasts when cocultured. However, the BM-MSCs
stimulate the differentiation of muscle tissue cells through
paracrine secretion (Sheveleva et al., 2020). As reviewed by
Qazi et al. (2019) MSCs from different sources have been
shown to improve muscle contractility and structure and
reduce inflammation in various muscle injury models. Both
BM-MSCs and AT-MSCs improved the regeneration of
skeletal muscle laceration injury at short- and long-term
durations (rat models). Effective reinnervation of injured
muscles occurred only in the long term. However, AT-MSCs
showed better regenerative effects, evidenced by a significant
increase in the number of myotubes and a significant decrease
in collagen deposition (Moussa et al., 2020). MSCs can promote
angiogenesis, cell recruitment, migration, proliferation and
differentiation within the site of injury. They can also
modulate the immune cell population surrounding the injured
muscle (Qazi et al., 2019). In particular, MSCs are able to induce
the proliferation and differentiation of resident MuSCs and are
also able to act on other cellular components of the muscle cell
niche by reducing inflammation and infiltration (Sandona et al.,
2021). Several studies have demonstrated that the efficacy of
MSCs in supporting skeletal muscle regeneration is linked to their
secretome. The production of many biologically active factors
with a wide spectrum of action may explain the effects of MSCs.
Within the site of damage, these factors can exert a bioactive effect
either by acting directly on muscle cell populations or by
modulating the local environment. As indicated by Wang
et al., several signaling pathways may participate in skeletal
muscle regeneration (Wang et al., 2020). Using MALDI
imaging mass spectrometry, a study revealed the early
molecular processes of muscle healing upon treatment with
MSCs and highlighted the critical role of trauma-adjacent
tissue during the therapeutic response (Klein et al., 2018).
Proteomic profiling highlighted that enriched pathways related
to extracellular matrix organization, axon guidance, antigen
processing, metabolic processes, immunomodulation and
positive regulation of nitric oxide are also involved in muscle
regeneration by MSCs (Sandona et al., 2021). In vitro, in vivo and
bioinformatic results showed that MSCs promote skeletal muscle
regeneration through the synergistic action of EVs and the soluble
fraction of the secretome (Mitchell et al., 2019). Thus, several
regulators of muscle regeneration, such as ectodysplasin-A2,
thrombospondin-1, IL-6, monocyte chemoattractant protein-1
(MCP-1), dickkopf-related protein 1 (DKK1), HGF, VEGF,
FGF7, tissue inhibitor of metalloproteinase 1 (TIMP-1),
SMAD family member 4 (SMAD4), macrophage inflammatory
protein 2 (MIP-2), activin A, insulin-like growth factor-binding
protein (IGFBP)-related protein 1 and MMP-1, have been
identified (Kim et al., 2016). Recently, a study provided
compelling experimental evidence of the ability of the MSC
secretome to exert a protective effect against eccentric
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contraction (EC)-induced skeletal myofiber damage (murine
model). The secretome was able to modulate the behavior of
SCs, which are key players in muscle tissue regeneration (Squecco
et al., 2021). The long-term effectiveness of BM-MSCs for skeletal
muscle regeneration was clearly established after 1 year of
treatment. Using a pig model of severe radiation burn, local
injection of BM-MSCs improved recovery skeletal muscle
damage by acting on muscle regenerative capacity, muscle
fibrosis and angiogenesis (Linard et al., 2018). Moreover,
combination therapy between MSCs and muscle progenitor
cells also enhanced skeletal muscle regeneration in muscular
dystrophies. In this case, BM-MSCs create an appropriate
muscle pro-regenerative environment by secreting trophic
factors that regulate the proliferation and differentiation of
muscle progenitor cells as well as immunomodulatory factors
to manage local inflammation (Klimczak et al., 2018). EVs
produced by MSCs of different tissue origins can influence
myogenesis and fibrosis, the main processes that accompany
skeletal muscle regeneration. Novokreshchenova et al. (2020)
found that EVs derived from rat MSCs of distinct sources (BM,
AT, intact muscle) significantly increased the number of newly
formed myotubes in myoblast culture in vitro and reduced the
number and size of fibrotic nodules in muscle fibroblast culture
in vitro. In a previous report, exosomes from BM-MSCs were
shown to promote myogenesis and angiogenesis in vitro and
muscle regeneration in a mouse model of cardiotoxin-induced
muscle injury. Although these exosomes had low
concentrations of muscle repair-related cytokines, a number
of repair-related miRNAs were identified (Nakamura et al.,
2015). A system of MSC-encapsulated fibrin microbeads
demonstrated effectiveness in shortening the regeneration
period of volumetric muscle loss injury in a rat model
(Lalegul-Ulker et al., 2019). We see forward to future
studies developing new strategies allowing a full
characterization of the profile of the factors contained in
the MSC secretome and, therefore, a clear identification of
the mechanisms underpinning its protective action.

Stem cell therapies are among themost promising regenerative
approaches for cardiovascular diseases. Several animal studies
have shown that MSCs may improve cardiac functions via
mechanisms of immunomodulation, neovascularization,
endogenous repair, inhibition of fibrosis, and proliferation of
existing cardiomyocytes (Bagno et al., 2018). The majority of
these studies demonstrate that the level of direct MSC
contribution to cardiomyocyte replacement is low and,
therefore, unlikely to represent a therapeutically meaningful
MSC mechanism of action. The secretome of MSCs modulates
several key cell processes that contribute to cardiovascular
protection and/or repair under different pathological
conditions. Genetically modified MSCs overexpressing VEGF
(Locatelli et al., 2015), hepatocyte growth factor (HGF) (Zhao
et al., 2016) and interleukin 10 (IL-10) (Meng et al., 2018) have
been shown to alleviate cardiac injury and therefore promote
cardioprotection. To address in detail the behavior of MSCs
implanted in preclinical models and their impact on the site of
application, labeling and tracking methods are required (Vaegler
et al., 2014).

The therapeutic efficiency of human MSC-extracellular
vesicles (MSC-EVs) has been observed in preclinical animal
models and across many diseases and injuries (Gowen et al.,
2020). CD39-expressing CD4+ Th1 cells initiated adenosine-
related apoptosis after internalizing BM-MSC-derived
exosomes (Exos) in an animal GvHD model (Amarnath et al.,
2015). MSC-EVs can reduce clinical symptoms in murine models
of osteoarthritis and rheumatoid arthritis. Both MSC-derived
exosomes and microparticles (Wilson et al., 2019a) exerted an
anti-inflammatory role on lymphocytes independent of MSC
priming. In delayed-type hypersensitivity (DTH), a dose-
dependent anti-inflammatory effect of MPs and Exos was
observed, while in collagen-induced arthritis (CIA) models,
Exos efficiently decreased clinical signs of inflammation
(Cosenza et al., 2018). hUC-MSC-derived EVs may protect
cardiac tissue from ischemic injury, partly by promoting
angiogenesis, in a rat model of myocardial infarction
(Hossein-Khannazer et al., 2021). In atopic dermatitis mouse
models, intravenous administration of EV from human umbilical
cord-derived MSCs (hUC-MSCs) has shown anti-atopic effects
(Cho et al., 2018). In an in vitro AD mouse model, AT-MSC
(adipose tissue-MSC)-derived EVs were shown to ameliorate the
progression of beta-amyloid-induced neuronal death (Lee et al.,
2018).

1.4.2 Clinical Trials
MSCs were first tested as a cellular pharmaceutical agent in
human subjects in 1995 by (Lazarus et al., 1995) and have
since become the most clinically studied experimental cell
therapy platform worldwide. After 20 years of clinical trials,
MSCs have earned an excellent safety record but are still only
approved for use in Canada, New Zealand, Japan, South Korea
and Europe due to a lack of consistent efficacy outcomes. The
obligation to register clinical studies before the start of
recruitment, requested by the International Committee of
Medical Journal Editors (ICJME), provides up-to-date data on
ongoing clinical studies. Currently, while preparing this review,
there were 1,228 clinical applications for several diseases that have
been registered within the database of http://clinicaltrials.gov.
Among 1,228 recorded trials, more than 485 were identified as
ongoing trials. There were 370 completed clinical trials, of which
272 were in early phase I, phase I or phase II, and 28 studies
advanced to phase III and IV. At the same time, 392 studies were
classified as suspended, withdrawn, completed or of unknown
status. Almost the majority of MSC-based clinical trials are still in
phase I and II, where only a small number of trials are in phase III.
In general, many of the completed clinical trials showed the
efficacy of MSC-based therapies in several conditions, especially
in heart diseases/failure, ischemia, arthritis, collagen diseases,
infarction, joint diseases, osteoarthritis and many others, in
addition to their safe administration. However, many aspects
regarding MSC therapy should be deeply characterized, on the
one hand, because of their broad spectrum of therapeutic
potentials and, on the other hand, because their long-term
follow-up safety with outcomes is not yet determined. Of all
clinical trials using MSCs, the main indications are
musculoskeletal diseases, with 203 registered studies, 146 trials
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for central nervous system diseases, 146 trials for immune system
diseases, 139 for wounds and injuries, 130 for collagen diseases,
130 for rheumatic diseases, 128 for joint diseases, 127 for arthritis,
127 for vascular diseases, 123 for ischemia, 118 for respiratory
tract diseases, 112 for digestive system diseases and 112 for
gastrointestinal diseases.

A small part of the MSC clinical trials started using MSC-
derived exosomes instead of MSCs themselves. Clinical trial
number NCT: NCT04276987 used MSC-Exos for their
advantages over MSCs for treating severe patients
hospitalized with novel coronavirus pneumonia (NCP).
Twenty-four patients were enrolled in this study (phase I);
the patients received MSC-Exos derived from allogenic
adipose tissue by aerosol inhalation. Based on this study,
another clinical trial was performed; the patients were
divided into three groups: Group 1 received Exo type I,
Group 2 received Exo type II and Group 3 received a
placebo. This is a combination of phase I and phase II,
enrolling 30 patients (10 for each group), under the number
NCT: NCT04491240. Patients also received the drug by aerosol
inhalation. The results for these trials were promising, and safe
administration was observed with no side effects.

Coronavirus disease (COVID-19), the ongoing pandemic, is a
disease caused by the coronavirus. One of the studied treatments
for severe cases is the use of exosomes derived from bone marrow
MSCs (ExoFlo™). A single dose of 15 ml of ExoFlo was
intravenously (IV) administered to 24 COVID-19-positive
patients, and the results were promising (Sengupta et al.,
2020). Several other studies suggested the beneficial and safe
use of MSCs in treating severe conditions of COVID-19 patients
(Golchin et al., 2020). Recently, a study evaluated the clinical
outcomes of severe/critically severe COVID-19 patients (210)
being treated with UC-MSCs (1–2 × 106 per kilogram) from
October 15, 2020 until April 25, 2021 in Turkey. UC-MSCs
demonstrated safety with high potential when used as an
added therapeutic treatment for severe COVID-19 patients
(Ercelen et al., 2021).

Because of their therapeutic properties, the number of clinical
trials using MSCs will significantly increase. Table 1 and Table 2,
summarizing the clinical trials evaluating MSCs or their
secretome, have been included. Data were extracted on June
18, 2021 from www.clinicalTrials.gov, using the terms
“mesenchymal stem/stromal cells” or “MSC EVs,” and
downloaded into an XML file. The data include the identifier
for each trial (NCT number), clinical phase, recruitment status,
location, start date, sponsor, gender, age and enrollment. We
manually extracted additional information on disease, cell source,
match (autologous vs. allogenic), route of administration, dose,
cell expansion passage, conditioning and study results that could
not be downloaded directly from ClinicalTrials.gov from
individual trial records. Data for all of these categories were
not found in many cases but were collected when possible. Doses
in ClinicalTrials.gov are not reported systematically and were
found either as the total numbers of cells/patient or as the number
of cells/kg. While many clinical studies are in the recruitment and
active phases, many of these terminate without producing a
significant publication.T
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1.4.2.1 Primed Mesenchymal Stem/Stromal Cells
To enhance the beneficial properties of MSCs, several priming
strategies have been proposed. However, few clinical trials have
reported the use of primed MSCs for better therapeutic efficacy,
and inflammatory priming has not yet been clinically investigated.
Using a medium-based approach, MSCs can be induced to secrete
elevated levels of neurotropic factors, which have been shown to have
protective effects (Gothelf et al., 2014). These cells, designated MSC-
NTF cells (neurotrophic factor-secreting MSCs, also known as
NurOwn™) derived from patients’ own bone marrow, have been
recently used for phase I/II and phase IIa of clinical studies in patients
with amyotrophic lateral sclerosis (ALS). In these studies, ALS
patients were subjected to a single administration of autologous
MSC-NTF cells. The data from these studies indicate that the
single administration of MSC-NTF cells is safe, well tolerated and
demonstrated early promising signs of efficacy (Abdul Wahid et al.,
2019; Berry et al., 2019). Another option involved the culture of
allogeneic BM-MSCs in hypoxic conditions (1% oxygen) to
potentiate their efficacy (NCT01849159) (https://clinicaltrials.gov/
ct2/show/NCT01849159) (Oh et al., 2017). A clinical study
addressed the use of autologous platelet lysate (PL) to expand
MSCs as a treatment for knee osteoarthrosis (KOA). Thirteen
patients were enrolled in this study (phase II). The patients were
divided into two groups, with one receiving autologous bone
marrow-derived MSCs alone and the other receiving autologous
bonemarrowMSCs primedwith platelet lysate andwith both infused
by intraarticular injections (https://clinicaltrials.gov/ct2/show/
NCT02118519). Preliminary data concluded the safety of
injections of MSCs for knee osteoarthritis patients; efficacy was
also established for more than 2 years of follow-ups (Al-Najar
et al., 2017). Umbilical cord-derived MSCs (UC-MSCs) have also
demonstrated safety and efficacy in clinical trials of several diseases
and conditions, such as RA (Wang et al., 2019). Clinical trials, such as
clinical trial number NCT01547091, infused umbilical cord MSCs
(UC-MSCs) intravenously (IV) several times for an interval of time.
In that clinical trial (phase I/II), 200 patients were included, where
some received MSC treatment, others received disease-modified
antirheumatic drugs (DMARDs) and others received a
combination of MSCs with DMARDs.

1.4.2.2 Approved Mesenchymal Stem/Stromal Cells Products
Several companies have or are in the process of commercializing
MSC-based therapies. Despite the amount of research that has
been conducted and the number of clinical trials, there are few
approved products (Table 3). The European Medicines Agency
(EMA) is responsible for the scientific evaluation of centralized
marketing authorization applications (MAAs). Once granted by
the European Commission, the centralized marketing
authorization is valid in all European Union (EU) member
states, Iceland, Norway and Liechtenstein (https://www.ema.
europa.eu). The US Food and Drug Administration (FDA) has
the authority to regulate regenerative medicine products,
including stem cell products and exosome products (https://
www.fda.gov/). Currently, the only stem cell products that are
FDA-approved for use in the United States consist of blood-
forming stem cells (also known as hematopoietic progenitor cells)
that are derived from umbilical cord blood. In the United States,T
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stem cell products and exosome products should be carefully
verified before use by considering FDA approval or being studied
under an Investigational New Drug Application (Berry et al.,
2019), which is a clinical investigation plan submitted and
allowed to proceed by the FDA. Delivering a safe and effective
product is key, and effective guidance from organizations such as
the FDA and the ARM (Alliance for Regenerative Medicine) will
ease and accelerate the translation of MSC technologies from the
bench top to the bedside (Olsen et al., 2018).

Across the world, there are 10 approved MSC-based therapies,
including Alofistel for Crohn’s disease (approved in Europe);
Prochymal for GvHD (approved in Canada and New Zealand);
Temcell HS Inj for GvHD (approved in Japan); Queencell for
subcutaneous tissue defects; Cupistem for Crohn’s fistula,
Neuronata-R for amytrophic lateral sclerosis and Cartistem for
knee articular cartilage defects (all approved in South Korea);
Stemirac for spinal cord injury (approved in Japan); Stempeucel
for critical limb ischemia (approved in India); and Cellgram-AMI
for acute myocardial infarction (approved in South Korea).

BM-MSCs from a healthy adult donor were used to produce
TEMCELL, the first world therapeutic product using MSCs that
was approved in Japan in September 2015 for the treatment of
acute GvHD (Okada et al., 2017). One of the rare clinical trials in
phase III is the use of allogeneic adipose tissue-derived MSCs for
complex perianal fistulas in Crohn’s disease (clinical trial number
NCT: NCT01541579). The TiGenix/Takeda phase III clinical trial
that evaluates the use of MSCs for complex perianal fistulas in
Crohn’s disease (CD) is arguably the most successful late-stage
MSC trial to date (NCT01541579). In 2018, MSCs received
European approval to be used to treat patients with Crohn’s-
related enterocutaneous fistular disease (Panes et al., 2018).
The approved pharmaceutical drug, Alofisel, is derived from
adipose allogeneic MSCs. According to the indicated study,
adult CD patients with treatment-refractory, draining, complex
perianal fistulas treated with allogeneic AT-MSCs (Alofistel)
showed good remission, demonstrating the potential of MSCs
to substantially improve the standard of care in chronic illnesses
such as CD. The study is one of the clinical trials performed to test
Darvadstrocel (Alofisel), which is still called Cx601 (suspension of
adipose-derived MSCs). This randomized and double-blind study
enrolled 212 patients who received a single dose of 120 million
MSCs (Cx601) or 24 ml saline solution (placebo) by intralesional
injection. The results were promising, and it was concluded that
Cx601 was an effective and safe treatment for perianal fistulas in
patients with Crohn’s disease (Panes et al., 2016). Another clinical
trial, active at present, is testing Darvadstrocel and is registered
under the number NCT: NCT03706456. The study is supposed to
be completed on January 31, 2023; it enrolled 22 participants, and it
will include a follow-up period of 52 weeks after study product
administration and a long-term follow-up period from week 52 to
week 156.

2 PRE-CLINICAL CHALLENGES

Several preclinical challenges may influence the therapeutic use of
MSCs and should be well identified and characterized (Figure 2).

2.1 Tissue Sources of Mesenchymal Stem/
Stromal Cells
MSCs are virtually present in all tissues and share some
characteristics, such as similar shape, phenotype and functions
(Song et al., 2020a). Thus, several sources are reported to allow
the isolation of MSCs. Even when the expansion step is successful
and a high number of cells are transplanted during the procedure,
the cells frequently have very reduced viability and low
engraftment in the recipient tissue (Haque et al., 2015). These
alterations have led to distinct biological properties of MSC
populations, which may partly explain the differences in the
outcomes of clinical trials with distinct MSCs. It is well
established that over culture passages, MSCs enter a state of
replicative senescence after 20–30 cell divisions (Martin et al.,
2016). During this process, MSC morphology changes from
relatively small spindle-shaped cells to larger and flattened
cells, with typically more pronounced actin cytoskeleton fibers.
Thus, over the passages, MSCs isolated in vitro more often
resemble a cellular mixture with variable properties, resulting
from intrinsic and extrinsic influences in addition to inherent
disparities related to different sources and donors (Naji et al.,
2019).

2.1.1 Bone Marrow
MSCs have traditionally been derived from bone marrow for
clinical trials and in vitro research. The isolation and expansion
of bone marrow-derived MSCs involves the aspiration of the
iliac crest followed by the isolation of the mononuclear cell
fraction by density-gradient centrifugation and plating for
expansion (Macrin et al., 2017). A number of studies have
shown their capacity to differentiate into mesodermal cell
lineages (including myocytes, chondrocytes, osteoblasts and
adipocytes), ectodermal cell lineages (such as neurons) and
endodermal cell lineages (including hepatocytes). BM-MSCs
also showed the capacity to be differentiated into airway
epithelial cells, renal tubules, osteocytes and myocardial cells
(Marolt Presen et al., 2019).

However, the frequency of MSCs in the bone marrow is very
low (between 0.0001 and 0.01%) and decreases with age (Yang
et al., 2018). In addition, their ex vivo expansion can only result in
30–50 population doublings, and long-term cell expansion may
lead to chromosomal aberrations (Ahmadi and Rezaie, 2021).
Additionally, bone marrow aspiration is a painful procedure that
requires local anesthesia. Therefore, the use of BM has drawbacks,
prompting the search for alternative sources of MSCs that are
easily accessible, generally less invasive and contain larger
amounts of MSCs.

2.1.2 Adipose Tissue
Adipose tissue represents a very promising source for cell therapy
purposes in terms of safety, collection and culture. Adipose MSCs
are easy to obtain since isolation is performed under local
anesthesia and presents little risk of morbidity (Seo et al.,
2019). Adipose tissue therefore constitutes a source of MSCs
in abundant quantities, and AT-MSCs have shown greater
proliferation capacities than BM-MSCs. For the same amount
of tissue aspirated, adipose tissue contains 550 ×moreMSCs than

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 71685312

Najar et al. The Challenges Associated With MSCs

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


TABLE 3 | MSC and MSC progenitors- based products with marketing approval for clinical application worldwide.

MSC-product Indication MSC type Company Country
(Marketing

approval year)

Regulatory agency

Alofisel Complex perianal
fistulas in Crohn’s
disease

Allogeneic AD-MSCs Takeda Pharma Europe (2018) EMA

Allostem Bone regeneration Allogeneic AD-MSCs AlloSource United States
(2010)

Regulated under CFR 1,270, 1,271 as a
human tissue. Do not require pre-market
approval from the FDA. (Ref. 1; Ref. 2)

Cartistem Osteoarthritis Allogeneic UC-MSCs Medipost Co., Ltd South Korea
(2012)

MFDS

Grafix Acute/chronic wounds Allogeneic placental
membrane, incuding MSCs

Osiris Therapeutics United States
(2011)

Products marketed as human cells, tissues,
and cellular and tissue-based products (“HCT/
Ps”), as defined by the US FDA, that are
regulated solely under Section 361 of the
Public Health Service Act (“361 HCT/Ps”), and
consequently, do not require pre-market
approval from the FDA. https://fintel.io/doc/
sec-osir-osiris-therapeutics-10k-2019-
march-15-17970
other sources: http://www.osiris.com/grafix/
certifications/

Prochymal
(remestemcel-L)

GvHD Allogeneic BM-MSCs Osiris Therapeutics
Inc./Mesoblast

Canada (2012) Health Canada (expired date protection 2020)
New Zealand
(2012)

MEDSAFE (Approval lapsed)

OsteoCel Orthopaedic repair Allogeneic BM-MSCs NuVasive United States
(2005)

Regulated under CFR 1270, 1271 as a human
tissue. Do not require pre-market approval
from the FDA. (Ref. 1, Ref. 2)

Bio4 (formerly
OvationOS)

Bone repair and
regeneration

Bone-forming osteoblasts,
osteoprogenitor cells and
MSCs

Osiris Therapeutics United States
(2014)

Do not require pre-market approval from the
FDA: US FDA regulations for tissue
management. US FDA 21 CFR 1271

Stryker https://fintel.io/doc/sec-osir-osiris-
therapeutics-10k-2019-march-15-17970

Temcell HS GvHD Allogeneic BM-MSCs JCR Pharmaceuticals Japan (2015) PMDA

Trinity Evolution Orthopaedic repair Allogeneic BM-MSCs Orthofix United States
(2019)

Do not require pre-market approval from the
FDA: US FDA regulations for tissue
management. US FDA 21 CFR 1271 (Ref 2)

Trinity Elite Orthopaedic repair Allogeneic BM-MSCs Orthofix United States
(2013)

Regulated under CFR 1270, 127cer1 as a
human tissue (Ref1)

QueenCell Subcutaneous tissue
defects

Autologous AD-MSCs Anterogen Co., Ltd. South Korea
(2010)

MFDS

Ossron Bone regeneration Autologous BM-MSCs Sewon Cellontech
CO., Ltd.

South Korea
(2009)

MFDS

Obnitix GvHD Allogeneic BM-MSCs Medac Germany NA

Stempeucel Critical limb ischemia allogeneic BM-MSCs Stempeutics India (2016) DCGI
Research

Neuronata-R Amyotrophic lateral
sclerosis

autologous BM-MSCs Corestem, Inc. South Korea
(2014)

MFDS

Cellgram-AMI Myocardial infarction autologous BM-MSCs Pharmicell Co., Ltd. South Korea
(2011)

MFDS

Cupistem Crohn’s fistula autologous AD-MSCs Anterogen Co., Ltd. South Korea
(2012)

MFDS

Stemirac Spinal cord injury Autologous BM-MSCs Nipro Corp Japan (2018) PMDA

Cellentra VCBM Orthopaedic repair Allogeneic BM-MSCs Biomet Inc United States
(2012)

US FDA regulations for tissue management.
US FDA 21 CFR 1271 (Ref. 1; Ref. 3)

(Continued on following page)
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BM. The primary culture of adipose tissue-derived stem cells
proceeds through the mincing and enzymatic digestion of
subcutaneous adipose tissue followed by its culture and
expansion in culture medium. These cells harbor several
interesting characteristics and properties.

2.1.3 Newborn Tissue
It has been reported that cord blood, placental amniotic
membrane and fluid as well as the umbilical cord matrix
(called Wharton’s jelly) contain MSCs (Liu et al., 2021).
Perinatal tissues are of great interest due to their accessibility
and ease of collection. The MSCs in these tissues are found at a
high frequency and show an increased rate of proliferation and
differentiation. Moreover, their use does not conflict with ethical
issues raised by the use of embryonic stem cells (Aung et al.,
2019). However, the cryopreservation step is essential, which can
pose long-term storage problems (Peltzer et al., 2015).

2.1.4 Peripheral Blood
MSCs have been shown to circulate at a low frequency in
peripheral blood (Chen et al., 2019a). The origin of the
presence of MSCs in this source is still under debate. This
disparity could be linked to the diversity of isolation, culture
and characterization methods used in different studies. The
presence of MSCs in peripheral blood has been observed in
patients with acute burns, suggesting the potential role of
these cells in the regeneration of damaged tissue.

2.1.5 Other Tissue Sources
Although MSCs from other sources, such as dental tissues,
periodontal ligament, synovium, dermis, salivary gland, skin, and
skeletal muscles, may share many biological characteristics, they also
present differences regarding some properties (Mizukami and
Swiech, 2018). Some of these differences, such as cell surface
phenotype, transcriptome/proteome characteristics and
immunotrophic activity, represent specific features of MSCs from
a specific tissue source (Park et al., 2007), while others reflect the
heterogeneity of MSC populations from different organs. Other
differences may simply be attributed to the different isolation and

culture protocols (Pelekanos et al., 2012). Other studies suggest that
MSCs from different tissue sources retain an epigenetic memory of
their original tissue. Thus, it has been shown that the expression
profile of homeotic genes can vary from one source to another
(Ackema and Charite, 2008). Additional studies have shown that the
transcriptional expression of certain genes involved in the
immunomodulatory function of MSCs could vary significantly
depending on the cell source, even by changing the environmental
conditions of culture (Cho et al., 2017; Fayyad-Kazan et al., 2017).
Multiple comprehensive transcriptomic and proteomic analyses of
humanMSCs should help in identifying distinct populations ofMSCs
with distinct properties and specific clinical indications.

2.2 Phenotype: In Vitro Versus In Vivo
Identity
Despite advances in MSC characterization and their wide use in
regenerative medicine, their in vivo identity is still poorly
understood. The isolation and purification of MSCs was
achieved via in vitro phenotypic assays assessing the
expression of specific cell markers (Table 4). Such analysis
serves as an important quality control step that can save
significant time and reduce experimental variability. The
expression profile of several immunological molecules may
influence the local immune-inflammatory response and,
therefore, modulate the tissue healing process. By analyzing 27
relevant molecules, immunocomparative screening demonstrated
that liver-derived stromal cells present a nonimmunogenic profile
suitable to promote graft acceptance by the recipient (Merimi
et al., 2021b).

However, several artificial conditions during culture may
introduce experimental artifacts and hide or impair the native
identity of MSCs (Wilson et al., 2019a). Moreover, it is important
that MSCs, after being cultured in vitro, retain all their receptors
(to sense the tissue environment) and adhesion molecules (for
migration, homing and cell-to-cell interaction) (Naji et al., 2019).
MSC isolation methods, culture conditions and expansion may
alter the expression profile of several markers. In addition to ISCT
markers, other cell surface antigens, including nestin, CD29,

TABLE 3 | (Continued) MSC and MSC progenitors- based products with marketing approval for clinical application worldwide.

MSC-product Indication MSC type Company Country
(Marketing

approval year)

Regulatory agency

HiQCell Osteoarthritis/tendonitis Autologous adipose stromal
vascular fraction

Regeneus Ltd.
(ASX:RGS)

Australia (2013) NA

LiquidGen Bone repair Allogeneic BM-MSCs Skye
Orthobiologics LLC

United States NA

CardioRel Myocardial infarction Autologous MSCs Reliance life sciences India (2010) NA

Adipocel Crohn’s disease Autologous AD-MSCs Anterogen Co., Ltd. South Korea
(2007)

NA

Autostem Subcutaneous fat loss
area

Autologous AD-MSCs Cha biotech South Korea
(2010)

NA

MesestroCell Osteoarthritis and knee
joint arthritis

Autologous BM-MSCs Cell Tech Pharmed Iran (2018) NA

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 71685314

Najar et al. The Challenges Associated With MSCs

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


CD44, CD49b, CD130, CD146, CD166, CD271, CD200, and αV/
β5 integrin, have been reported. However, they are not specific to
a tissue source of MSCs (da Silva Meirelles et al., 2008; Kuci et al.,
2010). Other markers are expressed by MSCs, such as CD71,
CD106, CD54, SUSD2, MSCA-1, and STRO-1 (Busser et al.,
2015). However, accumulating evidence suggests that marker
expression of MSCs is not stable in culture conditions, which
renders MSC characterization based on their markers a challenge
(Lv et al., 2014). Under the authority of the International
Federation of Adipose Therapeutics (IFAT) and ISCT, a joint
statement established minimal criteria for the definition of
stromal cells from the adipose tissue-derived stromal vascular
fraction (SVF) and culture-expanded adipose tissue-derived
stromal/stem cells (Bourin et al., 2013). Evidence for CD34 as
a common marker for diverse progenitors from adipose tissue,
including MSCs, was thus reported. However, current literature
has reported that the phenotype of MSCs can change during ex
vivo expansion, which may represent alterations in the biological
features of the MSC population involved in the response to
environmental change. Today, no specific and unique marker
can be used for isolating or identifying MSCs. Only markers of
native mesenchymal stromal cells have been evaluated to enrich
the population (Simmons and Torok-Storb, 1991). Positive
selection for the CD140b (STRO-1) antigen increases the
frequency of colony-forming unit fibroblasts (CFU-Fs) by 100-
fold relative to the total cell population. Cells selected for the
CD271 antigen have a better potential for proliferation and
differentiation than the unselected population. Likewise, the
CD200 and CD49a antigens allow significant enrichment of
the population of mesenchymal stromal cells derived from the
bone marrow by selecting the most multipotent cells (Rider et al.,
2007; Delorme et al., 2008).

It has been shown that the MSC profile of cell surface antigens
changes during cell culture. A previous study indicated that
CD13, CD29, CD44, CD73, CD90, CD105, and CD106 in
MSCs are downregulated during culture expansion compared
to MSCs in the stromal fraction (Cao et al., 2020). As such,
uncultured BM-MSCs isolated from both humans and mice do
not express CD44 but express the surface protein (90% positive
cells) after being plated in culture (Qian et al., 2012). In contrast
to an increase in CD44, the expression of CD106 and CD271 on
MSCs is decreased after culture (Jung et al., 2011). Typical
markers of cultured MSCs, such as CD73 and CD105, appear
to be expressed by the majority of freshly isolated MSCs and are
maintained during culture. Currently, a critical marker, STRO-1,
which has a high specificity for early passage bone marrow-
derived MSCs, is not included in the ISCT criteria. This marker
helps to identify, isolate, and characterize stromal progenitor
cells. However, the expression of Stro-1 is lost from MSCs during
ex vivo expansion, and it cannot be considered a valuable marker
of MSCs. The selectivity of STRO-1 for cells that are not MSCs is
not yet clear (Zhang et al., 2020). To identify relevant markers for
the enrichment of MSCs from heterogeneous cultures, the
expression of neuron-glial antigen 2 (NG2) and melanoma cell
adhesion molecule (CD146) was investigated. The results showed
that the expression of CD146 and NG2 was inversely correlated
with doubling time during the serial passage of single-cell-derived

human BM-MSC cultures. The fraction of MSCs with high
expression of NG2 and low scatter properties is more
clonogenic than the parental MSC culture from which it was
derived (O’Connor, 2019). However, the expression of CD146
during in vitro culture showed discrepancies between studies,
probably due to various factors, including donor variation,
different culture conditions, immunostaining protocols and
flow cytometry analysis. CD142 is another surface marker that
may represent concern for the systemic administration of MSCs,
as it is linked to thrombosis. BM-derived MSCs displayed less
expression of CD142 than AT-MSCs. BM-derived MSCs are likely
more suitable for intravenous delivery and decrease the risk of
thrombosis (Christy et al., 2017; Le Blanc and Davies, 2018).

To date, the lack of specific markers to define MSCs poses an
additional challenge in the field, and the use of more advanced
molecular criteria has been proposed. Further, several research
groups have attempted to develop novel markers, such as
transcriptomic, epigenetic and proteomic markers (Wagner
et al., 2016; Wiese et al., 2019; Wiese and Braid, 2020).

2.3 Tissue Repair Properties: Multilineage
Potential Versus Paracrine Immunotrophic
Actions
MSCs are able to migrate to inflamed areas and damaged sites
where they promote tissue repair by different functions (Kim
et al., 2021). The action of MSCs can be associated not only with a
direct mechanism, through their differentiation and replacement
of damaged cells, but also primarily with their paracrine
properties that reduce the inflammatory response and
stimulate (cell empowerment) the proliferation and
differentiation of different local progenitor cells (Wang et al.,
2014b; Dabrowska et al., 2020; Qiu et al., 2020; Chae et al., 2021).
Hereafter, we present an overview of the current findings on the
tissue repair properties of MSCs and their consequences for
clinical application.

2.3.1 Multilineage Potential
It was initially believed that MSCs mainly repair damaged tissues
by cell-for-cell replacement driven by direct differentiation
(Neshati et al., 2018; Smaida et al., 2020; Pan et al., 2021).
Currently, there are no in vivo data demonstrating that MSCs
differentiate into resident cells to repair injured tissue.
Furthermore, permanent engraftment of MSCs into diseased
tissues does not seem to occur. Therefore, the multipotency
function of MSCs is likely an in vitro characteristic established
to define MSCs a few years ago (Caplan, 2017). A number of
culture protocols have been developed to induce MSC
differentiation into several cell lineages in response to well-
defined stimulation (Ullah et al., 2015) (Fitzsimmons et al.,
2018). Although initially considered by Caplan to be stem
cells, Sacchetti et al. (2007) revealed in 2007 that MSCs
represent a rare and heterogeneous population of progenitors
involved. The evidence supporting the in vivo differentiation of
MSCs is relatively sparse and controversial compared to the
abundance of data documenting in vitro multipotency. Most
of the studies claiming in vivo differentiation, particularly
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beyond mesodermal-derived tissue types, have been
methodologically flawed or have documented only extremely
low frequency events. Relatively few studies have clearly
demonstrated MSC engraftment with differentiation and
functional incorporation into recipient tissues when subjected
to critical review. This discrepancy between in vitro and in vivo
evidence ofMSCmultipotency highlights the need for in vivo data
supporting functional incorporation or tissue-specific gene
expression of engrafted MSCs, where models of robust
engraftment, incorporation and differentiation do not exist.

2.3.2 Paracrine Immuno-Trophic Action
MSCs may act as immunomodulatory and trophic mediators in
tissue regeneration and cell therapy. These actions imply
interactions and interplay with local tissue cell progenitors as
well as immune cells.

2.3.2.1 The Trophic Process
Trophic function appears to have a critical role in mediating the
beneficial effect of MSC therapy for degenerative and/or
inflammatory diseases. In response to injury, homing receptors
and chemokines are released, which subsequently activate MSCs.
Activated MSCs are then mobilized into the peripheral blood
circulation, where an adhesion step is achieved by the specific
interaction between chemokines and homing receptors such as
stromal cell-derived factor (SDF-1), CXC chemokine receptor
(CXCR) 4, hepatocyte growth factor (HGF), c-Met, hyaluronic
acid (HA), CD44, monocyte chemoattractant proteins (MCPs)
and C-C chemokine receptor type 2—CCR2/CD19. The
transendothelial migration of MSCs to the local site of injury
occurs via the degradation of extracellular matrix (ECM) by
matrix metalloproteinases (MMPs) (Lin et al., 2017). Through
a plethora of molecules (including HGF, IGF, VEGF, TGF-β1,

and FGF-2), MSCs may regulate tissue homeostasis within the
stromal niches by supporting the maintenance, expansion and/or
differentiation of local resident cells (Park et al., 2018). MSCs can
produce large amounts of growth factors, which subsequently
stimulate endothelial cells, fibroblasts and, most importantly,
tissue progenitor cells or stem cells in situ. The concerted
action of these factors and cells facilitates tissue repair through
angiogenesis, remodeling of the extracellular matrix (ECM) and
the differentiation of tissue progenitor cells (Wang et al., 2014b).

2.3.2.2 The Immunomodulatory Process
MSCs are able to suppress the activity of the immune system and
help resolve inflammation. However, MSCs are also able to
stimulate the response of the immune system. This ability has
therefore led some authors to hypothesize that MSCs could adopt,
depending on the context, a pro- or anti-inflammatory phenotype
(Bernardo and Fibbe, 2013; Betancourt, 2013).

MSCs modulate both inflammatory and immune responses by
regulating innate and adaptive immunity that favor tissue repair
(Chen et al., 2019b; Song et al., 2020b) Their effects are not HLA
(human leukocyte antigen)-restricted. MSCs act on all effectors of
innate and adaptive immunity and alter cell proliferation and
other functions of immune cells. In addition, MSCs can inhibit
the proliferation, cytotoxicity and production of IFN-γ in T
lymphocytes and NK cells (Prigione et al., 2009). Blocking G0/
G1 phases of the cell cycle, inducing apoptotic pathways and
impairing the T cell subset ratio and inhibiting dendritic cells are
among the mechanisms to inhibit lymphocyte proliferation (You
et al., 2019). MSCs may also promote the polarization of
macrophages from a proinflammatory phenotype to an anti-
inflammatory phenotype, promoting tissue regeneration (Sica
and Mantovani, 2012). MSCs also inhibit B lymphocyte
proliferation and alter their differentiation into plasma cells. In

FIGURE 2 | The pre-clinical challenges linked to MSCs. MOC: mechanisms of action.
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addition, MSCs may induce the differentiation of regulatory T
lymphocytes (Saeedi et al., 2019).

Several mechanisms have been proposed to explain the
immunomodulation carried out by MSCs, among which are
(Najar et al., 2016):

- Indoleamine 2,3-dioxygenase (IDO), which catabolizes
tryptophan to kynurenine. IDO is crucial for the inhibition
of effector T lymphocyte proliferation by human MSCs and
acts by depleting the medium of an essential amino acid,
tryptophan, and by producing kynurenine, which is toxic to T
lymphocytes.
- Prostaglandin E2 (PGE2), in combination with IDO,
participates in the inhibition of NK cell proliferation.
- TNF-α stimulates “gene/protein 6” (TSG-6), which acts by a
negative feedback control on macrophages by reducing their
synthesis of proinflammatory factors, which in particular
decreases the recruitment of polymorphonuclear
neutrophils within the damaged tissues.

TABLE 4 | Markers differentially expressed by MSCs.

CD (cluster of differentiation) MSC expression

CD3 −

CD9 +

CD10 +

CD11a −

CD11b −

CD13 +/−

CD14 −

CD15 +

CD16 −

CD19 −

CD29 +

CD31 +/−

CD34 +/−

CD35 −

CD36 +/−

CD38 −

CD40 +/−

CD44 +/−

CD45 +/−

CD49a −

CD49b +

CD49c +

CD49d +/−

CD49e +

CD50 -

CD51 +

CD54 +/−

CD58 +/−

CD55 +

CD56 −

CD58 +

CD61 +/−

CD62e −

CD62L +/−

CD68 −

CD71 +

CD73 +

CD79 −

CD80 −

CD86 −

CD90 +

CD91 +

CD102 +/−

(Continued in next column)

TABLE 4 | (Continued) Markers differentially expressed by MSCs.

CD (cluster of differentiation) MSC expression

CD104 +/−

CD105 +

CD106 +/−

CD117 −

CD120a +

CD120b +

CD121a +

CD124 +

CD133 −

CD134 −

CD140a +

CD140b +

CD144 +

CD146 +

CD164 +

CD166 +

CD200 +/−

CD252 −

CD221 +

CD271 +

CD274 +/−

SSEA-4 +

STRO-1 +

MSCA-1 +

HLA-ABC +

HLA-DR +/−

HLA-G +/−
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- HLA-G5, which is thought to be responsible for the
production of regulatory T lymphocytes;
—“Transforming growth factor”-β (TGF-β), galectins,
adenosine and FAS pathways, “programmed cell death
protein 1” (PD-1), IL-1RA, IL-10 and Notch, but none of
these mechanisms alone summarizes the immunomodulatory
activity of MSCs.

Among the proven elements, MSCs are not constitutively
immunosuppressive but acquire these properties after
stimulation by inflammatory signals from the
microenvironment, such as the inflammatory cytokines IFN-
γ or TNF-α. MSCs are able to secrete a set of proinflammatory
molecules, including IL-6, IL-8, GM-CSF (granulocyte-
macrophage colony-stimulating factor) and MIF (macrophage
migration inhibitory factor), thus promoting the recruitment
and survival of neutrophils. Under the effect of these same
signals, it has been shown that MSCs were able to block the
synthesis of IL-10 from B lymphocytes, thus promoting a
proinflammatory response. Mechanistically, MSCs likely
contribute to immunomodulation through cell-to-cell contact
or paracrine effects (Burnham et al., 2020). The secretome
of MSCs comprises various cytokines and regulatory factors
(e.g., TSG-6, TGF-b, hepatocyte growth factor, IFN-γ,
prostaglandin E2, PGE2 and IDO pathways), insulin-like
growth factor binding proteins, heme oxygenase-1 (HO),
human histocompatibility antigen-G5 (HLA-G5), chemokine
(C-C motif) ligand 2 (CCL2), IL-10, galectin-1 and galectin-3
(Madrigal et al., 2014; Burnham et al., 2020). The inflammatory
context could also lead MSCs to synthesize a set of chemokines,
such as CCL2, CCL3 or CCL12, helping the recruitment
of macrophages, or like CXCL9, CXCL10 or CXCL11,
promoting the chemotaxis of T lymphocytes (Andrzejewska
et al., 2019b; O’Connor, 2019). These paracrine pathways may
explain the therapeutic effect of MSCs despite their low
engraftment, homing and survival after transplantation (Cruz
et al., 2017).

2.3.2.3 Extracellular Vesicles
Extracellular vesicles (EVs) are membrane-enclosed
heterogeneous structures including exosomes, microvesicles,
ectosomes, microparticular membrane particles, exosome-like
vesicles and apoptotic bodies that are released into the
extracellular space. However, the defining parameters for each
of these different classes are not definitive, and the use of the
terms exosomes, microvesicles, and microparticles is often
ambiguous and not rigorously qualified. These structures have
been shown to participate in a wide variety of biological processes
and are currently under intense investigation in many different
fields of biomedicine (Buzas et al., 2018). EVs may be secreted by
multiple types of cells and have been demonstrated to mediate
intercellular communication in both physiological and
pathological conditions. Generally, EVs can be formed by
either inward budding of endolysosomal vesicles followed by
exocytosis (e.g., exosomes) or shedding from the plasma
membrane (e.g., microvesicles) (Klyachko et al., 2020). Due to
their ability to carry key molecules, EVs affect the physiological
and pathological functions of recipient cells. Generally, EVs
carry a cargo of proteins and nucleic acids that reflect their
cell of origin. They represent a sophisticated intercellular
communication system and potential healing agents or
delivery vehicles of therapeutic agents. Studies have confirmed
that a major portion of the beneficial proprieties of MSCs arises
from their paracrine activities (Varderidou-Minasian and
Lorenowicz, 2020). EVs derived from MSCs may deliver a
variety of molecules to the surrounding cells, leading to
functional changes in the recipient cells (Hong et al., 2019).
The regenerative and immunomodulatory capacity of MSC-
derived EVs has been evaluated in several animal disease
models, including kidney and liver injury, lung disease,
cartilage repair, hind limb ischemia, ischemic brain injury, and
spinal cord injury (Harrell et al., 2019; Hu et al., 2019; Liau et al.,
2019). MSC-derived EVs represent a potential cell-free
therapeutic option, as they are a major key for crosstalk
communication between cells.

FIGURE 3 | The clinical challenges linked to MSCs.
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2.4 Microenvironmental Cues Influencing
the Function ofMesenchymal Stem/Stromal
Cells
MSCs are considered responsive cells because they are able to
sense the tissue environment and adapt their features accordingly.
Such capacity to adjust their properties is linked to their
functional plasticity. Such plasticity allows MSCs to actively
respond to local tissue challenges and therefore display the
appropriate therapeutic response (Wang et al., 2014b). Several
in vitro strategies, including the use of relevant factors/conditions,
have been reported to likely modulate the properties of MSCs
(Wilson et al., 2019b).

These approaches require appropriate controls before
translation for clinical applications because of the risk of
immunogenicity, tumorigenicity, epigenetic modifications,
loss of viability and efficiency. The production of MSCs
using these approaches should be accomplished according
to GMP.

2.4.1 Oxygen Saturation
The oxygen (O2) content under normoxic conditions is 21%,
which is of course higher than the concentrations found in the
organs of the body (1–10%). For this, the culture of MSCs under
hypoxic conditions with an O2 percentage ranging from 1 to
10% clearly improves the proliferation of MSCs, their survival
and the conservation of their multipotent character by keeping
them in an undifferentiated state (Elabd et al., 2018). Some
studies have also shown an improvement in the paracrine
activity of MSCs through increased production of IL-6 and
growth factors VEGF, HGF and bFGF (basic fibroblast growth
factor). The effect of the hypoxic environment is mainly due to
the induction of the transcription factor HIF-1 (hypoxia-
inducible Factor 1), which in turn can interfere in different
signaling pathways and induce the expression of the target genes
involved in angiogenesis, proliferation and metabolism of MSCs
(Luo et al., 2019).

2.4.2 Three-Dimensional Culture of Mesenchymal
Stem/Stromal Cells
Three-dimensional (3D) culture is another strategy to enhance
the potential of MSCs. Culturing MSCs in spheroids creates a

hypoxic environment that strengthens their survival and
proliferation. In addition, the anti-inflammatory, antifibrotic
and proangiogenic activities of these MSCs are improved
following an increase in the expression of the
immunoregulatory factors TSG6 (TNFα-stimulated gene-6),
PGE2 (prostaglandin E2) and IL-6 as well as trophic factors
STC-1 (stanniocalcin 1), CXCR4, angiogenin and VEGF (Tsai
et al., 2015). The use of specific biomaterials has demonstrated
significant improvement in MSC therapy. Antonini et al. (2016)
showed that the use of polyethylene terephthalate nanogratings
improved the osteogenic differentiation of MSCs.

2.4.3 In Vitro Toll-Like Receptors Triggering
The Toll-like receptor (TLR) signaling pathway plays critical roles
in the inflammatory response as well as in the regulation of tissue
injury and wound healing processes. Depending on their origin
and culture condition, MSCs can differentially express several
patterns of TLRs. The engagement of these TLRs by their
respective ligands results in different biological and
immunomodulatory responses by MSCs (Tomchuck et al.,
2008). MSCs can adopt pro-inflammatory or anti-
inflammatory functions of the MSC1/MSC2 type depending
on TLR engagement (Waterman et al., 2010). It was shown
that the binding of LPS with TLR4 induces MSC
differentiation into a proinflammatory phenotype with high
expression of IL-6 and IL-8 and induction of T lymphocyte
proliferation cocultured with MSCs (Waterman et al., 2010).
On the other hand, the binding of poly (I:C) (polyinosinic-
polycytidylic acid) with TLR3 polarizes MSCs toward an anti-
inflammatory phenotype with high expression of IL-4, IDO and
PGE2 and retains their immunosuppressive effect on T
lymphocytes (Waterman et al., 2010). However, contrary to
these results, (Liotta et al., 2008) showed an inhibition of the
immunosuppressive effect of MSCs independent of TLR3 or
TLR4 engagement by the inhibition of the Notch signaling
pathway induced by Jagged-1. These contradictory results can
be explained by differences in the culture conditions between the
distinct studies, the concentrations of ligands used and the
duration of treatment. TLRs are therefore important regulators
of MSC functions and deserve more in-depth and standardized
studies to better understand the influence of their ligands on the
potential of MSCs.

FIGURE 4 | The clinical optimization of MSC therapy.
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2.4.4 In Vitro Inflammatory Licensing
Within the injured tissue, a plethora of inflammatory mediators
and cytokines are released that may influence the function of
MSCs. The immunomodulatory functions of MSCs are regulated
by the complexity and intensity of the inflammatory
environment. MSCs express several receptors on their surface
for inflammatory mediators, such as IFN-γ, TNF-α, IL-1 and IL-
6, which makes them capable of perceiving and reacting
significantly to inflammatory stimuli. Accordingly, the
immunosuppressive properties of MSCs were increased by
IFN-γ in in vitro and in vivo models (Kim et al., 2018). IFN-γ
licensing induced IDO expression in MSCs via the JAK/STAT1
signaling pathway. Moreover, it has been shown that MSCs have
substantial and beneficial anti-inflammatory effects in the mouse
model of GvHD when the latter were injected during the
inflammatory peak. This effect was lost when anti-IFN-γ
antibody was injected in parallel to WT-MSCs (wild-type
MSCs) or when IFNγR1−/− MSCs were used (Ren et al., 2008).
In the presence of IFN-γ and TNF-α, the expression of the
chemokines CXCL9, CXCL10, RANTES (regulated upon
activation, normal T cell expressed and presumably secreted)
and CCL3 was considerably induced and involved in the
recruitment of immune cells (specifically lymphocytes) to the
surroundings of MSCs. They also induced the expression of
ICAM-1 (intercellular adhesion molecule 1) and VCAM-1
(vascular cell adhesion molecule 1) molecules that facilitate
cell adhesion, and ultimately, they stimulated the production
of large amounts of IDO, iNOS and PGE2 involved directly in the
immunomodulatory effect of MSCs (Ren et al., 2008; Li et al.,
2012; Kim and Cho, 2016). On the other hand, during chronic or
controlled inflammation, where the concentrations of IFN-γ and
TNF-α are suboptimal, the latter induced the expression of
chemokines but was insufficient to induce the production of
the soluble mediators IDO and NO in large quantities, which
would have a countereffect: the cells will be recruited near the
MSCs without being inhibited, and in this case, the inflammatory
process is aggravated (Kim and Cho, 2016).

A recent profiling highlighted that following a combination
of inflammatory and proliferative signals, the sensitivity and
responsive capacity of AT-MSCs were significantly modified
(Merimi et al., 2021a). In particular, inflammation leads to an
upregulation of IL-6, IL-8, IL-1β, TNF-α and CCL5 cytokine
expression. Inflammation and cell passaging increased the
expression of HGF, IDO1, PTGS1, PTGS2 and TGFβ. The
expression of the TLR pattern was differentially modulated,
with TLR 1, 2, 3, 4, 9 and 10 being increased, whereas TLR 5 and
6 were downregulated. Such observations are encouraging and
have to be developed as preconditioning strategies to strengthen
MSC function and proprieties (Muller et al., 2018).

2.4.5 Orthobiologics
MSCs hold promise for tissue healing, but some criticisms hamper
their clinical application, including the need to avoid xenogeneic
compound (e.g., animal serum) contamination during ex vivo cell
expansion and scarce survival after transplantation. Orthobiologics
are biological substances used to improve tissue healing and include
platelet-rich plasma (PRP) and platelet lysate (PL) (Kruel et al., 2021).

Many studies have demonstrated the ability of PRP, a source of many
biologically active molecules, particularly growth factors, to positively
influence MSC proliferation, survival and functionality, as well as its
antifibrotic potential. Previous results suggested that PRP is able to
positively affect BM-MSC viability, survival and proliferation,
suggesting that it could represent a good serum substitute during
in vitro cell expansion and could be beneficial toward transplanted
cells in vivo (Sassoli et al., 2018). In parallel, the proliferation, cell
cycle, and migration of umbilical cord-derived MSCs (hUC-MSCs)
was significantly promoted in the presence of PL by upregulating
relevant genes/proteins (PDGF-AA, IGF-1, TGF-β, EGF and FGF)
and activating beclin1-dependent autophagy via the AMPK/mTOR
signaling pathway (Yan et al., 2020).

Additionally, PRP may provide a suitable microenvironment
that potentiates the enhancement of the functionality of MSCs. In
this way, PRP and AT-MSC combined therapy significantly
accelerated the healing of diabetic wounds induced
experimentally in rats by modulating the Notch pathway,
promoting angiogenesis and the proliferation of epidermal
stem cells (EPSCs) (Ebrahim et al., 2021).

A study indicated that PRP improved the efficacy of engrafted
MSCs to replace lost skin in mice by accelerating the wound
healing processes, ameliorating the elasticity of the newly
regenerated skin and stimulating their proangiogenic potential
through enhanced secretion of soluble factors such as VEGF and
SDF-1. These effects were also accompanied by an alteration of
MSC energetic metabolism, including the oxygen consumption
rate and mitochondrial ATP production (Hersant et al., 2019).
Accordingly, there is a need to identify appropriate (regarding
safety and efficiency) growth factors acting as preconditioning
agents that may improve the cell survival, proliferation and
function of MSCs within the host tissue microenvironment.

2.5 Engineering Mesenchymal Stem/
Stromal Cells
Genetic engineering has emerged as another challenging yet
promising approach to improve the therapeutic properties of
MSCs. In fact, MSCs can be genetically engineered to overexpress
certain desired elements and soluble factors, such as growth
factors, cytokines, chemokines, transcription factors, enzymes
and microRNAs (Fricova et al., 2020; Miceli et al., 2021).
Distinct strategies have been applied to induce genetic
modifications to further enhance the therapeutic potential of
MSCs by improving various cellular properties, such as survival,
homing and immunomodulatory effects. Several studies have
demonstrated the use of genetic engineering (Baldari et al.,
2017). Several studies using engineered MSCs have
investigated the role of pancreatic duodenal homeobox-1
(PDX-1) and VEGF to produce functional insulin-producing
cells as cellular therapy for diabetes; β-glucuronidase (GUSB)
gene to improve genetic enzyme deficiency
mucopolysaccharidosis type VII (MPSVII); IFN-α and INF-β
in cancer therapy; Bcl-xL to stimulate angiogenesis; Bcl-2, heme-
oxygenase-1 and Akt1 to improve the cell survival helping heart
tissue repair in myocardial infarction; BMPs, to induce osteogenic
differentiation; Neurogenin1 (Ngn1) to induce neuronal
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differentiation and lipocalin2 (Lcn2) to restore the renewal
potential of MSCs (Noronha et al., 2019; Saeedi et al., 2019).
Viral vector–based genetic engineering typically has more
efficient and durable gene expression but has some safety
concerns because genes are integrated into the target cell
genome. Nonviral vectors are safer, but the transfection
efficiency is typically lower and gene expression is less durable.
MSCs can also be engineered with drug-loaded particles. These
particles are intracellularly loaded into MSCs to sustain their
immunosuppressive profile for an extended period, regardless of
the source of MSCs, but particle preparation can increase the cost
and complexity when compared to the use of free small
molecules. Oncolytic virus (OV) engineering has also been
used to engineer MSCs. MSCs function by shielding viruses to
avoid immunogenicity and by releasing the virus in tumor tissue
to kill tumor cells. One limitation is that regular OVs have only
moderate infectivity, although this can be overcome by using
certain viral variants with higher infectious capacity (Levy et al.,
2020).

2.6 Aging and Senescence
Although data on the functionality of MSCs isolated from aged
subjects versus young individuals are still under debate in the
literature, some consensual evidence appears. With increasing
donor age, MSCs from bone marrow are reported to show a
decrease in proliferative and clonogenic/self-renewal capacities,
characterized by a number of CFU-Fs, but no phenotypic change
is correlated with age (Charif et al., 2017). On the other hand,
other studies reported the absence of substantial differences
between cells from adult and elderly cohorts; therefore, aging
rather than in vivo donor aging influences MSC characteristics.
Indeed, (Andrzejewska et al., 2019a) compared MSCs from
cohorts of young and old donors by analyzing their
phenotypic and functional performance, using multiple assays
typically employed as minimal criteria for defining MSCs. They
found that MSCs from both cohorts met the standard criteria for
MSCs, exhibiting similar morphology, growth kinetics, gene
expression profiles, proangiogenic and immunosuppressive
potential and the capacity to differentiate toward adipogenic,
chondrogenic and osteogenic lineages.

The number of population doublings required for obtaining
sufficient numbers of MSCs for therapy would be dependent on
the initial number of viable MSCs. Therefore, attaining sufficient
numbers could be subject to a large number of population
doublings with the attendant possibility of stemness
attenuation and cellular senescence (Liau et al., 2019). It has
been reported that prolonged MSC expansion is accompanied by
phenotypical and morphological changes, such as enlarged and
irregular cell shapes and shortened telomere lengths, as well as
gene, miRNA and protein expression alterations in cells, which
ultimately lead to a state of senescence. Cellular senescence is
generally defined as an arrest of cell proliferation. Replicative
senescence refers to irreversible growth arrest of human diploid
cell strains after extensive serial passaging in culture (Zhai et al.,
2019). The presence of senescent cells in therapeutic MSC batches
is undesirable, as it reduces their viability, differentiation
potential and trophic capabilities. It is well documented that

human MSCs (hMSCs) lose their differentiation potential after
prolonged culture expansion in vitro and that cells from late,
presenescent passages may not be able to differentiate at all.
Additionally, their presence in MSC culture negatively influenced
immunomodulatory and homing properties (Turinetto et al.,
2016; Robb et al., 2019). Additionally, senescent cells acquire a
senescence-activated secretory phenotype, which may not only
induce apoptosis in neighboring host cells following MSC
transplantation but also trigger an age-related disease
phenotype such as osteoarthritis. Current methods for MSC
senescence analysis in culture have been developed and were
comprehensibly described previously (Zhai et al., 2019).

3 THE CLINICAL CHALLENGES

Several clinical challenges may influence the therapeutic use of
MSCs and should be well identified and characterized (Figure 3).

3.1 Culturing and Manufacturing Conditions
As the frequency of MSCs is low after isolation, there is a need to
expand the cells ex vivo to a high number before their use. Thus, the
culture and manufacturing conditions may influence the properties
of MSCs and should be well identified. On a large scale, and in
accordance with good manufacturing practices (GMPs), MSCs are
expanded with bioreactors. A bioreactor is a culture system where all
conditions, including pH, temperature, and oxygen level, can be
managed and controlled for proper cell expansion. Different types of
bioreactors are used in MSC expansion, such as stirred tank
bioreactors, rocking bioreactors, hollow fiber bioreactors and
fixed-bed bioreactors (Mizukami and Swiech, 2018). It should be
noted that these different culturing protocols and systems directly
affect the therapeutic potential of MSCs; thus, each trial follows
restricted rules to obtain the desired final product.

Additionally, the identification of optimal culture conditions is
a prerequisite for MSC clinical applications. Animal-derived
growth supplements, such as fetal bovine serum (FBS), have
been predominantly used for MSC expansion. However,
utilization of animal-derived products bears critical limitations
and safety concerns. In particular, the risk of contamination and
transmission of infectious agents, the potential to activate
xenogeneic immune responses and animal welfare should not
be neglected. Moreover, the exact composition of FBS remains
unclear, and there are often significant variations between lots.
Hence, it is necessary to determine suitable alternatives to animal
serum that comply with all the relevant clinical requirements and
that provide the appropriate quantity of high-quality cells while
preserving the required properties. Alternative animal product-
free formulations, including human AB serum (HABS), human
platelet lysate (HPL) and chemically defined media (CDM), have
been developed (Oikonomopoulos et al., 2015; Yin et al., 2019).
Despite their batch-to-batch variability, these alternatives resolve
most of the basic problems associated with the application of FBS.
Although they represent promising supplements due to their
native and human origin, further detailed analysis and studies will
be required, and guidelines will have to be set to fully guarantee
the safety and efficiency of these alternatives. The different
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manipulation and storage procedures (freeze-thawed or freshly
harvested) may also affect the quality of the product. Most of the
allogenic MSCs used in clinical trials are cryopreserved. However,
studies have shown that the cryopreservation of MSCs reduces
their immunomodulatory and blood regulating properties (Moll
et al., 2014a; Moll et al., 2016). Further research is imperative for
the optimization of culturing and manufacturing conditions to
ensure a better cellular “fitness” of MSCs.

3.2 Route of Application and Dosing
The route of MSC administration is highly dependent on the
desired curative ability. Systemic (intravenous IV, intra-arterial
IA, inhalation) and local (topical, direct tissue injection,
intramuscular, trans-epi, trans-endocardial, intra-articular)
delivery are common routes for the administration of MSCs
(Caplan et al., 2019). In addition to the route of
administration, the effective and accurate number of MSCs,
the number of doses (single or repeated doses) and the
interval of time between each dose are among the challenges
influencing the safety and efficacy of the therapy (Galipeau and
Sensebe, 2018; Kabat et al., 2020).

3.3 Hemocompatibility
MSCs are ABO neutral, and research has demonstrated that they
do not inherently express ABO blood group antigens. However,
the use of human AB plasma (ABP) while working with MSCs led
to an adsorption of ABO antigens proportional to antigen
concentration in the serum and adsorption time. Thus,
particularly when treating immunocompetent patients or
patients with blood type O, it is recommended to wash and
infuse MSCs with nonimmunogenic human serum albumin
(Moll et al., 2014b; Olsen et al., 2018). In some cases, MSCs
initiate instant blood-mediated inflammatory reactions
(IBMIRs). This later significantly causes the failure of allogenic
graft survival and function. MSC hemocompatibility is mainly
determined by procoagulant tissue factor (TF), which is highly
correlated with the initiation of IBMIR. BM-MSCs show a lower
expression of TF than MSCs from other sources (adipose tissue,
perinatal tissue). Thus, MSCs are largely used in clinical trials
with intravenous administration to minimize the rate of IBMIR
and prolong engraftment survival. Nevertheless, many studies
have investigated the effect of many conditions (such as culture
media, freeze-thawing and cell expansion) on the ability of MSCs
to trigger IBMIR (Moll et al., 2019). However, for clinical
applications, it is suggested to add anticoagulant factors with
MSC transplantation (Oeller et al., 2018).

3.4 Complement
Understanding the behavior of MSCs after infusion is still the
focus of many studies. Culture-expanded humanMSCs may elicit
an innate immune attack, termed IBMIR. This reaction is
characterized by the activation of the complement cascades.
This deleterious reaction can compromise the survival,
engraftment, and function of these therapeutic cells (Moll
et al., 2012). MSCs have a short lifespan after in vivo
administration and rapidly disappear from tissues. Such an
observation does not rule out a beneficial effect of MSCs. It

has been reported that the phagocytosis of MSCs may induce the
generation of regulatory monocytes. It is also possible that a small
proportion of MSCs escape this clean-up process and are
responsible for the therapeutic effects (Eggenhofer et al.,
2014). In line with this, some circulating MSCs, present at a
very low level in healthy individuals, may greatly increase under
specific conditions. After being mobilized, these local MSCs are
recruited to the site of injury where they participate in the healing
process (Xu and Li, 2014). Another hypothesis supports that the
very rare presence of MSCs is likely linked to biophysical
microdamage rather than the fact that specific molecular cues
to a circulatory pool of MSCs are capable of repairing remote
organs or tissues (Churchman et al., 2020). Several groups have
revealed that MSCs, after infusion, activate complement by
unknown mechanisms, leading to their damage and
disappearance. The complement system, a part of the innate
immune response, helps to remove microbes and damaged cells
in parallel to promoting inflammation. Despite its importance,
there are few studies investigating the interaction between
complement and MSCs. A major role of the complement
system during the interaction of MSCs with immune cells as
well as in modulating their therapeutic activity was previously
described (Moll et al., 2011). The complement-activating
properties of MSCs were correlated with their potency to
inhibit peripheral blood mononuclear cell proliferation
in vitro. It was suggested that MSCs could be phagocytosed
and removed by monocytes, which participate in their
immunomodulatory properties (de Witte et al., 2018). It is
proposed that complement opsonization induces phagocytosis
of MSCs by monocytes after their intravenous infusion. Indeed,
despite the expression of complement inhibitors, including
CD46, CD55 and CD59, MSCs are injured after complement
binding. Such phagocytosis may induce anti-inflammatory and
pro-regenerative M2 monocyte polarization that could explain
the therapeutic functions of MSCs (Gavin et al., 2019b). In
contrast, some results indicated that complement activation is
integrally involved in recognizing and injuring MSCs after their
infusion (Li and Lin, 2012). The inhibition of complement
activation could be a novel strategy to improve the efficiency
of MSC-based therapies. The cell-surface engineering of MSCs
with heparin has improved the viability and functions of MSCs
after infusion by directly inhibiting complement and by
recruiting Factor H, another potent complement inhibitor (Li
et al., 2016). As an alternative to other sources of MSCs, placenta-
derived decidual stromal cells (DSCs) were shown to be
therapeutically efficient. Although complement activation was
observed, this effect was particularly decreased when DSCs were
supplemented with low-dose heparin (Sadeghi et al., 2019). A
previous study found that incubation with autologous serum
damaged BM-MSCs, probably following the formation of the
complement membrane attack complex (MAC) induced by
complement activation. Membrane complement regulatory
proteins (mCRPs) can inhibit the activation of complement
and thus prevent tissues from being damaged. It was thus
suggested that the clinical use of mCRPs during the
transplantation of MSCs can decrease the cytotoxicity induced
by complement activation and therefore guarantee the survival
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and function of these therapeutic cells (Xiao et al., 2017). Deep
investigation of the interplay between MSCs and complement
activation might be a straightforward and effective step for
improving the outcome of current MSC-based therapies.

3.5 Immunogenicity
Because of the lack of consistent assays to measure their specific
immunogenicity, MSCs have long been reported to be
hypoimmunogenic or “immune privileged.” MSCs should be
considered immunoevasive cells with low immunogenicity.
Depending on the conditions, MSCs do not express HLA class
II, and their expression for HLA class I is low, preventing the
activation of allorecognition pathways. The expression of HLA,
CD40, CD80 and CD86 costimulatory molecules can be
influenced by the inflammatory status within the surroundings
of MSCs (Dominici et al., 2006). Indeed, the generation of
antibodies against MSCs and the possible immune rejection in
an allogeneic donor suggest that these cells may not be immune
privileged (Ankrum et al., 2014). They can be recognized by the
immune system and predisposed to be destroyed by cytotoxic
immune cells such as natural killer (NK) cells or cytotoxic T
lymphocytes (CTLs)In some “off-the-shelf” allogenic cases,
cellular and humoral immune responses were observed.
Allogenic BM-MSC injection with MHC mismatch in animal
models initiates an immune reaction and therefore leads to
transplant rejection. Research studies have explained that the
expression of MHC/HLA is altered due to several factors, such as
culturing conditions and epigenetic modification (Kot et al.,
2019). Moreover, MSC differentiation leads to the
upregulation of immunogenic molecules on the cell surface
and thus an increase in MSC immunogenicity (Lohan et al.,
2017). In addition, a high number of passages for MSCs increases
inflammatory reactions after systemic administration. Within
immunocompetent mice, allogeneic MSCs provoked an
immunogenic response, with the infiltration of inflammatory
cells at the transplant site and full graft rejection. Allogeneic
islets cotransplanted with preactivated MSCs prolonged graft
survival by approximately 6 days compared with islets alone.
Such an observation corroborates the hypothesis that
allogeneic MSCs are not immune-privileged and that after
playing their therapeutic role, they are rejected (Oliveira et al.,
2017). To resolve the immunogenicity challenges, two features
must be investigated. First, modern assays to appropriately
identify and measure immune responses to MHC-mismatched
MSCs should be developed (Berglund et al., 2017). Second, new
engineering approaches should be applied to overcome the
rejection of allo-MSCs, avoid the generation of alloreactive
antibodies in parallel to prolong their in vivo survival and
engraftment and enhance their immunoregulatory paracrine
activity.

3.6 Patient Health and Immune Status
Although the biological characteristics of the injected donor cells
are inarguably one of the most important factors that determine
the efficacy of MSCs, the recipient environment where
immunomodulation is supposed to take place should not be
neglected. For example, age, skin involvement, lower acute

GvHD grade, and the number of infusions are the main
prognostic factors affecting the efficacy of MSC therapy for
steroid-refractory acute GvHD (Chen et al., 2015). The
recipient immune environment can influence the therapeutic
outcome following the use of MSCs. As shown by Gavin et al.
(2019a), Gavin et al. (2019b) a proinflammatory immune profile
within the gut at the point of MSC treatment may impede their
therapeutic potential for GvHD. The recipient immune
environment can also vary according to the age of the patient.
Physiological aging is accompanied by a decline in immune
system function. Age-related changes from infants through
adults revealed progressive declines in the percentage of total
lymphocytes and absolute numbers of T and B cells. The
proinflammatory cytokines TNF-α and IL-6 were higher in
elderly people than in adults (Valiathan et al., 2016). It is now
generally recognized that the immunomodulatory properties of
MSCs are not constitutive but are induced by various mediators
present in the inflammatory environment. Different
inflammatory stimuli are able to polarize MSCs with distinct
phenotypes and functions. Inflammatory status changes
throughout the course of an immune response and is affected
by time, activators of the immune system and many other factors.
Therefore, it is likely that the types and amounts of inflammatory
cytokines present in the stromal niche will dictate the migration
and function of MSCs (Wang et al., 2014b). Thus, adipose-
derived MSCs significantly reduced the severity of
experimental autoimmune encephalomyelitis (Ebrahim et al.,
2021) by suppressing the autoimmune response in early
phases of disease and not during disease remission
(Constantin et al., 2009). Compared with adults, children
generally showed a trend toward better complete responses
(Introna et al., 2014; Chen et al., 2015). A multicenter
nonrandomized phase II study addressing the infusion of
MSCs in patients with severe steroid refractory showed that
children responded consistently better than adults, with more
complete remissions and less progressive disease (Le Blanc et al.,
2008). In addition, multiple infusions of MSCs were more
effective for children with steroid-refractory acute disease,
especially when employed early in the disease course (Ball
et al., 2013). MSCs from pooled bone marrow mononuclear
cells of several healthy third-party donors were more effective
in the treatment of severe acute GvHD (Kuci et al., 2016). As
mentioned previously, preparation of the patient’s body
with anticoagulants is also necessary in some cases to prevent
the initiation of IBMIR and hopefully lead to a better outcome
(Moll et al., 2019). In another report, it was assumed that a part
of the therapeutic effect of MSCs was mediated by host/
patient phagocytic cells. The latter help to remove MSCs
administered to the patient and thus modulate MSC activity
(Hoogduijn and Lombardo, 2019). Such observations indicate
the need to further establish the immune cell profile of
patients who may segregate responders from nonresponders
to MSC therapy. It is recommended to explore and monitor
the inflammatory and immunological status of patients at
the time MSCs are infused to help optimize MSC-based
therapy. Moreover, discussions about the relevance of
preconditioning MSCs before transplantation and the
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identification of biomarkers to predict patient responsiveness to
MSC therapy are ongoing.

3.7 Clinical Optimization
The clinical optimization of MSCs is required to achieve safe and
efficient therapeutic indications (Figure 4).

3.7.1 Cell-Free Therapeutic
As previously discussed, several benefits and advantages are
linked to the use of EVs isolated from MSC-conditioned
media as a cell-free therapy. EVs have many advantages over
MSCs; they are easy to dose, prepare, store and administer at the
time of choice, cost less, are small and have no risk of vascular
obstruction (Phinney and Pittenger, 2017). Based on these data,
researchers are leaning toward their use as potential therapies for
several diseases. EVs are likely heterogeneous and differ
depending on the type of MSCs from which they are derived.
Thus, well-defined and characterized EVs are recommended.
Moreover, their metabolomic and lipidomic profiles have not
yet been well characterized. Other limitations of EV isolation and
purification involve the procedure itself, which includes
variability in the quality of EV preparations, the yield of EVs,
and the potential for non-EV contaminants in the preparation.
Likewise, the production and packaging methods for the vesicles
produced by MSCs are currently being validated.

In this context, cell-free therapies involving the secretome of
MSCs have, in theory, lower safety risks than cellular products.
Indeed, these therapies cannot replicate as cells, but this estimated
safety risk cannot ignore the risk of influencing tumorigenesis. In
line with these findings, several studies have reported that EVs
shed by cancer stem cells (CSCs) may significantly contribute to
tumor progression. CSC-derived EVs are involved in tumor
resistance, metastasis, angiogenesis, maintenance of the
stemness phenotype and tumor immunosuppression
microenvironment (Su et al., 2021). As stated by the Cell
Products Working Party and the Committee for Advanced
Therapies of the ISCT, the risk of potential tumorigenicity
related to MSC-based therapies should not be minimized, and
working on the quality and safety of such products should be
increased (Barkholt et al., 2013). Several problems interfere with
the clinical application of EVs from adult stem cells (SCs) in
cancer treatment, such as safety issues, unpredictable pro-tumor
effects, and tissue entrapment (Parfejevs et al., 2020). The risk of
tumorigenesis by EVs remains a concern because of the systemic
and diverse effects of their cargo. The influence of MSCs on
tumor progression is subject to contradictory debate with tumor
growth acting as a double-edged sword (Liang et al., 2021).
Through several mechanisms and depending on many factors,
MSCs may either suppress or promote tumor growth. Similar to
MSCs, EVs can be either associated with tumor progression,
tumorigenesis, angiogenesis, and metastasis or associated with
tumor suppression, exhibiting tumor-suppressor effects
(Vakhshiteh et al., 2019). In fact, the tumor microenvironment
(TME) is highly affected by EVs from both tumor cells and
nonmalignant cells, as they function as carriers for various
molecules in the TME (Tao and Guo, 2020). Different studies
have reported that MSC-EVs may exert various effects on the

growth, metastasis, and drug response of different tumor cells by
transferring proteins, messenger RNA, and microRNA to
recipient cells (Zhang et al., 2017). Changes in the
composition and secretion rate could contribute to the
oncogenic effects of EVs by creating a tumor-supportive
microenvironment. The cargo of MSC-derived EVs may
contain factors involved in cancer metastasis and promote
epithelial-mesenchymal transition (EMT). Cancer-derived EVs
can thus “educate” nearby MSCs to secrete large amounts of IL-8
and other immunosuppressive cytokines. Interestingly, this
inflammatory microenvironment is prone to promote the
formation of new blood vessels toward the tumor (Xavier
et al., 2020). Within the tumor microenvironment, stromal
cells secrete EVs that will support a drug resistance phenotype
in otherwise drug-sensitive cancer cells. Breast cancer cells may
thus prime BM-MSCs to release exosomes containing distinct
miRNA contents, such as miR-222/223, which in turn promotes
quiescence in a subset of cancer cells and confers drug resistance
(Bliss et al., 2016). Several studies demonstrated that treatment
with MSC culture medium or MSC coculture promoted EMT in
breast or gastric cancer cells (Kletukhina et al., 2019). Gastric
cancer cells acquire an “activated” carcinoma-associated
fibroblast (CAF) phenotype and enhance tumor metastasis and
growth in vivo after being in close contact with MSCs. Paracrine
signals induce EMT and promote transwell and transendothelial
migration, and the changes are dependent on β-catenin, MMP-
16, snail and twist (Xue et al., 2015). EVs derived from adipose
tissue-derived MSCs promoted the migration and proliferation of
breast cancer cells via the activation of theWnt signaling pathway
(Lin et al., 2013). Human umbilical cord mesenchymal stem cell-
derived EVs (hUC-MSC-EVs) have been shown to significantly
enhance the proliferation, migration and invasion of human
breast cancer cells through the activation of the ERK pathway.
hUC-MSC-EVs reduced E-cadherin expression and increased
N-cadherin expression, thus promoting EMT in breast cancer
cells and leading to malignant tumor progression and metastasis
(Zhou et al., 2019). In addition, Zhao et al. (2018) found that the
EMT-promoting effect in lung cancer was mediated by EVs
secreted from hUC-MSCs through the secretion of TGF-β.
MSC-EVs may promote the growth and metastasis of tumor
cells by different secreted factors. Exosomes derived from BM-
MSCs increase tumor growth in a BALB/c nu/nu mouse
xenograft model by enhancing VEGF expression through the
activation of extracellular signal regulated kinase 1/2 (ERK1/2)
and the p38 MAPK pathway (Zhu et al., 2012). Bone marrow
stromal cell-derived exosomes were shown to promote the
proliferation, survival, and metastasis of myeloma cells by
modulating the p38, p53, c-Jun N-terminal kinase, and Akt
pathways (Wang et al., 2014a). Surprisingly, human Wharton’s
jelly mesenchymal stem cell-derived extracellular vesicles (hWJ-
MSC-EVs) were reported to promote the growth and migration
of human renal cell carcinoma (RCC) by inducing HGF
expression and activation of the Akt and ERK1/2 signaling
pathways (Du et al., 2014), although antiproliferative and
proapoptotic effects of these hWJ-MSC-EVs were described
on bladder cancer cells through downregulation of Akt
phosphorylation and upregulation of Caspase 3 cleavage
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(Wu et al., 2013). Exosomes derived from the MSCs of
multiple myeloma patients expressed higher levels of
oncogenic proteins, cytokines (IL-6, CCL2) and adhesion
molecules (c-catenin, fibronectin) and lower expression
levels of the tumor suppressor miRNA-15a than exosomes
derived from normal MSCs. Moreover, the latter inhibited the
growth of multiple myeloma cells, whereas exosomes derived
from MSCs of multiple myeloma patients promoted tumor
growth (Roccaro et al., 2013). Collectively, these observations
on the impact of EVs derived from MSCs on tumor biology
should be well monitored and clarified to ensure the safety of
the cell-free strategy.

As shown, the translation of MSC-EVs to the clinical stage is
still at the initial phase. A number of concerns still have to be
solved regarding their safety, particularly regarding tumors, their
mechanisms of action, the possible alteration of their properties
because of isolation/purification methods, and/or the best
approach for large-scale clinical production (Massa et al., 2020).

3.7.2 Quality Control of Mesenchymal Stem/Stromal
Cells
Before their application in clinical trials or cryopreservation and
throughout their production, MSCs need to undergo quality-
control determination. Quality-control criteria include the
determination of many characteristics, including surface
markers, morphology, differentiation potential, senescence
status, secretome, immunophenotype and others (Torre et al.,
2015). Functional assessment before and after cryobanking is
crucial, because MSCs are susceptible to alteration in their
function and characteristics under freeze-thawing conditions.
Furthermore, at the level of clinical grade production,
culturing and manufacturing conditions are able to highly
influence MSCs; thus, they must be in compliance with the
principles of good manufacturing practices (GMPs) to ensure
their safety and efficacy (Sensebe et al., 2013). Several techniques
and assays had to be performed to assess safety and efficacy; tests
for contamination, including endotoxin assays, sterility tests and
Gram staining, and detection of mycoplasma, had to be
performed to ensure safe production (Galvez et al., 2014). In
addition, genome stability is pivotal to prevent oncogenic risks
and should be assessed by performing tests such as comparative
genome hybridization (CGH) or fluorescence in situ
hybridization (FISH) (Sensebe et al., 2013). Finally, each study,
according to its needs and goals, had to perform several tests and
assays and had to follow specific rules to benefit from a final
product with high quality and potential.

3.7.3 Clinical Prediction Tools Including OMICS
Far away from the traditional techniques that measure cell surface
markers and cellular morphology, omics-based biomarkers such
as proteomics, genomics, epigenomics, metabolomics and
transcriptomics are new revolutionary methods for
distinguishing MSCs with different features that may lead to
the failure or success of the treatment at a clinical level. In other
words, the characterization of omics in different culture
conditions (monolayer cell culture versus aggregate cell
culture) explained the therapeutic potential of MSCs and

suggested that some of the failed clinical trials were due to the
different abilities of MSCs in monolayer cultures versus in vivo.
The results demonstrated that the aggregate culture enhanced the
secretory capacity of MSCs and altered the metabolism of several
proteins and lipids (Doron et al., 2020). Furthermore,
transcriptome analysis is key for understanding the functional
and differentiation potency of MSCs. Studies have shown that
transcriptional profiling could be a predictive tool for stem cells
(Wells and Choi, 2019). Clinical prediction tools assist in clinical
outcome prediction, and omics approaches have recently served
in many studies to identify the targets of several treatments based
on MSCs.

4 CONCLUSION

MSCs have been investigated as a therapeutic strategy for several
medical indications. The fate and behavior of MSCs are regulated
by their environment, which may consequently influence their
repair potential. The mechanisms of action of MSCs are mainly
linked to their secretome, including chemokines, cytokines,
growth factors and nucleic acids. These regulatory elements
can be secreted separately or packaged into extracellular
vesicles. As MSCs are able to sense and respond appropriately
to local tissue challenges, such plasticity raises the possibility of
preconditioning (licensing or priming) MSCs to adopt a distinct
fate and function while targeting specific diseases. Currently,
applied MSCs should be handled with precaution, as minor
unknown or less characterized effects may hamper their
therapeutic effect. Discussing new insights into the biological
properties of MSCs, as well as the different preclinical and clinical
challenges, will help to develop and optimize a safe and efficient
therapeutic strategy.
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GLOSSARY

MSCs Mesenchymal stem/stromal cells

ISCT International Society for Cellular Therapy

IFN Interferon

TNF Tumor Necrosis Factor

IDO Indoleamine 2,3-dioxygenase

GvHD Graft-versus-host disease

CVD Cardiovascular disease

VEGF Vascular endothelial growth factor

HGF Hepatocyte growth factor

IL Interleukin

CXCR4 C-X-C Motif Chemokine Receptor 4

RA Rheumatoid arthritis

MSC-EVs MSC-Extracellular vesicles

EVs Extracellular vesicles

BM-MSC Bone Marrow derived MSCs

MSC-Exos MSC-derived exosomes

Exos Exosomes

MPs Microparticles

hUC-MSCs Human umbilical cord-derived MSCs

AT-MSCs Adipose tissue-derived MSCs

MSC-NTF Neurotrophic factor-secreting MSC

ALS Amyotrophic Lateral Sclerosis

IV Intravenously

DMARDs disease-modified antirheumatic drugs

FDA Food and Drug Administration

CD Crohn disease

CFU-F Colony-forming unit-fibroblasts

NG2 Neuron-glial antigen 2

IGF-1 Insulin-like growth factor 1

EPO Erythropoietin

GDNF Glial Cell Derived Neurotrophic Factor

MMPs Matrix Metalloproteinases

FGF-2 Fibroblast growth factor-2

IGFBP-6 Insulin-like growth factor-binding protein 6

MHC-I Major histocompatibility complex-class1

HLA Human leukocyte antigen

FAS Fas Cell Surface Death Receptor

GM-CSF Granulocyte-macrophage colony-stimulating factor

MIF Macrophage migration inhibitory factor

bFGF Basic fibroblast growth factor

PGE2 Prostaglandin E2

COX-2 Cyclooxygénase-2

OA Osteoarthritis

RCTs Randomized clinical trials

TLRs Toll-like receptors

RANTES Regulated upon Activation, Normal T Cell Expressed and
Presumably Secreted

ICAM InterCellular Adhesion Molecule

VCAM-1 Vascular cell adhesion molecule

IBMIR Instant-blood mediated inflammatory reaction

TF Tissue factor

DSCs Decidua stromal cells

mCRPs Membrane complement regulatory proteins

HSA Human serum albumin

ECM Extracellular matrix

MSCs-CM MSCs-conditioned medium

TME Tumor microenvironment

EMT Epithelial-mesenchymal transition

hWJ-MSC-EVs Human Wharton’s jelly mesenchymal stem cells derived
extracellular vesicles
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